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1 Introduction

How well does the Solow growth model (Solow, 1956) fit time series data? Surprisingly
little has been said about this question. The vast majority of empirical investigations
of the Solow model is based on cross-country regressions, most notably the literature
following Mankiw et al. (1992). To evaluate the Solow model using cross-country data is
associated with a host of problems related to missing variable bias, endogeneity and and
strong assumptions about independence between the level of technology, the savings rate
and the population growth rate (for a great overview, see Durlauf and Quah (1999) and
Durlauf et al. (2005)). Furthermore, these cross-country studies often impose the strong
assumption that the economies are in the steady state predicted by the Solow model to
obtain a linear model that can be estimated. One problem with this assumption is that
the regression equation is almost identical to an equation that can be derived from an
accounting identity using only an assumption of constant factor shares and a constant
capital-output ratio, whereby the Solow regression equation becomes tautological (see
Felipe and McCombie (2005)). As researchers became aware of the problems associated
with testing and estimating the Solow model using cross-country data, growth regressions
in the style of Mankiw et al. (1992) has come out of fashion, although there are recent
examples such as Brock and Taylor (2010).

To avoid the problem with unobserved heterogeneity, Islam (1995) succesfully apply
a panel-data approach. Unfortunately this approach does not take cointegration between
the variables into account. This problem can in turn be solved by performing time-series
analysis as [ will show in this article.

I aim to answer the question in the first paragraph by developing a general time-series
framework based on the Solow model, and then applying it to yearly time-series data
for the seven G7 countries and Denmark, Norway and Sweden. This framework allows
for unit roots in the population growth rate and the savigns rate. The goal is first and
foremost to test if the restrictions implied by the Solow model can be said to hold. In
other words, the goal is to test if the Solow model delivers a reasonable description of the
data. If this turns out to the be the case, a second goal is then to obtain the estimates of
the model parameters and compare them to a priori assumptions.

To my knowledge, only one other article investigates the Solow growth model using
time-series data, namely Kalaitzidakis and Korniotis (2000). Unfortunately, there are
some problems with the authors’ analysis. First of all, they interpret the steady state
relationship between output per capita, the savings rate and the population growth rate
as a cointegrating relation, but this ignores the transitional dynamics inherent in the Solow
model. Second of all, they forget to include a time trend term in the equation, probably
because it is also (rightfully) dropped in the cross-section analysis by Mankiw et al.

(1992). The framework developed in the present article takes the transitional dynamics



of the Solow model into account, although an approximation around the steady state is
necessary to linearise the model.

In the empirical part of the article, I use data from the Penn World Table (Heston et al.,
2009). This database contains yearly observations of the relevant variables from 1950 to
2007 for most modern economies, thus delivering a reasonable number of observations on
a long enough time period to study economic growth.

Unit root tests of the savings rate and the population growth rate often reveal these
variables to approximately follow unit root processes, see for example Jones (1995) and
Kalaitzidakis and Korniotis (2000). In this article, I extend the Solow model to allow
for the savings rate and the population growth rate to be arbitrarily close to unit root
processes. I formulate a VAR model in the growth rate of per capita output, the savings
rate and the population growth rate based upon the theoretical model. This kind of
structural CVAR model is explained in Mgller (2008). I extend the model, adding greater
flexibility and allow for more than one lag in the VAR. I then derive the conditions that
must be satisfied for there to be cointegration between the variables. This provides a
general framework for testing and estimating the Solow model using time series data.

In the next section, I present the generalised version of the Solow model in continuous
time. I show the model has a stable non-trivial steady state when the differential equations
describing the evolutions of the savings rate and the population growth rate are both
stable. T then eliminate the unobservable variables from the model to form a model in

the growth rate of per capita output, the savings rate and the growth rate of population.

2 The theory model

The Solow model describes a closed economy without government spending in the long
run. The textbook version of the model, as found in e.g. Acemoglu (2009), assumes the
savings rate and population growth rate to be constant. I formulate a Solow model in
continuous time with time-varying savings rate, s(¢), and population growth rate, n(t).
The rates will be governed by autonomous differential equations that are continuous time
analogues of autoregressive processes.

Total output, Y'(¢) is given by the Cobb-Douglas production function
Y(t) = K(OMNA@GL@)", A pe(0,1), (), K(t),L(t) > 0, (1)

where K (t) is aggregate capital input, L(t) is the total labour input and A(t) is the labour-

augmenting technological progress. The stock of technology grows with the constant rate

g, l.e.

A(t) = gAt). (2)



The fundamental law of motion describes the evolution of capital in the equilibrium
by

K(t) = s()Y (t) — 6K (t), &€ (0,1), (3)

where s(t) is the fraction of output that goes to savings and thus investment, since the
economy is closed. The parameter J is the depreciation rate of capital.

The total labour input grows with the rate n(t)
L(t) = n(t)L(t). (4)

In the long run, the growth rate of total labour input equals the growth rate of the
population. I now turn to specify the evolution of the savings rate and the population
growth rate.

The savings rate is given by the first-order linear ordinary differential equation

$() =5 = (L=ps)s(t),  5>0, psc(0,1). (5)

This equation says that the savings rate will converge to its long-run equilibrium value.
To see this more formally, let the symbol f* denote the non-trivial steady state value of
a function of time, f(¢) in case it is unique and note that $ = 0 implies s* = 5/(1 — py).
For a given differentiable function, f(t), let g;(t) = 0f(t)/0t denote the growth rate of
f(t). The growth rate of s(t) is given by

gs(t) = §/S - (1 - ps) - _<1 - ps)(l - S*/S<t>)'

Whenever the savings rate is below (above) the steady state value, the savings rate will
increase (decrease). The convergence rate will decrease over time, as s(t) gets close to its
steady state, i.e. as s*/s(t) gets close to 1. Independently of this, a value of p, closer to
1, means a lower convergence rate. Two different economies can therefore have the same
steady state savings rate but different convergence rates. Imagine two different economies,
economy A and economy B, with the same steady state savings rate s = s};. If economy
A has a more rigid savings system, the savings rate in economy B will converge with a
slower rate towards the steady state than in economy B, such that ps; 4 > ps p. Since
the steady state savings rates are equal in the two economies, the constant term must be
different, i.e. 54 < sg. Thus, an economy with a very slow convergence rate and a steady
state savings rate will tend to have a very low value of 5. If an economy has a very slow
convergence rate, no matter how far s(¢) is from its steady state, i.e. if ps is close to 1,
any shock to the savings rate will take a long time to be corrected, whereby the savings

rate will appear non-stationary. Note that when p; = 1 either s* = 5 = 0 or there is no



steady state. When 5 # 0 and p, = 1, the differential equation is unstable, and since the
savings rate is bounded, this case can be ruled out.

The population growth rate is modelled analogously by
n(t) =n—(1—-pu)n(t), 7>0, pye(01) (6)

The model consists of equation (1)—(6). I will now show that it has a unique, local,
asymptotically stable, non-trivial steady state. This is not only a desirable property in
a theoretical sense, but also allow for a point to approximate an equation around later.

Combining equation (1) and (3) yields

gr(t) = z(t) =0 (7)

where 2(t) = s(t)Y (t)/K(t) = s(t) K (t)*1(A(t)L(t))*. Define a balanced growth path by
gk (t) = g3 where g} is a constant. In the balanced growth path equation (7) implies
gy = 2(t) — 9 = g.(t) = 0. The growth rate of z(t), g.(t) is given by

9:(2) = 9s(t) = (L = Mg (1) + p(g + n(t)).

Inserting equation (7) and rearranging gives

(t) = (gs(t) = (1 = A)(2(t) = 0) + ulg +n(t)))=(%) (8)

A steady state of the system is given by (2(t), $(¢),n(t)) = (0,0,0). Equation (5) implies
s* =5/(1 — ps) > 0 and equation (6) implies n* = n/(1 — p,) > 0. According to equation
(8) there are two steady state values of z(t), namely the trivial z(¢) = 0 and the non-trivial
z(t) = z* = pu/(1 = N)(g+n*)+ 9 (using g = 0). The non-trivial steady state is thus
given by (z(t), s(t),n(t)) = (z*, s*,n*).

The three differential equations (8), (5) and (6) characterize the dynamical system.
The Jacobian, J, is given by

—(1=X)d —nulg+ 57 0 pd + 55 (g + )
J = 0 —(1 — ps) 0 ;
0 0 —(1=pn)

where (0f/0g)* denotes the partial derivative of f with respect to g evaluated at the
steady state. The eigenvalues of J are —(1 — A\)o — u(g + n/(1 — pn)), —(1 — ps) and
—(1 — pn) and since they are all negative, the steady state is asymptotically stable.



3 The related VAR and CVAR models

It is convenient to exclude the variables A(t), K (t) and L(t) from the system, since A(t) is
unobservable and estimates of K (t) are rare. The goal is therefore now to obtain a linear
discrete time version of the model in the three variables gy, s;, n; and then to formulate it
as a VAR model. I first derive an equation relating gy to s;, n; and the parameters. This
equation describes the transitional dynamics of the economy. To obtain a linear equation,
I approximate it around the steady state. I then approximate the continuous functions

with their discrete time counterparts.

3.1 A linear discrete time version of the theory model

Note first that equation (1), (3), (4) and (2) implies

gy (t) = Age(t) + plg + n(?)). (9)

For this equation to be linear in s(¢), I will now derive a linear approximation of gx ()
around the steady state.

Since z(t) = s(t)Y (t)/K(t) and in the steady state z(t) = z* and s(t) = s*, the term
Y (t)/K(t) must be constant in the steady state. Let us denote the steady state value of
this term by (Y/K)*. We can then write

(Y/K)" = 2"/s" = ((u/(1 = \)(g +n") +9)/s" (10)

Note that when there are constant returns to scale (CRS), A+ p = 1, we get (Y/K)* =
(9+n*+4)/s* completely analogous to the textbook Solow model found in e.g. Acemoglu
(2009), the only difference being the terms s* and n* that now reflects the steady state
values of the differential equations in (5) and (6). Using this we can approximate z(t)
around the steady state allowing s(¢) to vary by writing z(t) = s(¢)(Y/K)*. In effect,

using equation (10), an approximation of equation (7) is given by
gr(t) = s(O)((/ (L= X)) (g +n%) +8)/s" = 0. (11)
Inserting this equation into equation (9) yields
gy (t) = 0s(t) = A0 + p(g + n(t)), (12)

where 8 = A\((u/(1 — X))(g +n*) 4+ 6)/s*. The data on output in the Penn World Tables

are measured in per capita terms. To account for this note that gy — n(t) is the growth



rate of per capita output. Equation (12) can then be written as

gy/(t) = 0s(t) — (L — p)n(t) — Ad + pg. (13)

Equation (5), (6) and (13) constitute a linear model in the three observable variables.

The discrete time stochastic model (or the “empirical model”) is then given by

gy/Le =08t — (L — p)ng — A6 + pg + &4, €4~ i..N(0, 03) (14)
St =5+ pssi1 +esp,  E5~10i.N(0,07) (15)
ne =0+ ppni—1 + Eng,  En ~ 0.0.N(0, 02). (16)

3.2 The VAR model

The VAR model with k£ lags (denoted VAR(k)) can be written on the so-called Error-
Correction-Form as
k—1

A:L‘t = th—l + Z FiAfL‘t_Z‘ + ¢Dt + Et, (17)

=1

where x; is a vector of variables, D, is a vector of deterministic components, the ¢; are
independent and normally distributed shocks with zero mean and identical covariance

matrices. The characteristic polynomial related to the VAR is

k—1
Clg)=(1—q)I —Tg—> Ty(1-q), (18)
i=1
and it is a general result that when one or more of the roots of the characteristic polynomial
are 1, i.e. there are unit roots, the system is non-stationary.
The empirical model consists of equation (14), (15) and (16). It can be written as a

VAR(1) on the Error-Correction-Form, equation (17), with x; = (gy/r4, ¢, 1),

-1 Ops  —(L—p)pn 05 — (1 — p)ii 4 pg — Ao
II = 0 _(]-_ps) 0 ,(b: S )
0 0 —(1—pp) n

the scalar D; = 1 and empty I'; matrices for ¢ = 1,...,k — 1. When all three vari-
ables are stationary, the Solow model should therefore be estimated using the VAR
model, equation (17), with restrictions on the IT and ® matrices corresponding to the
expressions above. There are eight coordinates with combinations of the ten parame-
ters, A, i, ps, Pn, M, N*, 5, 5*, g,0 (remember the definition of # above). In accordance with
Mankiw et al. (1992) and Kalaitzidakis and Korniotis (2000), I will assume g + ¢ to be



known, in which case the remaining parameters can be identified. It is possible to impose
a restriction like A + ¢ = 1 on the system, even though it corresponds to a non-linear
combination of coordinates of II, by using the results from Boswijk and Doornik (2004),
which are implemented in PcGive.

In the next section, I show that when the savings rate and/or the population growth
rate are non-stationary, they will cointegrate with the growth rate of per capita output.
I show how these cointegrating relations look, and what restrictions should be imposed

on the system.

3.3 The CVAR model

The matrix II has reduced rank when the savings rate or the population growth rate
is integrated. When either variable is integrated, they turn out to cointegrate with the
growth rate of per capita output.

A matrix has reduced rank when its determinant is zero. The determinant of II is

—(1 = ps)(1 = pn). The characteristic polynomial, equation (18), is

C(q) = —(1 = qps)(1 = qpn)

with the roots ¢ = p;! and p;!. The rank of IT is r when there are p — r unit roots, where
p is the dimension of x. Thus ps # 1A p, # 1if and only if IT has full rank. In other words,
when s, and n, are both 1(0), all variables in the model are I(0), since also g,; will be 1(0).
In that case, we have three stable cointegrating relations in the system, namely the trivial
case where all of the variables cointegrate with themselves, and we can estimate the model
using the OLS estimator. Furthermore, it appears from the roots of the characteristic
polynomial that (ps # 1,0, # 1) & r =3, (ps = L,pn =0)V(ps =0,pp = 1) & 17 =2
and (ps = 1,p, = 1) & r = 1. The rank of II is at least 1. When some of the variables
cointegrates, r < p, it is possible to decompose II into two p x r matrices of rank r, «
and [, such that o’ = II. The  matrix contains the cointegrating relations and the
« matrix the loadings. This decomposition is unique up to a chosen normalisation, i.e.
for any matrix of full rank, ), we can renormalize the decomposition into @ = a) and
B = Q!4 such that af = aQQ '8 = af’. One way to decompose II into o and 3 is
is to let o be a basis for the column space of IT and let 3 = (a(a/a)™')'II. A convenient
renormalization matrix, @, is given by @ = (R[1,r;p+1,p+7r])~" where R is the reduced
row echelon form of (5’ | I) and X [mq, mo;ny, ns] denotes the submatrix of a matrix X
consisting of rows m; to my and columns n; to ny of X.

Furthermore, when II has reduced rank, we can decompose the deterministic term, ®
into a part related to the cointegrating relations, n, i.e. a part in the span of «, and a
residual part, 7, i.e. a part not in the span of «, such that ® = an+~. Let the m x (m—n)

matrix of full column rank A, denote the orthogonal complement of an m x n matrix A



of full column rank, i.e. a matrix satisfying A, A = 0. For a given matrix A, A, is not
unique: it is possible to write A, = AV where A is a particular orthogonal complement
of A and V is an arbitrary, square, non-singular matrix. A simple choice of A, is the null
space of A’. Using the identity I = a(f'a)™'8 + B1(a/ 81) " d/,, it is possible to write
n=a(fa)'f'®and y= B, (/ B1) | D.

Using these procedures, the «, 5, 7 and v matrices can be found in each of the three

cases of cointegration. In the first case, the savings rate is integrated, s; ~ I(1), and

-1 _(1_:u)pn 1 -9 0
a=lo o ﬂ:( )
0O 0 1
0 —(1—pn)

0s
(= )X = pa) Tt A~ pg) |
n= and y= | 5
_(1 - pn)iln
It appears from the 5’ matrix that this case yields two cointegrating relations: the growth
rate of per capita output and the savings rate is cointegrated and positively related,
gy/r — s, ~ 1(0), and the population growth rate is cointegrated with itself, n, ~ 1(0).

In the second case the population growth rate is integrated, n, ~ I(1) and

-1 bps 101
a=|0 —1=p) ,5’=< ”),

01 0
0 0
—(1 —p)n
—50(1 — ps) ™' + A — pg) 1-a)
n = and v = 0
_(1 - ﬁs)_ls _
n

What can be seen here is that there is again two cointegrating relations: one between gy,
and n, in which they are negatively related, gy, + (1 — p)n; ~ 1(0), and one in which n,
cointegrates with itself, n; ~ 1(0).

Finally, in the third case the savings rate and the population growth rate are both
integrated, s;,n; ~ I(1), and

-1 Os — (1 —p)n
a=10 ,B':(l —0 1—u),77:)\6—,ugand7: s

n

In this case there is only one cointegrating relation, namely gy, — 0s; + (1 — p)n, ~ 1(0).
In all three cointegration cases v is not empty, meaning that the deterministic term

is not restricted to the cointegrating relations (i.e. the span of «). In the empirical part



of the article, I have chosen to model the deterministic term simply as an unrestricted
constant.

In the next section I extend the empirical model by allowing for more than one lag
in the VAR and by allowing the growth rate of per capita output to depend on its own

lagged values.

4 The generalised VAR and CVAR models

The full empirical model extends the above in two ways. First of all, I allow for more
than one lag in the VAR(k), i.e. k > 1. Second of all, I allow for lagged growth rates in
per capita output to be a determinant of the present growth rate (this does not change
the conclusions derived above about stability and does not enter into the expression for
0). The reason for doing this is to capture the possible effect of business cycles on the
growth rate of output. The results in this section are analogous to those from the previous
section, but they are more general. The full empirical model is given by the following

equations

k
Gype =05y — (1 — p)ng + pg — A + Z PgiGy L t—i + Egy Eg ~ 1.i.N(0,07),
i=1
k
Sy =8+ Z Ps,iSt—i + €5, €g ~ 1.0.N(0, a?),
i=1
k
n=n-+ an,mt,i + €5, €4 ~ 1.5.N (0, a?).

i=1

The model implies the following matrices of the Error-Correction-Model formulation of
the VAR, equation (17),

~(1=py)  0ps  —(—
IT = 0 _(1 - lés) 0 5
0 0 _(1 _ﬁn)

o« k < k « k
where fg = >0 pgir s = i1 psq and pn = 30 Pug;

k k k
- Zj:i-{-l Pg.j —0 Zj:i-{—l Ps.j —(1—p) Zj:i—i—l Pn.j
k
I = 0 —(1— Zj:i+1 pSJ) 0
k
0 0 —(1— Zj:i—i—l Pn.j)

10



for i =1,...,k and the deterministic component

05 — (1 — p)n + pug — Ao
o = s ,

3!

with D; = 1. The determinant of IT is —(1 — p,)(1 — ps)(1 — p,,) and the characteristic

polynomial, equation (18), is

Clq) = (Z((i —1)g— (i —2))gpgi — 1)
<Z((i —1)g— (i —2))gps; — 1) <Z((i —1)g— (i —2))qpn; — 1) ,

i=1 =1

which can be seen by inspection to have unit roots exactly for p, = 1, p; = 1 and p,, = 1,
analogous to the simpler model. Assuming p, € (0, 1), not at odds with the data, we get
again three cases of cointegration: (ps # 1,p, # 1) & r =3, (ps = 1,pp # 1) V (ps #
Lpn=1)<r=2and (p,=1,p,=1) & r=1

When sy, n; ~ I(0), i.e. ps, pn € (0,1) the rank of IT is r = 3 and the model should be
estimated using the restricted II and I'; matrices above (the I'; matrices are common to
all the four cases).

When II has reduced rank, » < p, using the procedures described in section 3.3 yields
the following matrices of the CVAR. When s; ~ I(1) and n; ~ 1(0) the rank is r = 2 and

the matrices are

o= 0 0 B = (1 =P O) ;

] 0 0 1
0 _(1 - pn)
(1—p2) 0 5 o
n(l—p 56p Ao—pig 1=p,
y = <<1pg><1pn> + (;pjﬁ S > andv=| 5
T 1=pn 0

Compared with the simpler model, the term 1 — p, now appears in the cointegrating
relation as well as in the first coordinate of the o matrix. The fact that gy, is now
allowed to depend on its own lagged values means that the cointegrating relation between
gy, and s; needs more of a counter-reaction in the savings rate to keep the relation
stationary. Note that the summed coefficients of the lagged variables, ps and p,, enter in
the same way as their simpler counterparts p, and p,. The same is true for p, although it
can not be seen here, since I did not include the lagged value of gy, in the simple model.

The 1 matrix looks the same as before, except now p, enter and there is an extra term

11



related to 5. When s; ~ I(0) and ny ~ I(1) the rank is » = 2 and the matrices are

_(1 - ﬁg) 0155 10 tv&
o O _(1 - [55) ’5/ — 1—Pg )

01 0
0 0
_1lzp
_ﬁ(lfu)gg _ 95 4 M—pg 1—pg
n= (1—pg) (1_,0;)(1_05) 1—pg and v = 0
7, =

Again the matrices correspond to those from the simpler model, and the same general
comments can be said as above. Finally when s; ~ I(1) and n; ~ I(1) the rank is r =1

and the matrices becomes

—(1 = py)
o ! 0 1—p
a = 0 B = <1 [ 1—pg>7
0
As—(1—p)n
N 1-pg
n= (ﬁ(l —u)ﬁg—QEﬁngl%,i‘f) and 7 = 5
n

I have now developed a complete statistical framework to estimate and test the Solow

model using time series data. To sum up, the framework covers four different cases:
Case 1 Stationarity. Corresponds to a restricted VAR (see p. 10).

Case 2 s; ~ I(1). Corresponds to a restricted CVAR (see p. 11).

Case 3 n; ~ I(1). Corresponds to a restricted CVAR (see p. 11).

Case 3 s;,n; ~ I(1). Corresponds to a restricted CVAR (see p. 12).

5 Data

I use data from the Penn World Tables Version 6.3 (Heston et al., 2009). For a description
of the data and methods used to generate this dataset, see Summers and Heston (1991).
The data set includes time series data on the three variables for a wide range of countries
for the years 1951 to 2007 (1971-2007 for Germany). As a first step of applying the model,
I have restricted the analysis to include the seven G7 countries: Canada, France, Germany,
Italy, Japan, the United Kingdom and the United States of America and furthermore

Denmark, Norway and Sweden. The inclusion of the G7 countries allow me to compare
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the results with those of Kalaitzidakis and Korniotis (2000), although they used the first
public version of the dataset covering the shorter period 1950-1988.

For the growth rate of per capita output, I use the variable grgdpch since the Penn
World Table authors recommends it. The savings rate is the investment share of real
GDP, the variable ki divided by 100. The population growth rate is calculated on the
basis of the population variable POP.

6 Estimation

6.1 Applying the model

I will now explain all the steps in estimating the model using the data for USA. In
accordance with the methodological guidelines in Juselius (2006), I first fit a general
unrestricted VAR model in order to determine the number of cointegrating relations, i.e.
the rank of II. Using CATS in RATS version 2 (Dennis et al., 2005), I perform the
automated lag length determination procedure, with a maximum of five lags, indicating a
lag length of k = 4 or k = 2. For each extra lag included in the model, nine more variables
are introduced (if I could restrict the I" matrices, this would instead be five). Therefore,
a lag length of four corresponds to 18 more variables in the model, compared to a lag
length of two. Since this is a lot of variables compared to the number of observations, I
choose a lag length of two. I then perform a residual analysis, testing for normality and
autocorrelation (see Dennis (2006) page 176-177 for details). There are no problems with
neither autocorrelation or non-normality. Had there been problems, I would look for large
residuals defined by having a ¢ value larger than three, and deal with them by including a
break or some kind of dummy. I then consider the recursively calculated fluctuation test
of the eigenvalues to check for volatility in the model. This test reveals no problems with
non-constancy of the eigenvalues.

Having now a well-specified unrestricted VAR(2) model, I perform the rank test. This
test is a series of trace tests of which the first tests if all roots are unit roots, i.e. r = 0.
If this hypothesis is not rejected, the rank test indicates a rank of r = 0. If it is rejected,
one proceeds to test if all roots, but one, are unit roots, i.e. » = 1, and so on. Using the
data for USA, the Bartlett-corrected p-value for the hypothesis of r = 0 is 0%, for r = 1 it
is 57% and for r = 2 it is 65% (see Table 1). This points towards a rank of » = 1. I then
calculate the recursive trace test with the standard values in CATS. The plots indicates
two cointegrating relations, i.e. r = 2. Thus the correct rank of II could be either one or
two. Although the estimates are only relevant under the correct choice of rank, I estimate
the model in all four cases.

Before turning to estimate the model under all the four cases derived in section 4,

consider the following. When the model is estimated under full rank, it returns estimates
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for ps and p,, as well as s and n. Therefore, it is possible to find s* and n*. Using these and
assuming the size of g and ¢, it is possible to find X from the estimates of II; o, IIy 5, II; 3
and Il33. If s; ~ I(1) then p; = 1 and the steady state value s* is undefined. Therefore,
when the assumption s; ~ (1) is imposed, it is not directly possible to recover A from 0,
because if s* really does not exist, the expression for # on page 6 is no longer valid. Keep
in mind, that imposing s; ~ I(1) is simply a way of finding out how to impose restrictions
on the matrices under reduced rank. It is true, that if s; really do follow a random walk,
it has no steady state. However, the interpretation here is that s; is so persistent, that
assuming s; ~ I(1) is more appropriate, statistically, than assuming s, ~ I(0). Therefore,
when s; ~ I(1), I use the estimate of s* calculated under the assumption of full rank.
The same considerations applies to n; and n*.

I use PcGive version 13.1 to estimate the model under the four different cases with
the following procedure. Starting with Case 1, I estimate the VAR model imposing
Il = IIp3 = II3; = II3o = 0. It is not, to my knowledge, possible to restrict the
I'; matrices at the same time as the II matrix, at least not under the more complex
restrictions that will be imposed later, so these are the only restrictions put on the system.

The regression yields the following estimated II and ® matrices

—-0.785 —-0.319 —-1.942 0.110
II = 0 —0.074 0 ,®=10.018 1,
0 0 —0.072 0.001

where coordinates with t-values larger than 2 are marked in bold typeface (t-values for
® are not available). The restrictions are accepted with a p-value of 22%. To derive an
implied estimate of A one needs to assume something about ¢ and . In accordance with
Mankiw et al. (1992), I assume g+ 6 = 0.05. The estimates imply p, = 0.21, p, = 0.93,
pn = 093, s* =0.24, n* = 0.01, p = —1.09 and A = 0.73. The estimate of x = —1.09
is contrary to the a priori assumption of p € (0,1). It should be noted though, that for
all the estimates that are derived from the coordinates of II and ®, and do not appear
directly, it is unknown whether they are significant or not. For example, it is known
that the estimate of —(1 — p,) is significant, but it is not known if the estimate of p,
is significant. It is possible to find the t-values of all the derived estimates, but since
the calculations will be rather involved in some cases, I have not done this. Thus, the
estimate of © = —1.09 might as well be insignificant, in which case it would not count as
heavily against the Solow model. In any case, the rank tests above indicated a reduced
rank, and thus the estimate of the full rank model are irrelevant.

The model predicts a long-run savings rate of 24% and a long-run population growth

rate of 1%, which is quite reasonable. The average savings rate is 23% and the average
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Table 1: Rank tests

Rank CAN DEN FRA GER ITA JAP NOR SWE UK USA

Trace test p-value (percent)
r=2 58 41 36 31 84 61 56 23 44 65
r=1 2 o7 0 29 29 95 11 20 41 o7

r=20 0 1 0 19 10 0 3 5 15 0
Recursive trace test indication
- 1 / 2 / 3 2 2 / 3 2 1 2 - 3 2

population growth rate is 1%, which indicates that the rates are not very far from their
steady state values.
Most importantly, the estimates indicates that both s; and n; are very persistent since

both ps and p,, are close to one. This makes sense given the indication of a reduced rank.

Continuing to Case 2, I estimate the model under the assumption of s; ~ I(1), i.e.
ps = 1. I impose a rank of 2 on II = af’ and impose the restrictions as; = a9 = ag; =

Bi3=Pa1 = Pap=0and 81 = P23 = 1. The regression gives the following estimates

o= 0 0 0.001 |,
0 0 1

—0.785 —1.942 1 0.238 0 0.081
e (393 ) 0.
0 —0.072 0.001

implying p, = 0.21, p,, = 0.93, n* = 0.01, p = —1.09 and A = 0.64, where I have assumed
s* = 0.24 which was the estimate of s* from before. The restrictions are accepted with a
p-value of 16%.

Estimating Case 3, n, ~ I(1), i.e. p, =1, I impose a rank of r =2 and oy = a3 =

azo = P19 = P21 = P23 =0and B1; = P22 = 1. The estimates are

o= 0 —0.075 0.018 |,
01 0

—-0.785 0.320 1 0 2.582 0.112
e (30359 .
0 0 0.000

implying p, = 0.21, g, = 0.93, s* = 0.24, pp = —1.03 and A = 0.74, where I have assumed
n* = 0.01. The restrictions are accepted with a p-value of 6%.
Finally I estimate the model in Case 3, s;,n; ~ I(1), i.e. ps = p, = 1. I impose a rank

of r =1, as = a3 =0 and $; = 1. The estimates are

—0.785 0.082
o= 0 ,5’:(1 0.238 2.582),<I>: 0.001 | ,
0 0.000
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Table 2: Estimates without the CRS restriction, g+ A ; 1

I(1) P Py Ps  Pa ST mt A
Canada Sy 2% 0.28 0.88 0.01 -0.03 0.99
Denmark 46% 0.25 0.94 0.89 032 0.00 1.87 3.03
France Sy 6% 0.23 0.73 0.01 3.12 0.23
Germany sy, ny 21% 0.22 0.03 0.99
Italy S, My 20% 0.51 3.14  0.32
Japan ny 9% 0.28 0.91 0.37 2.73  3.01
Norway St 54% 0.26 0.93 0.00 0.75 -0.89
Sweden S¢, Ty 2% 0.32 -0.12 1.13
UK Sy 11% 0.32 0.87 0.00 0.78 -4.04
USA Sy 16% 0.21 0.93 0.01 -1.09 0.64

implying p, = 0.21, p = —1.03 and A = 0.73, where I have assumed s* = 0.24 and
n* = 0.01. The restrictions are accepted with a p-value of 7%.

All in all the restrictions implied by the Solow model are accepted in all four cases,
and the estimates are very robust towards the choice of rank for the USA.

Most commonly, the aggregate production function is assumed to have CRS. In this
case, it means that A + p = 1. I also estimate the model imposing this extra restriction.
Besides the restrictions on the o and [ matrices described above, I impose the following
restrictions. In case 1, I impose I1; o = —1II; 3(0.05 4+ n*)/(s*(II3 5+ 1))(II32 + 1), in case 2
I impose 51,2 = 04172(0-05 + n*)/(S*(Oés,z + 1)041,1), in case 3 I impose Q19 = 51,3611,1(@2,2 +
1)(0.05 + n*)/s* and in case 4 I impose 2 = —f3(0.05 + n*)/s*. I use the values of s*
and n* implied by the estimates from case 1 without the assumption of CRS. Using these
extra restrictions I estimate the model again for each of the four cases.

In case 1 the restrictions are not accepted with a p-value of 1%. The implied estimates
are pg = 0.27, p, = 1.01, p, = 0.92, p = 0.94 and A = 0.06. In case 2 the restrictions
are not accepted with a p-value of 1%. The implied estimates are p, = 0.27, p, = 0.92,
= 0.98 and A = 0.02. In case 3 the restrictions are not accepted with a p-value of 0%.
The implied estimates are p, = 0.26, p, = 1.01, g = 0.90 and A = 0.10. Finally, in case
4 the restrictions are also not accepted with a p-value of 0%. The implied estimates are
Pg = 3.84, p =0.96 and A = 0.04. The fact that the relative size of A and ;1 now changes
and that p-values is low, is a sign that the model has a poor fit with the data. It can be
concluded, that the problem is related to the size of p which does not conform to the a
priori assumption. Note also the unreasonably high estimate of g, in case 4, indicating
that this parameter had to be “adjusted” a lot for the system to conform to CRS.

All the estimates for the ten countries can be found in Table 4 in the appendix.

As was explained earlier, the rank tests indicated a rank of one or two. Since the results
are nicer given a rank of two, and since the p-value is highest when s; is the integrated

variable, I regard the result from case 2 as the estimates most likely to be correct. The
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Table 3: Estimates with the CRS restriction, p+ A =1

Country (1) P Py Ps  Pn M A

Canada Sy 0% 0.33 0.87 1.17 -0.17
Denmark 60% 0.25 095 089 1.94 -0.94
France Sy 0% 0.52 0.71 0.46 0.54
Germany sy, ny 32% 2.29 -0.22 1.21
Italy S¢, M 2% 1.65 0.58 0.43
Japan Ny 15% 0.29 0.91 2.63 -1.63
Norway St 68% 0.26 0.93 0.70 0.26
Sweden  s;,ny 3% 2.20 0.59 041
UK St 18% 0.32 0.86 0.85 0.15
USA St 1% 0.27 0.92 098 0.02

estimates from case 2 are therefore chosen to be presented in Table 2 and 3, representing
the no-CRS and CRS case, respectively.

6.2 Results

Performing the procedure explained in the previous subsection for each of the ten coun-
tries, I end up with the results in Table 2 and 3. Both the no-CRS and the CRS restrictions
are generally accepted, and the estimates generally have the correct sign. Three out of ten
estimates of ;1 and one out of ten estimates of \ are negative without the CRS restriction
and vice versa with the CRS restriction. The average estimate of A and g without the
CRS restriction is 0.54 and 1.12, respectively.

However, the estimates of A and u are often outside the a prior: assumption of A\, u €
(0,1). This contrasts with Kalaitzidakis and Korniotis (2000) who get only estimates

satisfying this assumption (given an assumption of CRS).

7 Conclusion

I generalised the Solow model by allowing the savings rate and the population growth rate
to vary over time and showed that the model is stable. I then derived three equations in
the growth rate of per capita output, the savings rate and the population growth rate.
These three equations where then formulated as a VAR model on Error-Correction-Form.
I showed under which conditions the system of variables cointegrates, and derived the
implied restrictions on the CVAR model under each condition. I then estimated the
model using data for the seven G7 countries and Denmark, Norway and Sweden. The
restrictions on the VAR and the cointegrating relations in the CVAR implied by the Solow
model were generally statistically accepted, although the estimates of the parameters of

the Cobb-Douglas production function where not generally between zero and one, and
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did not sum to one. Overall, the Solow model does seem to describe the data reasonably
well.

Future research could focus on obtaining t-values for the implied estimates, estimate
the model for all the countries in the Penn World Table, perform robustness checks with
regards to the assumption of g + 0 = 0.05, calculate the trace correlations (which can be
loosely considered analogous to the R? from cross-section regressions) and estimate the
model using the growth rate of the labour force instead of the growth rate of population.
The model fit measures can be regressed on various country charactaristics such as the
level of GDP per capita, population size, openness, continent, indstrialization rate, fertility

rate, etc. as well as data quality and abundance.
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A Complete estimation results

Table 4: Complete estimation

results

Without CRS restriction, p + A E 1 With CRS restriction, p+ A =1
I(1) p Pg Ps Pn s* n* 12 A p Pg Ps Pn 2] A
Canada
2% 0.28 1.00 0.88 0.28 0.01 -0.03 0.99 0% 0.31 1.19 0.87 0.78 0.22
St 2%  0.28 0.88 0.01 -0.03 0.99 0% 0.33 0.87 1.17 -0.17
ng 0% 0.28 0.94 0.27 -0.23 0.96 0% 1.00 1.07 0.60 0.40
St, Nt 91% 0.28 -0.23 0.97 0% 0.12 1.01  -0.01
Denmark
46% 0.25 094 0.89 0.32 0.00 1.87 3.03 60% 0.25 095 089 194 -0.94
St 55%  0.25 0.89 0.00 1.86 968.24 66%  0.27 0.89 1.57 -0.57
ng 9% 0.25 0.93 0.30 2.28 5.09 14% 0.26  0.92 2.19  -1.19
Sty Mt 40% 0.25 2.28 7.55 43%  2.10 1.66 -0.66
France
1% 023 091 0.73 0.28 0.01 3.12 0.00 0% 0.43 086 0.73 1.32 -0.32
St 6%  0.23 0.73 0.01  3.12 0.23 0% 0.52 0.71  0.46 0.54
ng 0% 0.23 0.89 0.28 3.23 -0.11 0% 1.00 0.92 1.34 -0.34
St, Mt 0%  0.23 3.23 0.39 0% -1.04 0.65 0.35
Germany
1% 0.22 085 0.73 0.26 0.00 -1.09 -0.15 4% 0.43 084 0.77 150 -0.50
St 20%  0.22 0.75 0.00 -0.97 2.04 28%  0.17 0.77 -0.64 1.63
nt 1% 0.22 0.85 0.25 0.03 0.90 3% 0.18 0.87 0.13 0.86
Sty Mt 21%  0.22 0.03 0.99 32%  2.29 -0.22  1.21
Ttaly
2% 051 087 096 0.32 0.00 3.28 -2.43 2% 0.61 081 096 234 -1.34
St 0%  0.51 0.97 0.00 3.27 -0.13 0% 0.78 0.97 0.63 0.37
ng 1% 0.51 0.87 0.32 3.14 -2.59 1% 0.61  0.82 2.25  -1.26
Sty Mt 20%  0.51 3.14 0.32 2% 1.65 0.58 0.43
Japan
12% 0.28 0.92 097 0.37 0.00 2.63 2.93 20% 0.29 091 097 258 -1.58
St 1%  0.28 0.97 0.00 2.63 -2.29 0% 0.39 0.96 1.50 -0.50
ng 9% 0.28 0.91 0.37 2.73 3.01 15% 029 091 2.63 -1.63
St, Mt 5%  0.28 2.73 -7.78 2%  -0.31 1.50  -0.50
Norway
29% 0.26 0.92 092 0.33 0.00 0.71 24.90 41% 0.26 0.92 0.92 0.95 0.05
St 54%  0.26 0.93 0.00 0.75 -0.89 68%  0.26 0.93 0.70 0.26
ng 15% 0.26 0.93 0.33 1.21 -1.33 23% 0.26  0.93 0.92 0.08
Sty Mt 29%  0.26 1.21 0.03 45%  1.85 0.72 0.28
Sweden
0% 0.32 088 0.83 0.25 0.00 -0.40 0.73 0% 0.34 0.93 0.84 1.03 -0.03
St 2%  0.32 0.84 0.00 -0.39  -0.01 2% 0.33 0.84 0.66 0.34
ng 0% 0.32 0.90 0.25 -0.11 0.89 0% 0.31 094 0.89 0.11
St, Mt 2%  0.32 -0.12 1.13 3% 2.20 0.59 0.41
United Kingdom
2% 032 093 087 024 000 0.78 2.02 3% 0.31 094 087 119 -0.19
St 11% 0.32 0.87 0.00 0.78 -4.04 18% 0.32 0.86 0.85 0.15
ng 4% 0.32  0.92 0.22 0.76 1.82 0% 1.00 0.93 1.46  -0.46
St, Mt 18%  0.32 0.76 -0.75 33% 1.87 0.84 0.16
United States of America
22% 0.21 093 093 0.24 0.01 -1.09 0.73 1% 0.27 1.01 0.92 094 0.06
St 16% 0.21 0.93 0.01 -1.09 0.64 1% 0.27 0.92 0.98 0.02
ng 6% 0.21 0.93 0.24 -1.03 0.74 0% 0.26  1.01 0.90 0.10
St, Nt 7% 0.21 -1.03 0.73 0% 3.84 0.96 0.04
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