
Chapter 7

Bequests and the modified
golden rule

This chapter modifies the Diamond OLG model by including a bequest motive.
Depending on what form and what strength the bequest motive has, distinctive
new conclusions may arise. Indeed, under certain conditions the long-run real
interest rate, for instance, turns out to be determined by a very simple principle,
the modified golden rule. The chapter also spells out both the logic and the limi-
tations of the hypothesis of Ricardian equivalence (government debt neutrality).

7.1 Bequests

In Diamond’s OLG model individuals care only about their own lifetime utility
and never leave bequests. Yet, in reality a sizeable part of existing private wealth
is attributable to inheritance rather than own life-cycle saving. Among empiricists
there is considerable disagreement as to the exact quantities, though. Kotlikoff
and Summers (1981) estimate that 70-80 % of private financial wealth in the US
is attributable to intergenerational transfers and only 20-30 % to own life-cycle
savings. On the other hand, Modigliani (1988) suggests that these proportions
more or less should be reversed.
The possible motives for leaving bequests include:

1. “Altruism”. Parents care about the welfare of their descendants and leave
bequests accordingly. This is the hypothesis advocated by the American
economist Robert Barro (1974). Its implications are the main theme of this
chapter.

2. “Joy of giving”. Parents’ utility depends not on descendants’utility, as
with motive 1, but directly on the size of the bequest. That is, parents
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simply have taste for generosity. They enjoy giving presents to their children
(Andreoni, 1989, Bossman et al., 2007, Benhabib et al., 2011). Or a more
sinister motive may be involved, such as the desire to manipulate your
children’s behavior (Bernheim et al., 1985).

3. “Joy of wealth”. Dissaving may be undesirable even at old age if wealth, or
the power and prestige which is associated with wealth, is an independent
argument in the utility function (Zou, 1995). Then the profile of individual
financial wealth through life may have positive slope at all ages. At death
the wealth is simply passed on to the heirs.

In practice an important factor causing bequests is uncertainty about time of
death combined with the absence of complete annuity markets. In this situation
unintentional bequests arise. Gale and Scholz (1994) find that only about half of
net wealth accumulation in the US represents intended transfers and bequests.
How transfers and bequests affect the economy depends on the reasons why

they are made. We shall concentrate on a model where bequests reflect the
concern of parents for the welfare of their offspring (motive 1 above).

7.2 Barro’s dynasty model

We consider a model of overlapping generations linked through altruistic bequests,
suggested by Barro (1974). Among the interesting results of the model are that if
the extent of altruism is suffi ciently high so that the bequest motive is operative
in every period, then:

• The differences in age in the population becomes inconsequential; the house-
hold sector appears as consisting of a finite number of infinitely-lived dy-
nasties, all alike. In brief, the model becomes a representative agent model.

• A simple formula determining the long-run real interest rate arises: the
modified golden rule.

• Ricardian equivalence arises.

• Resource allocation in a competitive market economy coincides with that
accomplished by a social planner who has the same intergenerational dis-
count rate as the representative household dynasty.

This chapter considers the three first bullets in detail, while the last bullet is
postponed to the next chapter.
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7.2.1 A forward-looking altruistic parent

Technology, demography, and market conditions are as in Diamond’s OLGmodel.
There is no utility from leisure. Perfect foresight is assumed. Until further notice
technological progress is ignored.
The preferences of a member of generation t are given by the utility function

Ut = u(c1t) + (1 + ρ)−1u(c2t+1) + (1 +R)−1(1 + n)Ut+1. (7.1)

Here R is the pure intergenerational utility discount rate and 1+n is the number
of offspring per parent in society. So R measures the extent of “own generation
preference”(strength of “self preference”) and n is the population growth rate.
As usual we in (7.1) ignore indivisibility problems and take an average view. The
term u(c1t) +(1 + ρ)−1u(c2t+1) is the “own lifetime utility”, reflecting the utility
contribution from one’s own consumption as young, c1t, and as old, c2t+1.The
time preference parameter ρ appears as the intragenerational utility discount
rate. Although ρ > 0 is plausible, the results to be derived do not depend on this
inequality, so we just impose the formal restriction that ρ > −1.
The term (1 + R)−1(1 + n)Ut+1 in (7.1) is the contribution derived from the

utility of the offspring. The intergenerational utility discount factor (1 +R)−1 is
also known as the altruism factor.
The effective intergenerational utility discount rate is the number R̄ satisfying

(1 + R̄)−1 = (1 +R)−1(1 + n). (7.2)

We assume R > n ≥ 0. So R̄ is positive and the utility of the next generation is
weighed through an effective discount factor (1 + R̄)−1 < 1. (Mathematically, the
model works well with the weaker assumption, n > −1; yet it helps intuition to
imagine that there always is at least one child per parent.)
We write (7.1) on recursive form,

Ut = Vt + (1 + R̄)−1Ut+1,

where Vt is the “direct utility”u(c1t)+(1+ρ)−1u(c2t+1), whereas (1+ R̄)−1Ut+1 is
the “indirect utility”through the offspring’s well-being. By forward substitution
j periods ahead in (7.1) we get

Ut =

j∑
i=0

(1 + R̄)−iVt+i + (1 + R̄)−(j+1)Ut+j+1.

Provided Ut+j+1 does not grow “too fast”, taking the limit for j →∞ gives

Ut =
∞∑
i=0

(1 + R̄)−iVt+i =
∞∑
i=0

(1 + R̄)−i
[
u(c1t+i) + (1 + ρ)−1u(c2t+i+1)

]
. (7.3)
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By
∑∞

i=0(1 + R̄)−iVt+i we mean limj→∞
∑j

i=0(1 + R̄)−iVt+i, assuming this limit
exists. Although each generation cares directly only about the next generation,
this series of intergenerational links implies that each generation acts as if it cared
about all future generations in the dynastic family, although with decreasing
weight. In this way the entire dynasty can be regarded as a single agent with
infinite horizon. At the same time the coexisting dynasties are completely alike.
So, in spite of starting from an OLG structure, we now have a representative
agent model, i.e., a model where the household sector consists of completely alike
decision makers.
Note that one-parent families fit Barro’s notion of clearly demarcated dynastic

families best. Indeed, the model abstracts from the well-established fact that
breeding arises through mating between a man and a woman who come from
two different parent families. In reality this gives rise to a complex network of
interconnected families. Until further notice we ignore such complexities and
proceed by imagining reproduction is not sexual.
In each period two (adult) generations coexist: the “young”, each of whom

supplies one unit of labor inelastically, and the “old”who do not supply labor.
Each old is a parent to 1 + n of the young. And each young is a parent to 1 + n
children, born when the young parent enters the economy and the grandparent
retires from the labor market. Next period these children become visible in the
model as the young generation in the period.
Let bt be the bequest received at the end of the first period of “economic

life”by a member of generation t from the old parent, belonging to generation
t− 1. In turn this member of generation t leaves in the next period a bequest to
the next generation in the family and so on. We will assume, realistically, that
negative bequests are ruled out by law; the legal system exempts children from
responsibility for parental debts. Thus the budget constraints faced by a young
member of generation t are:

c1t + st = wt + bt, (7.4)

c2t+1 + (1 + n)bt+1 = (1 + rt+1)st, bt+1 ≥ 0, (7.5)

where st denotes saving as young (during work life) out of the sum of labor income
and the bequest received (payment for the consumption and receipt of wt + bt
occur at the end of the period). In the next period the person is an old parent
and ends life leaving a bequest, bt+1, to each of the 1 + n children. Fig. 7.1
illustrates.
What complicates the analysis is that even though a bequest motive is present,

the market circumstances may be such that parents do not find it worthwhile
to transmit positive bequests. We then have a corner solution, bt+1 = 0. An
important element in the analysis is to establish when this occurs and when it
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Figure 7.1: The generational structure of the Barro model.

does not. To rule out the theoretical possibility of a corner solution also for st,
we impose the No Fast Assumption

lim
c→0

u′(c) =∞. (A1)

Given this assumption, the young will always choose st > 0 as soon as wt+bt > 0.
Consider a person belonging to generation t. This person has perfect foresight

with regard to future wages and interest rates and can compute the optimal
choices of the descendants conditional on the bequest they receive. The planning
problem is:

maxUt = u(c1t) + (1 + ρ)−1u(c2t+1)

+(1 + R̄)−1
[
u(c1t+1) + (1 + ρ)−1u(c2t+2)

]
+ ...

subject to the budget constraints (7.4) and (7.5) and knowing that the descen-
dants will respond optimally to the received bequest (see below). We insert into
Ut the two budget constraints in order to consider the objective of the parent
as a function, Ũt, of the decision variables, st and bt+1. We then maximize with
respect to st and bt+1. First:

∂Ũt
∂st

= −u′(c1t) + (1 + ρ)−1u′(c2t+1)(1 + rt+1) = 0, i.e.,

u′(c1t) = (1 + ρ)−1u′(c2t+1)(1 + rt+1). (7.6)

This first-order condition deals with the distribution of own consumption across
time. The condition says that in the optimal plan the opportunity cost of saving
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one more unit as young must equal the discounted utility benefit of having 1+rt+1

more units for consumption as old.
As to maximizing with respect to the second decision variable, bt+1, we have

to distinguish between the case where the bequest motive is operative and the
case where it is not. Here we consider the first case and postpone the second for
a while.

7.2.2 Case 1: the bequest motive operative (bt+1 > 0 opti-
mal)

In addition to (7.6) we get the first-order condition

∂Ũt
∂bt+1

= (1 + ρ)−1u′(c2t+1) [−(1 + n)] + (1 + R̄)−1u′(c1t+1) · 1 = 0, i.e.,

(1 + ρ)−1u′(c2t+1) = (1 + R̄)−1u′(c1t+1)(1 + n)−1. (7.7)

This first-order condition deals with the distribution of consumption across gen-
erations in the same period. The condition says that in the optimal plan the
parent’s utility cost of increasing the bequest by one unit (thereby decreasing
the consumption as old by one unit) must equal the discounted utility benefit
derived from the next generation having 1/(1 + n) more units, per member, for
consumption in the same period. The factor, (1 +n)−1, is a “dilution factor”due
to total bequests being diluted in view of the 1 + n children for each parent.
A further necessary condition for an optimal plan is that the bequests are not

forever too high, which would imply postponement of consumption possibilities
forever. That is, we impose the condition

lim
i→∞

(1 + R̄)−(i−1)(1 + ρ)−1u′(c2t+i)(1 + n)bt+i = 0. (7.8)

Such a terminal condition is called a transversality condition; it acts as a necessary
first-order condition at the terminal date, here at infinity. Imagine a plan where
instead of (7.8) we had limi→∞(1 + R̄)−(i−1)(1 + ρ)−1u′(c2t+i)(1 + n)bt+i > 0. In
this case there would be “over-bequeathing” in the sense that Ut (the sum of
the generations’discounted lifetime utilities) could be increased by the ultimate
generation consuming more as old and bequeathing less. Decreasing the ultimate
bequest to the young, bt+i (i → ∞), by one unit would imply 1 + n extra units
for consumption for the old parent, thereby increasing this parent’s utility by
(1 + ρ)−1u′(c2t+i)(1 + n). From the perspective of the current generation t this
utility contribution should be discounted by the discount factor (1 + R̄)−(i−1).
With a finite time horizon entailing that only i − 1 future generations (i fixed)
were cared about, it would be waste to end up with bt+i > 0; optimality would
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require bt+i = 0. The condition (7.8) is an extension of this principle to an infinite
horizon.1

The optimality conditions (7.6), (7.7), and (7.8) illustrate a general principle of
intertemporal optimization. First, no gain should be achievable by a reallocation
of resources between two periods or between two generations. This is taken care
of by the Euler equations (7.6) and (7.7).2 Second, there should be nothing of
value leftover after the “last period”, whether the horizon is finite or infinite.
This is taken care of by a transversality condition, here (7.8). With a finite
horizon, the transversality condition takes the simple form of a condition saying
that the intertemporal budget constraint is satisfied with equality. In the two-
period models of the preceding chapters, transversality conditions were implicitly
satisfied in that the budget constraints were written with = instead of ≤ .

The reader might be concerned whether in our maximization procedure, in
particular regarding the first-order condition (7.7), we have taken the descen-
dants’optimal responses properly into account. The parent should choose st and
bt+1 to maximize Ut, taking into account the descendants’optimal responses to
the received bequest, bt+1. In this perspective it might seem inadequate that we
have considered only the partial derivative of Ut w.r.t. bt+1, not the total deriva-
tive. Fortunately, in view of the envelope theorem our procedure is valid. Applied
to the present problem, the envelope theorem says that in an interior optimum
the total derivative of Ut w.r.t. bt+1 equals the partial derivative w.r.t. bt+1,
evaluated at the optimal choice by the descendants. Indeed, since an objective
function “is flat at the top”, the descendants’response to a marginal change in
the received bequest has a negligible effect on the value of optimized objective
function (for details, see Appendix A).

The old generation in period t So far we have treated the bequest, bt,
received by the young in the current period, t, as given. But in a sense also this
bequest is a choice, namely a choice made by the old parent in this period, hence
endogenous. This old parent enters period t with assets equal to the saving made
as young, st−1, which, if period t is the initial period of the model, is part of
the arbitrarily given initial conditions of the model. From this perspective the
decision problem for this old parent is to choose bt ≥ 0 so as to

max
[
(1 + ρ)−1u(c2t) + (1 + R̄)−1Ut

]
1Although such a simple extension of a transversality condition from a finite horizon to an

infinite horizon is not always valid, it is justifiable in the present case. This and related results
about transversality conditions are dealt with in detail in the next chapter.

2Since Ũt(st, bt+1) is jointly strictly concave in its two arguments, the Euler equations are
not only necessary, but also suffi cient for a unique interior maximum.
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subject to the budget constraint c2t + (1 + n)bt = (1 + rt)st−1 and taking into
account that the chosen bt indirectly affects the maximum lifetime utility to be
achieved by the next generation. If the optimal bt is positive, the choice satisfies
the first-order condition (7.7) with t replaced by t− 1. And if no disturbance of
the economy has taken place at the transition from period t− 1 to period t, the
decision by the old in period 0 is simply to do exactly as planned when young in
the previous period.
It may seem puzzling that u(c2t) is discounted by the factor (1 + ρ)−1, when

standing in period t. Truly, when thinking of the old parent as maximizing (1 +
ρ)−1u(c2t) +(1+R̄)−1Ut, the utility is discounted back (as usual) to the first period
of adult life, in this case period t− 1. But this is just one way of presenting the
decision problem of the old. An alternative way is to let the old maximize the
present value of utility as seen from the current period t,

(1 + ρ)
[
(1 + ρ)−1u(c2t) + (1 + R̄)−1Ut

]
= u(c2t) + (1 + R̄)−1(1 + ρ)Ut

≡ u(c2t) + (1 + ψ)−1Ut,

where the last equality follows by merging the backward and forward discounts,
(1 + R̄)−1 and 1 + ρ, respectively, into the coeffi cient (1 + ψ)−1. Since both
utilities, u(c2t) and Ut, arise in the same period, the coeffi cient (1 + ψ)−1 is no
time discount factor but an expression for the degree of unselfishness, see the
remark below. As we have just multiplied the objective function by a positive
constant, 1 + β, the resulting behavior is unaffected.

Remark The effective intergenerational utility discount factor can be decomposed
as in (7.2) above, but also as:

(1 + R̄)−1 ≡ (1 + ρ)−1(1 + ψ)−1. (7.9)

The sub-discount factor, (1 + ρ)−1, applies because the prospective utility arrives
one period later and is, in this respect, comparable to utility from own consump-
tion when old, c2t+1. The sub-discount factor, (1+ψ)−1, can be seen as the degree
of unselfishness and ψ as reflecting the extent of selfishness. Indeed, when ψ is
positive, parents are selfish in the sense that, if a parent’s consumption when old
equals the children’s’consumption when young, then the parent prefers to keep
an additional unit of consumption for herself instead of handing it over to the
next generation (replace (1 + R̄)−1 in (7.7) by (7.9)). �

The equilibrium path

Inserting (7.7) on the right-hand side of (7.6) gives

u′(c1t) = (1 + R̄)−1u′(c1t+1)
1 + rt+1

1 + n
. (7.10)
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This is an Euler equation characterizing the optimal distribution of consumption
across generations in different periods: in an optimal intertemporal and intergen-
erational allocation, the utility cost of decreasing consumption of the young in
period t (that is, saving and investing one more unit) must equal the discounted
utility gain next period for the next generation which, per member, will be able
to consume (1 + rt+1)/(1 + n) more units.
With perfect competition and neoclassical CRS technology, in equilibrium the

real wage and interest rate are

wt = f(kt)− f ′(kt)kt and rt = f ′(kt)− δ, (7.11)

respectively, where f is the production function on intensive form, and δ is the
capital depreciation rate, 0 ≤ δ ≤ 1. Further, kt ≡ Kt/Lt, where Kt is aggregate
capital in period t owned by that period’s old, and Lt is aggregate labor supply
in period t which is the same as the number of young in that period.
As in the Diamond model, aggregate consumption per unit of labor satisfies

the technical feasibility constraint

ct ≡
Ct
Lt
≡ (c1tLt + c2tLt−1)/Lt = c1t + c2t/(1 + n) (7.12)

= f(kt) + (1− δ)kt − (1 + n)kt+1.

An equilibrium path for t = 0, 1, 2,. . . , is described by the first-order conditions
(7.7) (“backwarded”one period) and (7.10), the transversality condition (7.8), the
equilibrium factor prices in (7.11), the resource constraint (7.12), and an initial
condition in the form of a given k0 > 0. This k0 may be interpreted as reflecting
a given s−1 ≥ 0. Indeed, as in the Diamond model, for every t = 0, 1,. . . , we have

kt+1 ≡
Kt+1

Lt+1

=
stLt
Lt+1

=
st

1 + n
. (7.13)

This is simply a matter of accounting. At the beginning of period t + 1 the
available aggregate capital stock equals the financial wealth of the generation
which now is old but was young in the previous period and saved stLt out of
that period’s labor income plus received transfers in the form of bequests. So
Kt+1 = stLt. Indeed, the new young generation of period t + 1 own to begin
with nothing except their brain and bare hands, although they expect to receive
a bequest just before they retire from the labor market at the end of period t+ 1.
Still another interpretation of (7.13) starts from the general accounting principle
for a closed economy that the increase in the capital stock equals aggregate net
saving. In turn aggregate net saving is the sum of net saving by the young, S1t,
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and net saving by the old, S2t:

Kt+1 −Kt = S1t + S2t = stLt + [rtst−1 − (c2t + (1 + n)bt)]Lt−1

= stLt + [rtst−1Lt−1 − (1 + rt)st−1Lt−1] (by ((7.5))

= stLt + (−st−1Lt−1) = stLt −Kt, (7.14)

which by eliminating −Kt on both sides gives Kt+1 = stLt.
One of the results formally proved in the next chapter is that, given the

technology assumption limk→0 f
′(k) > R + δ > limk→∞ f

′(k), an equilibrium
path exists and converges to a steady state. In that chapter it is also shown that
the conditions listed are exactly those that also describe a certain “command
optimum”. This refers to the allocation brought about by a social planner having
(7.3) as the social welfare function.

Steady state with an operative bequest motive: the modified golden
rule

A steady state of the system is a state where, for all t, kt = k∗, ct = c∗, c1t = c∗1,
c2t = c∗2, bt = b∗, and st = s∗. In a steady state with b∗ > 0, we have the
remarkably simple result that the interest rate, r∗, satisfies the modified golden
rule:

1 + r∗ = 1 + f ′(k∗)− δ = (1 + R̄)(1 + n) ≡ 1 +R. (7.15)

This follows from inserting the steady state conditions (kt = k∗, c1t = c1
∗, c2t =

c2
∗, for all t) into (7.10) and rearranging. In the golden rule of Chapter 3 the

interest rate (reflecting the net marginal productivity of capital) equals the output
growth rate (here n). The “modification”here comes about because of the strictly
positive effective intergenerational discount rate R̄, which implies a higher interest
rate.
Two things are needed for the economy with overlapping generations linked

through bequests to be in a steady state with positive bequests. First, it is
necessary that the rate of return on saving matches the rate of return, R, required
to tolerate a marginal decrease in own current consumption for the benefit of
the next generation. This is what (7.10) shows. Second, it is necessary that
the rate of return induces an amount of saving such that the consumption of
each of the children equals the parent’s consumption as young in the previous
period. Otherwise the system would not be in a steady state. If in (7.15) “=”
is replaced by “>”(“<”), then there would be a temptation to save more (less),
thus generating more (less) capital accumulation, thereby pushing the system
away from a steady state.
A steady state with an operative bequest motive is unique. Indeed, (7.15)

determines a unique k∗ (since f ′′ < 0), which gives s∗ = (1 + n)k∗ by (7.13)
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Figure 7.2: Steady state consumption as young.

and determines c∗ uniquely from the second line in (7.12). In turn, we can find
c∗1 and c

∗
2 from the Euler equation (7.6) which implies that the marginal rate of

substitution of c2 for c1 in steady state takes the form

MRS∗c2c1 =
u′(c∗1)

(1 + ρ)−1u′(c∗2)
=

u′(c∗1)

(1 + ρ)−1u′ ((1 + n)(c∗ − c∗1))
= 1 + r∗ = 1 +R,

(7.16)
where the second equality comes from (7.12). Given c∗, MRSc2c1 is a decreasing
function of c∗1 so that a solution for c

∗
1 in (7.16) is unique. In view of the No Fast

Assumption (A1), (7.16) always has a solution in c∗1, cf. Fig. 7.2. Then, from
(7.16), c∗2 = (1 + n)(c∗ − c∗1). Finally, from the period budget constraint (7.4), b∗

= c∗1 + s∗ − w∗ = c∗1 + (1 + n)k∗ − w∗, where w∗ = f(k∗)− f ′(k∗)k∗, from (7.11).

But what if the market circumstances and preferences in combination are
such that the constraint bt+1 ≥ 0 becomes binding? Then the bequest motive is
not operative. We get a corner solution such that the equality sign in (7.15) is
replaced by ≤ . The economy behaves like Diamond’s OLG model and a steady
state of the economy is not necessarily unique. To see these features, we now
reconsider the young parent’s optimization problem.
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Figure 7.3: Configuration where the constraint bt+1 ≥ 0 is binding (st fixed at s̄t).

7.2.3 Case 2: the bequest motive not operative (bt+1 = 0
optimal)

The first-order condition (7.6) involving st is still valid. But the first-order con-
dition involving bt+1 becomes an inequality:

∂Ũt
∂bt+1

= (1 + ρ)−1u′(c2t+1) [−(1 + n)] + (1 + R̄)−1u′(c1t+1) · 1 ≤ 0, i.e.,

(1 + ρ)−1u′(c2t+1) ≥ (1 + R̄)−1u′(c1t+1)(1 + n)−1. (7.17)

This condition says that in an optimal plan the parent’s utility cost of increasing
the bequest by one unit of account as an old parent must be larger than or equal
to the discounted benefit derived from the next generation having (1 +n)−1 more
units for consumption in the same period.
Why can we not exclude the possibility that ∂Ũt/∂bt+1 < 0 in the first line

of (7.17) when bt+1 = 0 is optimal? To provide an answer, observe first that if
we had ∂Ũt/∂bt+1 > 0 for bt+1 = 0, then at the prevailing market conditions a
state with bt+1 = 0 could not be an optimum for the individual. Instead positive
bequests would be induced. If, however, for bt+1 = 0, we have ∂Ũt/∂bt+1 ≤ 0,
then at the prevailing market conditions the state bt+1 = 0 is optimal for the
individual. This is so even if “<”holds, as in Fig. 7.3. Although the market
circumstances here imply a temptation to decrease bt+1 from the present zero
level, by law that temptation cannot be realized.
Substituting (7.17) and rt+1 = f ′(kt+1) − δ into (7.6) implies that (7.10) is

replaced by

u′(c1t) ≥ (1 + R̄)−1u′(c1t+1)
1 + f ′(kt+1)− δ

1 + n
. (7.18)

Inserting into this the steady state conditions (kt = k∗, c1t = c1
∗, c2t = c2

∗, for
all t) and rearranging give

1 + r∗ = 1 + f ′(k∗)− δ ≤ (1 + R̄)(1 + n) ≡ 1 +R. (7.19)
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Since optimal bt+1 in case 2 is zero, everything is as if the bequest-motivating
term, (1 + R)−1(1 + n)Ut+1, were eliminated from the right-hand side of (7.1).
Thus, as expected the model behaves like a Diamond OLG model.

7.2.4 Necessary and suffi cient conditions for the bequest
motive to be operative

An important question is: under what conditions does the bequest motive turn
out to be operative? To answer this we limit ourselves to an analysis of a neigh-
borhood of the steady state. We consider the thought experiment: if the bequest
term, (1 + R̄)−1Ut+1, is eliminated from the right-hand side of (7.1), what will
the interest rate be in a steady state? The utility function then becomes

Ūt = u(c1t) + (1 + ρ)−1u(c2t+1),

which is the standard lifetime utility function in a Diamond OLG model. We
will call Ūt the truncated utility function associated with the given true utility
function, Ut. The model resulting from replacing the true utility function of the
economy by the truncated utility function will be called the associated Diamond
economy.
It is convenient to assume that the associated Diamond economy is well-

behaved, in the sense of having a unique non-trivial steady state. Let rD denote
the interest rate in this Diamond steady state (the suffi x D for Diamond). Then:

PROPOSITION 1 (the cut-off value for the own-generation preference, R) Con-
sider an economy with a bequest motive as in (7.1) and satisfying the No Fast
Assumption (A1). Let R > n, i.e., R̄ > 0. Suppose that the associated Diamond
economy is well-behaved and has steady-state interest rate rD. Then in a steady
state of the economy with a bequest motive, bequests are positive if and only if

R < rD. (*)

Proof. From (7.7) we have in steady state of the original economy with a bequest
motive:

∂Ũt
∂bt+1

= (1 + ρ)−1u′(c2
∗)(−(1 + n)) + (1 + R̄)−1u′(c1

∗)

= −(1 + ρ)−1(1 + n)u′(c2
∗)

+(1 + R̄)−1(1 + ρ)−1(1 + r∗)u′(c2
∗) (from (7.6))

= (1 + ρ)−1u′(c2
∗)
[
(1 + R̄)−1(1 + r∗)− (1 + n)

]
T 0 if and only if

1 + r∗ T (1 + R̄)(1 + n), i.e., if and only if r∗ T R, respectively, (**)
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since (1 + R̄)(1 + n) ≡ 1 +R.

The “if”part: Suppose the associated Diamond economy is in steady state
with rD > R. Can this Diamond steady state (where by construction bt+1 = 0)
be an equilibrium also for the original economy? The answer is no because, if
we assume it were an equilibrium, then the interest rate would be r∗ = rD > R
and, by (**), ∂Ũt/∂bt+1 > 0. Therefore the parents would raise bt+1 from its
hypothetical zero level to some positive level, contradicting the assumption that
bt+1 = 0 were an equilibrium.
The “only if”part: Suppose instead that rD < R. Can this Diamond steady

state (where again bt+1 = 0, of course) be an equilibrium also for the original
economy with a bequest motive? Yes. From (**) we have ∂Ũt/∂bt+1 < 0. There-
fore the parents would be tempted to decrease their bt+1 from its present zero
level to some negative level, but that is not allowed. Hence, bt+1 = 0 is still an
equilibrium and the bequest motive does not become operative. Similarly, in a
case where R = rD, the situation bt+1 = 0 is still an equilibrium of the economy
with a bequest motive, since we get ∂Ũt/∂bt+1 = 0 when bt+1 = 0. �

Thus bequests will be positive if and only if the own-generation preference, R,
is suffi ciently small or, what amounts to the same, the altruism factor, (1 +R)−1,
is suffi ciently large − in short, if and only if parents “love their children enough”.
Fig. 7.4, where kMGR is defined by f ′(kMGR)− δ = R, gives an illustration. If the
rate R at which the parent discounts the utility of the next generation is relatively
high, then kMGR is relatively low and (*) will not be satisfied. This is the situation
depicted in the upper panel of Fig. 7.4 (low altruism). In this case the bequest
motive will not be operative and the economy ends up in the Diamond steady
state with k∗ = kD > kMGR. If on the other hand the own-generation preference,
R, is relatively low as in the lower panel (high altruism), then (*) is satisfied, the
bequest motive will be operative and motivates more saving so that the economy
ends up in a steady state satisfying the modified golden rule. That is, (7.15)
holds and k∗ = kMGR.
Both cases portrayed in Fig. 7.4 have kD < kGR, where kGR is the golden

rule capital-labor ratio satisfying f ′(kGR) − δ = n. But theoretically, we could
equally well have kD > kGR so that the Diamond economy would be dynamically
ineffi cient. The question arises: does the presence of a bequest motive help to
eliminate the potential for dynamic ineffi ciency? The answer is given by point (i)
of the following corollary of Proposition 1.

COROLLARY Let R > n. The economy with a bequest motive is:
(i) dynamically ineffi cient if and only if the associated Diamond economy is dy-
namically ineffi cient; and
(ii) the economy has positive bequests in steady state only if it is dynamically
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Figure 7.4: How the steady-state capital-labor ratio depends on the size of the own-
generation preference R (for a given kD < kGR). Upper panel: high R results in zero
bequest. Lower panel: low R induces additional saving and positive bequest so that
kMGR, which is larger the lower R is, becomes a steady state instead of kD (kMGR

satisfies f ′(kMGR)− δ = R > n and kGR satisfies f ′(kGR − δ = n).
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effi cient.

Proof. (i) “if”: suppose rD < n. Then, since by assumption R > n, (∗) is
not satisfied. Hence, the bequest motive cannot be operative and the economy
behaves like the associated Diamond economy which is dynamically ineffi cient in
view of rD < n.
(i) “only if”: suppose r∗ < n. Then the economy with a bequest motive is

dynamically ineffi cient. Since by assumption R > n, it follows that r∗ < R. So
(7.15) is not satisfied, implying by Proposition 1 that bequests cannot be positive.
Hence, the allocation is as in the associated Diamond economy which must then
also be dynamically ineffi cient.
(ii) We have just shown that r∗ < n implies zero bequests. Hence, if there are

positive bequests, we must have r∗ ≥ n, implying that the economy is dynamically
effi cient. �

The corollary shows that the presence of a bequest motive does not help in
eliminating a tendency for dynamic ineffi ciency. This is not surprising. Dynamic
ineffi ciency arises from perpetual excess saving. A bequest motive cannot be an
incentive to save less (unless negative bequests are allowed). On the contrary,
when a bequest motive is operative, you are motivated to increase saving as
young in order to leave bequests; aggregate saving will be higher. That is why,
when R < rD, the economy ends up, through capital accumulation, in a steady
state with r∗ = R, so that r∗ is smaller than rD (though r∗ > n still). On the
other hand, by the corollary follows also that the bequest motive can only be
operative in a dynamically effi cient economy. Indeed, we saw that an operative
bequest motive implies the modified golden rule (7.15) so that r∗ = R where, by
assumption, R > n and therefore kMGR < kGR always. (If R ≤ n, the effective
utility discount factor, (1 + R̄)−1, in (7.3) is no longer less than one, which may
result in non-existence of general equilibrium.)

7.3 Bequests and Ricardian equivalence

As we have seen, when the bequest motive is operative, the Barro model becomes
essentially a representative agent model in spite of starting from an OLG struc-
ture. So aggregate household behavior is simply a multiple of the behavior of a
single dynasty.
This feature has implications for the issue of Ricardian equivalence.3 To see

this, we add a government sector to the model. We assume that the government

3A first discussion of this issue, based on a different model, the Diamond OLG model,
appears at the end of Chapter 6.
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finances its spending sometimes by lump-sum taxation, sometimes by issuing
debt. Ricardian equivalence, also called debt neutrality, is then present if, for a
given path of government spending, a shift between tax and debt financing does
not affect resource allocation. That is, a situation with a tax cut and ensuing
budget deficit is claimed to be “equivalent” to a situation without the tax cut.
Barro (1974) used the above model to substantiate this claim. Faced with a

tax cut in period t, the current generations will anticipate higher taxes in the
future. Indeed, to cover the government’s higher future interest payment, the
present value of future taxes will have to rise exactly as much as current taxes
are decreased. Assuming the government waits j periods to increase taxes and
then does it fully once for all in period t + j, for each unit of account current
taxes are reduced, taxes j periods ahead are increased by (1+r)j units of account.
The present value as seen from the end of period t of this future tax increase is
(1 + r)j/(1 + r)j = 1. So the change in the time profile of taxation will neither
make the dynasties feel richer or poorer. Consequently, their current and planned
future consumption will be unaffected.
The Ricardian Equivalence view is then that to compensate the descendants

j generations ahead for the higher taxes, the old generation will save the rise in
current after-tax income and leave higher bequests to their descendants (presup-
posing the bequest motive is operative). And the young generation will increase
their saving by as much as their after-tax income is raised as a consequence of
the tax cut and the higher bequests they expect to receive when retiring. In this
way all private agents maintain the consumption level they would have had in
the absence of the tax cut. The change in fiscal policy is thus completely nulli-
fied by the response of the private sector. The decrease in public saving is offset
by an equal increase in aggregate private saving. So national saving as well as
consumption remain unaffected.
We now formalize this story, taking population growth and fully specified

budget constraints into account. Let

Gt = real government spending on goods and services in period t,

Tt = real tax revenue in period t,

τ t = Tt/Lt = a lump-sum tax levied on each young in period t,

Bt = real government debt as inherited from the end of period t− 1.

To fix ideas, suppose Gt is primarily eldercare, including health services, and
therefore proportional to the number of old, i.e.,

Gt = γLt−1, γ > 0. (7.20)

We assume the public service enter in a separable way in the lifetime utility
function so that marginal utilities of private consumption are not affected by Gt.
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The resource constraint of the economy now is

ct ≡
Ct
Lt
≡ (c1tLt + c2tLt−1)/Lt = c1t + c2t/(1 + n)

= f(kt)− (1 + n)−1γ + (1− δ)kt − (1 + n)kt+1.

instead of (7.12) above.
From time to time the government runs a budget deficit (or surplus) and

in such cases, the deficit is financed by bond issue (or withdrawal).4 Along with
interest payments on government debt, elder care is the only government expense.
That is,

Bt+1 −Bt = rBt +Gt − Tt, B0 given, (7.21)

where the real interest rate r is for simplicity assumed constant. We further
assume r > n; this is in accordance with the above result that when a Barro
economy is in steady state with positive bequests, then, ignoring technological
progress, by (7.15), the interest rate equals the intergenerational utility discount
rate R (to ensure existence of general equilibrium, R was in connection with (7.2)
assumed larger than n).
In absence of technological progress the steady state growth rate of the econ-

omy equals the growth rate of the labor force, that is, gY = n < r. Since the
interest rate is thus higher than the growth rate, to maintain solvency the gov-
ernment must satisfy its intertemporal budget constraint,

∞∑
i=0

Gt+i(1 + r)−(i+1) ≤
∞∑
i=0

Tt+i(1 + r)−(i+1) −Bt. (7.22)

This says that the present value of current and expected future government spend-
ing is constrained by government wealth (the present value of current and ex-
pected future tax revenue minus existing government debt).
Let us concentrate on the “regular”case where the government does not tax

more heavily than needed to cover the spending Gt and the debt service, that is,
the government does not want to accumulate financial net wealth. Then there
is strict equality in (7.22). Applying (7.20) and that Lt+i = Lt(1 + n)i and
Tt+i = τ t+iLt+i, (7.22) with strict equality simplifies to

Lt

∞∑
i=0

(1 + n)i

(1 + r)i+1
(τ t+i −

γ

1 + n
) = Bt. (7.23)

Suppose that, for some periods, taxes are cut so that Tt+i < Gt+i + rBt+i,
that is, a budget deficit is run. Is resource allocation − aggregate consumption

4The model ignores money.
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and investment − affected? Barro says “no”, given that the bequest motive is
operative. Each dynasty will then choose the same consumption path (c2t, c1t)

∞
t=0

as it planned before the shift in fiscal policy. The reason is that the change
in the time profile of lump-sum taxes will not make the dynasty feel richer or
poorer. Aggregate consumption and saving in the economy will therefore remain
unchanged.
The proof goes as follows. Suppose there are N dynasties in the economy,

all alike. Since Lt−1 is the total number of old agents in the economy in the
current period, period t, each dynasty has Lt−1/N old members. Each dynasty
must satisfy its intertemporal budget constraint. That is, the present value of
its consumption stream cannot exceed the total wealth of the dynasty. In the
optimal plan the present value of the consumption stream will equal the total
wealth. Thus

Lt−1

N

∞∑
i=0

(1 + n)i

(1 + r)i+1
[c2t+i + (1 + n)c1t+i] = at + ht, (7.24)

where at is initial financial wealth of the dynasty and ht is its human wealth (after
taxes).5 Multiplying through in (7.24) by N, we get the intertemporal budget
constraint of the representative dynasty:

Lt−1

∞∑
i=0

(1 + n)i

(1 + r)i+1
[c2t+i + (1 + n)c1t+i] = Nat +Nht ≡ At +Ht,

where At is aggregate financial wealth in the private sector and Ht is aggregate
human wealth (after taxes):

Ht ≡ Nht = Lt

∞∑
i=0

(1 + n)i

(1 + r)i+1
(wt+i − τ t+i). (7.25)

The financial wealth consists of capital, Kt, and government bonds, Bt. Thus,

At +Ht = Kt +Bt +Ht. (7.26)

Since Bt and Ht are the only terms in (7.26) involving taxes, we consider their
sum:

Bt +Ht = Lt

∞∑
i=0

(1 + n)i

(1 + r)i+1
(τ t+i −

γ

1 + n
+ wt+i − τ t+i)

= Lt

∞∑
i=0

(1 + n)i

(1 + r)i+1
(wt+i −

γ

1 + n
),

5How to get from the generation budget constraints, c2t + (1 + n)bt = (1 + r)st−1 and
(1 + n)c1t + (1 + n)st = (1 + n)(wt − τ t + bt), to the intertemporal budget constraint of the
dynasty is shown in Appendix B.

c© Groth, Lecture notes in macroeconomics, (mimeo) 2016.



286
CHAPTER 7. BEQUESTS AND THE MODIFIED

GOLDEN RULE

where we have used (7.23) and (7.25). We see that the time profile of τ has
disappeared and cannot affect Bt +Ht. Hence, the total wealth of the dynasty is
unaffected by a change in the time profile of taxation.
As a by-product of the analysis we see that higher initial government debt has

no effect on the sum, Bt + Ht, because Ht becomes equally much lower. This is
what Barro (1974) meant by answering “no”to the question: “Are government
bonds net [private] wealth?”(the title of his paper).
When the bequest motive is operative, Ricardian equivalence will also mani-

fest itself in relation to a pay-as-you-go pension system. Suppose the mandatory
contribution of the young (the workers) is raised in period t, before the old gen-
eration has decided the size of the bequest to be left to the young. Then, if the
bequest motive is operative, the old generation will use the increase in their pen-
sion to leave higher bequests. In this way the young generation is compensated
for the higher contribution they have to pay to the pay-as-you-go system. As
a consequence all agents’consumption remain unchanged and so does resource
allocation. Indeed, within this framework with perfect markets, as long as the
bequest motive is operative, a broad class of lump-sum government fiscal actions
can be nullified by offsetting changes in private saving and bequests.

Discussion

According to many macroeconomists, the modified golden rule and the Ricardian
Equivalence result have elegance, but are hardly good approximations to reality:
1. The picture of the household sector as a set of dynasties, all alike, seems

remote from reality. Universally, only a fraction of a country’s population leave
bequests.6 In the last section of Chapter 6 we considered the “pure”case assumed
in the Diamond OLG model where a bequest motive is entirely absent. In that
case, because the new generations are then new agents, and the future taxes
are levied partly on these new agents, the future taxes are no longer equivalent
to current taxes. This is the composition-of-the-tax-base argument for Ricardian
Non-equivalence. This argument is also relevant for “mixed”cases where only a
fraction of the population leave bequests or where the bequests are motivated in
other ways than assumed in the Barro model. Moreover, in a world of uncertainty
bequests may simply be accidental rather than planned.
Even if there is a bequest motive of the altruistic form assumed by Barro, it

will only be operative if it is strong enough, as we saw in Section 7.2.4.
2. When the bequest motive is not operative, Ricardian equivalence breaks

down. Consider a situation where the constraint bt+1 ≥ 0 is binding. Then

6Wolf (2002) found that in 1998 around 30 per cent of US households of “age”above 55 years
(according to the age of the head of the household) reported to have received wealth transfer.
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there will be no bequests. Parents would in fact like to pass on debt to the next
generation. They are hindered by law, however. But the government can do
what the private agents would like to do but cannot. Specifically, if for example
rD < n, there will be no bequests in the Barro economy and we have r∗ = rD < n
in steady state. So there is dynamic ineffi ciency. Yet the government can avoid
this outcome and instead achieve r∗ = n within sight by, for example, a fiscal
policy continually paying transfers to the old generation, financed by creation
of public debt. The private agents cannot nullify this beneficial fiscal policy
− and have no incentive to try doing so. However, the logical validity of this
point notwithstanding, its practical relevance is limited since empirical evidence
of dynamic ineffi ciency seems absent.7

3. Another limitation of Barro’s analysis has to do with the dynastic-family
story which portrays families as clearly demarcated and harmonious infinitely-
lived entities. This view abstracts from the fact that:
(a) families are not formed by inbreeding, but by marriage of two individuals

coming from two different parent families;
(b) the preferences of distinct family members may conflict; think for example

of the schismatic family feud of the Chicago-based Pritzker family.8

Point (a) gives rise to a complex network of interconnected families. In prin-
ciple, and perhaps surprisingly, this observation need not invalidate Ricardian
equivalence. As Bernheim and Bagwell (1988) ironically remark, the problem is
that “therein lies the diffi culty”. Almost all elements of fiscal policy, even on-the-
face-of-it distortionary taxes, tend to become neutral. This is because virtually all
the population is interconnected through chains involving parent-child linkages.
Bernheim and Bagwell (1988, p. 311) conclude that in this setting, “Ricardian
equivalence is merely one manifestation of a much more powerful and implausible
neutrality theorem”.9

Point (b) gives rise to broken linkages among the many linkages. This makes
it diffi cult to imagine that Ricardian equivalence comes up.
4. From an econometric point of view, by and large Barro’s hypothesis does

not seem to do a good job in explaining how families actually behave. If al-
truistically linked extended family members really did pool their incomes across
generations when deciding how much each should consume, then the amount that
any particular family member consumes would depend only on the present dis-
counted value of total future income stream of the extended family, not on that

7On the other hand, this latter fact could be a consequence of the described fiscal policy.
8The Pritzker family is one of the wealthiest American families, owning among other things

the Hyatt hotel chain. In the early 2000s a long series of internal battles and lawsuits across
generations resulted in the family fortune being split between 11 family members. For an
account of this and other family owned business wars, see for example Gordon (2008).

9Barro (1989) answers the criticism of Bernheim and Bagwell.
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person’s share of that total. To state it differently: if the dynasty hypothesis were
a good approximation to reality, then the ratio of the young’s consumption to
that of the parents should not depend systematically on the ratio of the young’s
income to that of the parents. But the empirical evidence goes in the opposite
direction − own resources do matter (see Altonji et al. 1992 and 1997).
To conclude: The debt neutrality view is of interest as a theoretical bench-

mark case. In practice, however, tax cuts and debt financing by the government
seem to make the currently alive generations feel wealthier and stimulate their
consumption. Bernheim (1987) reviews the theoretical controversy and the empir-
ical evidence of Ricardian equivalence. He concludes with the empirical estimate,
for the US, that private saving offset only roughly half the decline in government
saving that results from a shift from taxes to deficit finance.
We shall come across the issue of Ricardian equivalence or non-equivalence in

other contexts later in this book.

7.4 The modified golden rule when there is tech-
nological progress*

Heretofore we have abstracted from technological progress. What does the modi-
fied golden rule look like when it is recognized that actual economic development
is generally accompanied by technological progress?
To find out we extend the Barro model with Harrod-neutral technological

progress. As we want consistency with Kaldor’s stylized facts, we assume that
technological progress is Harrod-neutral:

Yt = F (Kt, TtLt),

where F is a neoclassical aggregate production function with CRS and Tt (not
to be confused with tax revenue Tt) is the technology level, which is assumed to
grow exogenously at the constant rate g > 0, that is, Tt = T0(1 + g)t, T0 > 0.
Apart from this (and the specification of u(c) below), everything is as in the
simple Barro model analyzed above. Owing to equilibrium in the factor markets,
Kt and Lt can be interpreted as predetermined variables, given from the supply
side.
We have

ỹt ≡
Yt
TtLt

≡ yt
Tt

= F (
Kt

TtLt
, 1) = F (k̃t, 1) ≡ f(k̃t), f ′ > 0, f ′′ < 0,

where k̃t ≡ Kt/(TtLt) ≡ kt/Tt. The dynamic aggregate resource constraint,
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Kt+1 = (1− δ)Kt + Yt − Ct, can now be written

Kt+1

TtLt
= (1 + g)(1 + n)k̃t+1 = (1− δ)k̃t + f(k̃t)− c̃t, (7.27)

where c̃t ≡ Ct/(TtLt) ≡ ct/Tt, the per capita “technology-corrected”consumption
level. With perfect competition we have the standard equilibrium relations

rt =
∂Yt
∂Kt

− δ =
∂
[
TtLtf(k̃t)

]
∂Kt

− δ = f ′(k̃t)− δ, (7.28)

wt =
∂Yt
∂Lt

=
∂
[
TtLtf(k̃t)

]
∂Lt

=
[
f(k̃t)− k̃tf ′(k̃t)

]
Tt ≡ w̃(k̃t)Tt. (7.29)

We want the model to comply with Kaldor’s stylized facts. Thus, among
other things the model should be consistent with a constant rate of return in the
long run. Such a state requires k̃t to be constant, say equal to k̃∗; then rt =
f ′(k̃∗)− δ ≡ r∗. When k̃t is constant, then also c̃t and w̃t are constant, by (7.27)
and (7.29), respectively. In effect, the capital-labor ratio kt, output-labor ratio
yt, consumption-labor ratio ct, and real wage wt, all grow at the same rate as
technology, the constant rate g. So a constant k̃t implies a balanced growth path
with constant rate of return.
To be capable of maintaining a balanced growth path (and thereby be consis-

tent with Kaldor’stylized facts) when the bequest motive is operative, the Barro
model needs that the period utility function, u(c), is a CRRA function. Indeed,
when the bequest motive is operative, the Barro model becomes essentially a
representative agent model in spite of its OLG structure. And it can be shown
(see Appendix C) that for existence of a balanced growth path in a representative
agent model with Harrod-neutral technological progress, we have to assume that
the period utility function, u(c), is of CRRA form:

u(c) =
c1−θ

1− θ , θ > 0, (7.30)

where θ is the constant (absolute) elasticity of marginal utility (if θ = 1, (7.30)
should be interpreted as u(c) = ln c).
From now on we shall often write the CRRA utility function this way, i.e.,

without adding the “normalizing” constant −1/(1 − θ). This is immaterial for
the resulting consumption/saving behavior, but we save notation and avoid the
inconvenience that an infinite sum of utilities, as in (7.3), may not be bounded
for the sole reason that an economically trivial constant has been added to the
crucial part of the period utility function.
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When the bequest motive is operative, the young parent’s optimality condition
(7.10) is also valid in the new situation with technological progress. Assuming
(7.30), we can write (7.10) as c−θ1t = c−θ1t+1(1 + rt+1)/(1 +R), where we have used
that (1 + R̄)(1 + n) ≡ 1 +R; this implies

(
c1t+1

c1t

)θ =
1 + rt+1

1 +R
, (7.31)

where c1t+1/c1t is 1+ the growth rate (as between generations) of consumption as
young. To the extent that the right-hand side of (7.31) is above one, it expresses
the excess of the rate of return over and above the intergenerational discount rate.
The interpretation of (7.31) is that this excess is needed for c1t+1/c1t > 1. For
the young to be willing to save and in the next period leave positive bequests,
the return on saving must be large enough to compensate the parent for the
absence of consumption smoothing (across time as well as across generations).
The larger is θ (the desire for consumption smoothing), for a given c1t+1/c1t > 1,
the larger must rt+1 be in order to leave the parent satisfied with not consuming
more herself. In the same way, the larger is c1t+1/c1t (and therefore the inequality
across generations), for a given θ, the larger must rt+1 be in order to leave the
parent satisfied with not consuming more.
As observed in connection with (7.14), the old at the beginning of period t+1

own all capital in the economy. So the aggregate capital stock equals their saving
in the previous period: Kt+1 = stLt. Defining s̃t ≡ st/Tt, we get

k̃t+1 =
s̃t

(1 + g)(1 + n)
. (7.32)

Steady state

By (7.32), in steady state s̃t = (1+g)(1+n)k̃∗ ≡ s̃∗. The consumption per young
and consumption per old in period t add to total consumption in period t, that
is, Ct = Ltc1t + Lt(1 + n)−1c2t. Dividing through by effective labor gives

c̃t ≡
Ct
TtLt

= c̃1t + (1 + n)−1c̃2t,

where c̃1t ≡ c1t/Tt and c̃2t ≡ c2t/Tt. In this setting we define a steady state as a
path along which not only k̃t and c̃t, but also c̃1t and c̃2t separately, are constant,
say equal to c̃∗1 and c̃

∗
2, respectively. Dividing through by Tt in the two period

budget constraints, (7.4) and (7.5), we get b̃t ≡ bt/Tt = c̃∗1 + s̃∗ − w̃(k̃∗) ≡ b̃∗.
Consequently, in a steady state with an operative bequest motive, bequest per
young, bt, consumption per young, c1t, saving per young, st, and consumption per
old, c2t, all grow at the same rate as technology, the constant rate g.
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But how are k̃∗ and r∗ determined? Inserting the steady state conditions
c1t+1 = c1t(1 + g) and rt+1 = r∗ into (7.31) gives

(1 + g)θ =
1 + r∗

1 +R

or
1 + r∗ = (1 +R)(1 + g)θ ≡ (1 + R̄)(1 + n)(1 + g)θ. (7.33)

This is themodified golden rule when there is Harrod-neutral technological progress
at the rate g and a constant (absolute) elasticity of marginal utility of consump-
tion θ. The modified golden rule says that for the economy to be in a steady state
with positive bequests, it is necessary that the gross interest rate matches the
“subjective”gross discount rate, taking account of both (a) the own-generation
preference rate R, and (b) the fact that there is aversion (measured by θ) to the
lack of consumption smoothing arising from per capita consumption growth at
rate g. If in (7.33)“=”were replaced by “>”(“<”), then more (less) saving and
capital accumulation would take place, tending to push the system away from
a steady state. When g = 0 (no technological progress), (7.33) reduces to the
simple modified golden rule, (7.15).
The effective capital-labor ratio in steady state, k̃∗, satisfies f ′(k̃∗) − δ = r∗,

where r∗ is given from the modified golden rule, (7.33), when the bequest motive is
operative. Assuming f satisfies the Inada conditions, this equation has a (unique)
solution k̃∗ = f ′−1(r∗+δ) = f ′−1((1+R)(1+g)θ −1 +δ) ≡ k̃MGR. Since f ′′ < 0, it
follows that the higher are R and g, the lower is the modified-golden-rule capital
intensity, k̃MGR.

To ensure that the infinite sum of discounted lifetime utilities is bounded
from above along the steady state path (so that maximization is possible) we
need an effective intergenerational discount rate, R̄ ≡ (1 + R)/(1 + n)− 1, that
is not only positive, but suffi ciently large. In the next chapter it is shown that
1 + R̄ > (1 + g)1−θ is required and that this inequality also ensures that the
transversality condition (7.8) holds in a steady state with positive bequests. The
required inequality is equivalent to

1 +R > (1 + n)(1 + g)1−θ, (7.34)

which we assume satisfied, in addition to R > n.10 Combining this with (7.33),
we thus have

1 + r∗ = (1 +R)(1 + g)θ > (1 + n)(1 + g). (7.35)

10Fortunately, (7.34) is more strict than the restriction R > n, used up to now, only if θ < 1,
which is not the empirically plausible case.
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Let k̃GR denote the golden rule capital intensity, defined by 1 + f ′(k̃GR) −
δ = (1 + n)(1 + g).11 Since f ′′ < 0, we conclude that k̃MGR < k̃GR. In the
“unmodified”golden rule with technological progress, the interest rate (reflecting
the net marginal productivity of capital) equals the output growth rate, which
with technological progress is (1 +n)(1 + g)− 1. The “modification”displayed by
(7.33) comes about because both the strictly positive effective intergenerational
discount rate R̄ and the elasticity of marginal utility enter the determination of
r∗. In view of the parameter inequality (7.34), the intergenerational discounting
results in a lower effective capital-labor ratio and higher rate of return than in the
golden rule. Indeed, in general equilibrium with positive bequests it is impossible
for the economy to reach the golden rule.

The condition for positive bequests

Using that u′(c2t) = c−θ2t = (c̃∗2Tt)−θ in steady state, the proof of Proposition 1
can be extended to show that bequests are positive in steady state if and only if

1 +R = (1 + r∗)(1 + g)−θ < (1 + rD)(1 + g)−θ, (7.36)

where the equality follows from (7.35), and rD is the steady-state interest rate
in the associated “well-behaved”Diamond economy. It can moreover be shown
that if both (7.36) and (7.34) (as well as R > n) hold, and the initial k̃ is in
a neighborhood of the modified-golden-rule value, then the bequest motive is
operative in every period and the economy converges over time to the modified-
golden-rule steady state. This stability result is shown in the next chapter.
Intuition might make us think that a higher rate of technological progress, g,

would make the old more reluctant to leave bequests since they know that the
future generations will benefit from better future technology. For fixed rD, this
intuition is confirmed by (7.36). The inequality shows that for fixed rD, a higher
rate of technological progress implies a lower cut-off value for R. But rD is not
fixed but an increasing function of g. That is, whether or not it holds that a higher
g implies a lower cut-off value for R, depends on which effect is the stronger one,
the direct effect in (7.36) of the higher g or the indirect effect through the rise in
rD. See Exercise 7.??

Calibration We shall give a rough informal estimate of the intergenerational
discount rate, R, by the method of calibration. Generally, calibration means to
choose parameter values such that the model matches a list of data characteris-
tics.12 Given the formula (7.33), we want our estimate of R to be consistent with
11See Chapter 4.
12A next step (not pursued here) is to consider other data and check whether the model also

fits them.
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a long-run annual real rate of return, r̃∗, of about 0.05, when reasonable values for
the annual rate of technological progress, g̃, and the elasticity of marginal utility
of consumption, θ, are chosen. For advanced economies after the Second World
War, values with some empirical support are g̃ = 0.02 and θ ∈ (1, 5). Choosing
θ = 2 and taking into account that our model has an implicit period length of
about 30 years, we get:

1 + g = (1 + g̃)30 = 1.0230 = 1.8114

1 + r∗ = (1 + r̃∗)30 = 1.0530 = 4.3219

1 +R =
1 + r∗

(1 + g)θ
=

4.3219

1.81142
= 1.3172

Thus R = 0.3172. On a yearly basis the corresponding intergenerational discount
rate is then R̃ = (1 + R)1/30 − 1 ' 0.0092. As to R̄, with ñ = 0.008, we get
1 + n = (1 + ñ)30 = 1.00830 = 1.2700, so that 1 + R̄ ≡ (1 +R)/(1 + n) = 1.0371.
This gives an effective intergenerational discount rate on an annual basis equal
to 0.0012.13

Do these numbers indicate that we are in a situation where the bequest motive
is operative? The answer would be affi rmative if and only if r∗ < rD, cf. (7.36).
Whether the latter inequality holds, depends on the time preference rate, ρ, and
the aggregate production function, f . Our empirical knowledge about both is
limited. Exercise 7.? considers the Cobb-Douglas case for alternative values of
θ = 1.

7.5 Concluding remarks

We have studied Barro’s model of overlapping generations linked through al-
truistic bequests. Barro’s insight is that intergenerational altruism may extend
households’planning horizon. If the extent of altruism is suffi ciently high so that
the bequest motive (in the Barro form) is operative in every period, then the
model

• becomes a representative agent model and implies Ricardian equivalence;

• results in a simple formula for the long-run real interest rate (the modified
golden rule).

What is the implication for intergenerational distribution of welfare? Even
ignoring technological progress, a strictly positive intergenerational discount rate,

13 Control of the calculation: 1+r̃∗

(1+ñ)(1+g̃)2 = 1.05
1.008·1.022 = 1.0012, hence OK.
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R, does not imply that future generations must end up worse off than current
generations. This is because positivity of R does not hinder existence of a stable
steady state. The role of R is to determine what steady state the economy
is heading to, that is, what effective capital-labor ratio and level of per capita
consumption is sustainable. Within the constraint displayed by (7.34), a higher
R results in a lower steady-state capital intensity, a lower level of per capita
consumption (in an economy without technological progress), and a lower position
of the upward-sloping time path of per capita consumption in an economy with
Harrod-neutral technological progress.
The simplifying assumption behind the modified-golden-rule formula for the

long-run interest rate, the representative agent assumption, has been seriously
questioned. The modified-golden-rule formula itself finds no empirical support.
From the formula (7.35) we should expect to find positive comovements over the
medium run between the rate of interest (rate of return) and the productivity
growth rate. However, the investigation by Hamilton et al. (2016), covering
more than a century and many countries, finds no relationship of that kind.
In the Barro model resource allocation and the coordination of economic be-

havior across generations is brought about through the market mechanism and an
operative bequest motive due to parental altruism. In the next chapter we shall
study a situation where the coordination across generations is brought about by
a fictional social planner maximizing a social welfare function.

7.6 Literature notes

(incomplete)
The criticism by Bernheim and Bagwell is answered in Barro (1989). A survey

of the debt neutrality issues is provided by Dalen (1992), emphasizing “demo-
graphic realism”.
We have concentrated on the Barro model where bequests reflect the concern

of parents for the welfare of their offspring. The Barro model was further de-
veloped and analyzed by Buiter (1980), Abel (1987), and Weil (1987) and our
treatment above draw on these contributions. Our analysis ruled out circum-
stances where children help support their parents. This is dealt with in Abel
(1987) and Kimball (1987); see also the survey in Bernheim (1987). For a more
general treatment of bequests in the economy, see for example Laitner (1997).
Reviews of how to model the distinction between “life-cycle wealth”and “in-

herited wealth”and of diverging views on the empirical importance of inherited
wealth are contained in Kessler and Masson (1988) and Malinvaud (1998a). How
much of net wealth accumulation in Scandinavia represents intended transfers
and bequests is studied by Laitner and Ohlsson (2001) and Danish Economic
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Council (2004).

7.7 Appendix

A. The envelope theorem for an unconstrained maximum

In the solution of the parent’s decision problem in the Barro model of Section 7.2
we appealed to the envelope theorem which, in its simplest form, is the principle
that in an interior maximum the total derivative of a maximized function w.r.t.
a parameter equals the partial derivative w.r.t. that parameter. More precisely:

ENVELOPE THEOREM Let y = f(a, x) be a continuously differentiable func-
tion of two variables. The first variable, a, is conceived as a parameter and
the other variable, x, as a control variable. Let g(a) be a value of x at which
∂f
∂x

(a, x) = 0, i.e., ∂f
∂x

(a, g(a)) = 0. Let F (a) ≡ f(a, g(a)). Provided F (a) is
differentiable, we have

F ′(a) =
∂f

∂a
(a, g(a)),

where ∂f/∂a denotes the partial derivative of f(·) w.r.t. the first argument.
Proof F ′(a) = ∂f

∂a
(a, g(a)) + ∂f

∂x
(a, g(a))g′(a) = ∂f

∂a
(a, g(a)), since ∂f

∂x
(a, g(a))

= 0 by definition of g(a). �
That is, when calculating the total derivative of a function w.r.t. a parameter

and evaluating this derivative at an interior maximum w.r.t. a control variable,
the envelope theorem allows us to ignore the second term arising from the chain
rule. This is also the case if we calculate the total derivative at an interior
minimum. Extension to a function of n control variables is straightforward.14

The envelope theorem in action For convenience we repeat the first-order
conditions (7.6) and (7.7):

u′(c1t) = (1 + ρ)−1u′(c2t+1)(1 + rt+1), (*)

(1 + ρ)−1u′(c2t+1) = (1 + R̄)−1u′(c1t+1)(1 + n)−1. (**)

We described in Section 7.2 how the parent chooses st and bt+1 so as to
maximize the objective function Ũt, taking into account the descendants’optimal
responses to the received bequest bt+1. We claimed without proof that in view
of the envelope theorem, these two at first sight incomplete first-order conditions

14For extensions and more rigorous framing of the envelope theorem, see for example Syd-
saeter et al. (2006).
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are correct, both as they read and for t replaced by t + i, i = 1, 2, ..., and do
indeed characterize an optimal plan.

To clarify the issue we substitute the two period budget constraints of a young
into the objective function to get

Ũt(st, bt+1) = u(wt + bt − st) + (1 + ρ)−1u((1 + r)st (7.37)

−(1 + n)bt+1) + (1 + R̄)−1Ũt+1(ŝt+1, b̂t+2),

where ŝt+1 and b̂t+2 are the optimal responses of the next generation and where
Ũt+1(·) can be written in the analogue recursive way, and so on for all future
generations. The responses of generation t + 1 are functions of the received bt+1

so that we can write

ŝt+1 = ŝ(bt+1, t+ 2), b̂t+2 = b̂(bt+1, t+ 2),

where the second argument, t+ 2, represents the influence of wt+1 and rt+2.

Our at first sight questionable approach rests on the idea that the smooth
function Ũt+1(·) is flat at an interior maximum so that any small change in the
descendants’optimal responses induced by a small change in bt+1 has a negligible
effect on the value of the function, hence also on the value of Ũt(·). A detailed
argument goes as follows.

For the first-order conditions (*) and (**), both as they read and for t replaced
by t+ i, i = 1, 2, ..., to make up a correct characterization of optimal behavior by
a parent who takes the optimal responses by the descendants into account, the
first-order conditions must imply that the total derivative of the parent’s objec-
tive function w.r.t. bt+1 vanishes. To see whether our “half-way”optimization
procedure has ensured this, we first forward the period budget constraint (7.5)
one period to get:

c2t+2 + (1 + n)b̂t+2 = (1 + rt+2)ŝt+1. (7.38)

Using this expression we substitute for c2t+2 in (7.37) and let the function Ût(st, bt+1, ŝt+1, b̂t+2)
represent the right-hand side of (7.37).

Although the parent chooses both st and bt+1, only the choice of bt+1 affects
the next generation. Calculating the total derivative of Ût(·) w.r.t. bt+1, we get
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dÛ(st, bt+1, ŝt+1, b̂t+2)/dbt+1 =

(1 + ρ)−1u′(c2t+1) (−(1 + n)) + (1 + R̄)−1u′(c1t+1)(1− ∂ŝt+1

∂bt+1

)

+(1 + R̄)−1

{
(1 + ρ)−1u′(c2t+2)

(
(1 + rt+2)

∂ŝt+1

∂bt+1

− (1 + n)
∂b̂t+2

∂bt+1

)

+(1 + R̄)−1u′(c1t+2)
∂b̂t+2

∂bt+1

}
+ ...

= (1 + ρ)−1u′(c2t+1) (−(1 + n)) + (1 + R̄)−1u′(c1t+1)

−(1 + R̄)−1
[
u′(c1t+1)− (1 + ρ)−1u′(c2t+2)(1 + rt+2)

] ∂ŝt+1

∂bt+1

+(1 + R̄)−1
[
(1 + ρ)−1u′(c2t+2) (−(1 + n)) + (1 + R̄)−1u′(c1t+2)

] ∂b̂t+2

∂bt+1

+ ...

= (1 + ρ)−1u′(c2t+1) (−(1 + n)) + (1 + R̄)−1u′(c1t+1) = 0. (7.39)

The second last equality sign is due to the first-order conditions (*) and (**), first
with t replaced by t + 1, implying that the two terms in square brackets vanish,
second with t replaced by t+ i, i = 2, 3,. . . , implying that also all the remaining
terms, represented by “...”, vanish (since the latter terms can be written in the
same way as the former). The last equality sign is due to (**) as it reads. Thus,
also the total derivative is vanishing as it should at an interior optimum.
Note that the expression in the last line of the derivation is the partial deriv-

ative of Ût(·), namely ∂Û(st, bt+1, ŝt+1, b̂t+2)/∂bt+1. The whole derivation is thus
a manifestation of the envelope theorem for an unconstrained maximum: in an
interior optimum the total derivative of a maximized function w.r.t. a parameter,
here bt+1, equals the partial derivative w.r.t. that parameter.

B. The intertemporal budget constraint of a dynasty

We here show how to derive a dynasty’s intertemporal budget constraint as pre-
sented in (7.24) of Section 7.3. With lump-sum taxation and constant interest
rate, r, the period budget constraints of a member of generation t are

c1t + st = wt − τ t + bt, and (7.40)

c2t+1 + (1 + n)bt+1 = (1 + r)st. (7.41)

We isolate st in (7.41), substitute into (7.40), and reorder to get

bt = c1t +
c2t+1

1 + r
− (wt − τ t) +

1 + n

1 + r
bt+1.
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Then, by forward substitution,

bt =

j∑
i=0

(
1 + n

1 + r
)i
[
c1t+i +

c2t+i+1

1 + r
− (wt+i − τ t+i)

]
+ (

1 + n

1 + r
)j+1bt+j+1

=

∞∑
i=0

(
1 + n

1 + r
)i
[
c1t+i +

c2t+i+1

1 + r
− (wt+i − τ t+i)

]
, (7.42)

assuming limj→∞(1+n
1+r

)j+1bt+j+1 = 0, in view of r > n. For every old in any given
period there are 1 + n young. We therefore multiply through in (7.42) by 1 + n
and reorder:

(1 +n)
∞∑
i=0

(
1 + n

1 + r
)i(c1t+i +

c2t+i+1

1 + r
) = (1 +n)bt + (1 +n)

∞∑
i=0

(
1 + n

1 + r
)i(wt+i− τ t+i).

To this we add the period budget constraint of an old member of the dynasty,

c2t + (1 + n)bt = (1 + r)st−1,

and get the consolidated intertemporal budget constraint of the dynasty in period
t:

c2t+(1+n)
∞∑
i=0

(
1 + n

1 + r
)i(c1t+i+

c2t+i+1

1 + r
) = (1+r)st−1+(1+n)

∞∑
i=0

(
1 + n

1 + r
)i(wt+i−τ t+i),

where (1 + n)bt has been cancelled out on both sides. Dividing through by 1 + r
and reordering gives

∞∑
i=0

(1 + n)i

(1 + r)i+1
[c2t+i + (1 + n)c1t+i] = st−1 + (1 + n)

∞∑
i=0

(1 + n)i

(1 + r)i+1
(wt+i − τ t+i).

This is the intertemporal budget constraint, as seen from the beginning of period
t, of a dynasty with one old member in period t. With Lt−1 old members, this
becomes

Lt−1

∞∑
i=0

(1 + n)i

(1 + r)i+1
[c2t+i + (1 + n)c1t+i]

= st−1Lt−1 + Lt

∞∑
i=0

(1 + n)i

(1 + r)i+1
(wt+i − τ t+i) = At +Ht,

where At = st−1Lt−1 is the financial wealth in the beginning of period t and Ht

is the human wealth, as defined in (7.25). Dividing through by N gives (7.24).
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C. Proof that a representative agent model allows balanced growth
only if the period utility function is CRRA

This appendix refers to Section 7.4. When the bequest motive is operative, the
Barro model becomes a representative agent model where the intergenerational
Euler equation (7.10) holds for all dynasties and therefore also at the aggregate
level. For convenience we repeat the Euler equation in question here:

u′(c1t) =
1 + rt+1

1 +R
u′(c1t+1), (7.43)

in view of (1 + R̄)−1 ≡ (1 + R)−1(1 + n). In balanced growth, c1t+1 = (1 + g)c1t,
where g > 0 and rt+1 = r∗, so that (7.43) takes the form

u′(c1t) =
1 + r∗

1 +R
u′((1 + g)c1t) ≡ ω(c1t), (7.44)

which must hold for all c1t > 0 to be generally consistent with balanced growth.
Thus, the derivatives on both sides should also be equal for all c1t > 0:

u′′(c1t) = ω′(c1t) =
1 + r∗

1 +R
u′′((1 + g)c1t)(1 + g). (7.45)

Dividing through by u′(c1t) in accordance with (7.44) and multiplying by c1t yields

c1tu
′′(c1t)

u′(c1t)
=

(1 + g)c1tu
′′((1 + g)c1t)

u′((1 + g)c1t)
,

showing that for all c1t > 0, the (absolute) elasticity of marginal utility should
be the same at the consumption level c1t as at the consumption level (1 + g)c1t.
It follows that u(·) must be such that the (absolute) elasticity of marginal utility,
θ(c) ≡ cu′′(c)/u′(c), is independent of c, i.e., θ(c) = θ > 0.We know from Chapter
3 that this requires that u(·), up to a positive linear transformation, has the CRRA
form c1−θ/(1− θ).

7.8 Exercises
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