
Chapter 10

The basic representative agent
model: Ramsey

As early as 1928 a sophisticated model of a society’s optimal saving was pub-
lished by the British mathematician and economist Frank Ramsey (1903-1930).
Ramsey’s contribution was mathematically demanding and did not experience
much response at the time. Three decades had to pass until his contribution was
taken up seriously (Samuelson and Solow, 1956). His model was merged with the
growth model by Solow (1956) and became a cornerstone in neoclassical growth
theory from the mid 1960s. The version of the model which we present below was
completed by the work of Cass (1965) and Koopmans (1965). Hence the model
is also known as the Ramsey-Cass-Koopmans model.

The model is one of the basic workhorse models in macroeconomics. As we
conclude at the end of the chapter, the model can be seen as placed at one end of
a line segment. At the other end appears another basic workhorse model, namely
Diamond’s overlapping generations model considered in chapters 3 and 4. While
in the Diamond model there is an unbounded number of households (since in
every new period a new generation enters the economy) and these have a finite
time horizon, in the Ramsey model there is a finite number of households with an
unbounded time horizon. Moreover, in the standard Ramsey model households
are completely alike. The model is the main example of a representative agent
model. In contrast, the Diamond model has heterogeneous agents, young versus
old, interacting in every period. There are important economic questions where
these differences in the setup lead to salient differences in the answers.

The purpose of this chapter is to describe and analyze the continuous-time
version of the Ramsey framework. In the main sections we consider the case of a
perfectly competitive market economy. In this context we shall see, for example,
that the Solow growth model can be interpreted as a special case of the Ramsey
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model. toward the end of the chapter we consider the Ramsey framework in a
setting with an “all-knowing and all-powerful”social planner.

10.1 Preliminaries

We consider a closed economy. Time is continuous. We assume households own
the capital goods and hire them out to firms at a market rental rate, r̂. This is
just to have something concrete in mind. If instead the capital goods were owned
by the firms using them in production, and the capital investment by these firms
were financed by issuing shares and bonds, then the conclusions would remain
the same as long as we ignore uncertainty.
Although time is considered continuous, to save notation, we shall write the

time-dependent variables as wt, r̂t, etc. instead of w(t), r̂(t), etc. In every short
time interval (t, t+ ∆t), the individual firm employs labor at the market wage wt
and rents capital goods at the rental rate r̂t. The combination of labor and capital
produces the homogeneous output good. This good can be used for consumption
as well as investment. So in every short time interval there are at least three active
markets, one for the “all-purpose”, homogeneous output good, one for labor, and
one for capital services (the rental market for capital goods). It may be convenient
to imagine that there is also a perfect loan market. As all households are alike,
however, the loan market will not be active in general equilibrium.
There is perfect competition in all markets, that is, households and firms are

price takers. Any need for means of payment − money − is abstracted away.
Prices are measured in units of the homogeneous output good.
There are no stochastic elements in the model. We assume households under-

stand exactly how the economy works and can predict the future path of wages
and interest rates. In other words, we assume “rational expectations”. In our
non-stochastic setting this amounts to perfect foresight. The results that emerge
from the model are thereby the outcome of economic mechanisms in isolation
from expectational errors.
Uncertainty being absent, rates of return on alternative assets are in equilib-

rium the same. In spite of the not active loan market, it is usual to speak of this
common rate of return as the real interest rate of the economy. Denoting this
rate rt, for a given rental rate of capital, r̂t, we have

rt =
r̂tKt − δKt

Kt

= r̂t − δ, (10.1)

where the right-hand side is the rate of return on holding Kt capital goods, δ
(≥ 0) being a constant rate of capital depreciation. This relationship may be
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considered a no-arbitrage condition between investing in the loan market and in
capital goods.
We describe, first, the households’ behavior and next the firms’ behavior.

Thereafter the interaction between households and firms in general equilibrium
and the resulting dynamics will be analyzed.

10.2 The agents

10.2.1 Households

There is a fixed number, N, of identical households with an infinite time horizon.
This feature makes aggregation very simple: we just have to multiply the behavior
of a single household with the number of households (for simplicity we later
normalize N to equal 1). Every household has Lt (adult) members; Lt changes
over time at a constant rate, n :

Lt = L0e
nt, L0 > 0. (10.2)

Indivisibility is ignored.
Each household member supplies inelastically one unit of labor per time unit.

Equation (10.2) therefore describes the growth of both the population and the
labor force. Since there is only one consumption good, the only decision problem
is how to distribute current income between consumption and saving.

Intertemporal utility function

The household’s preferences can be represented by an additive intertemporal util-
ity function with a constant rate of time preference, ρ. Seen from time 0, the
intertemporal utility function is

U0 =

∫ ∞
0

u(ct)Lte
−ρtdt,

where ct ≡ Ct/Lt is consumption per family member. The instantaneous utility
function, u(c), has u′(c) > 0 and u′′(c) < 0, i.e., positive but diminishing marginal
utility of consumption. The utility contribution from consumption per family
member is weighted by the number of family members, Lt.
The household is seen as an infinitely-lived family, a family dynasty. The

current members of the dynasty act in unity and are concerned about the utility
from own consumption as well as the utility of the future generations within the
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dynasty.1 Births (into adult life) do not amount to emergence of new economic
agents with independent interests. Births and population growth are seen as
just an expansion of the size of the already existing families. In contrast, in the
Diamond OLG model births imply entrance of new economic decision makers
whose preferences no-one cared about in advance.
In view of (10.2), U0 can be written as

U0 =

∫ ∞
0

u(ct)e
−(ρ−n)tdt, (10.3)

where the inconsequential positive factor L0 has been eliminated. Here ρ − n is
known as the effective rate of time preference while ρ is the pure rate of time
preference. We later introduce a restriction on ρ−n to ensure boundedness from
above of the utility integral in general equilibrium.
The household chooses a consumption-saving plan which maximizes U0 subject

to its budget constraint. Let At ≡ atLt be the household’s (net) financial wealth
in real terms at time t. We have

Ȧt ≡
dAt
dt

= rtAt + wtLt − ctLt, A0 given. (10.4)

This equation is a book-keeping relation telling how financial wealth or debt (−A)
changes over time depending on how consumption relates to current income. The
equation merely says that the increase in financial wealth per time unit equals
saving which equals income minus consumption. Income is the sum of the net
return on financial wealth, rtAt, and labor income, wtLt, where wt is the real
wage.2 Saving can be negative. In that case the household dissaves and does so
simply by selling a part of its stock of capital goods or by taking loans in the loan
market. The market prices, wt and rt, faced by the household are assumed to be
piecewise continuous functions of time.
When the dynamic budget identity (10.4) is combined with a requirement of

solvency, we have a budget constraint. Given the assumed perfect loan market, the
relevant solvency requirement is the No-Ponzi-Game condition (NPG for short):

lim
t→∞

Ate
−
∫ t
0 rsds ≥ 0. (10.5)

This condition says that financial wealth far out in the future cannot have a
negative present value. That is, in the long run, debt is at most allowed to rise

1The discrete-time Barro model of Chapter 7 articulated such an altruistic bequest motive.
In that chapter we also discussed some of the conceptual diffi culties associated with the dynasty
setup.

2Since the technology exhibits constant returns to scale, in competitive equilibrium the firms
make no (pure) profits to pay out to their owners.
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at a rate less than the real interest rate r. The NPG condition thus precludes
permanent financing of the interest payments by new loans.3

The decision problem is: choose a plan (ct)
∞
t=0 so as to maximize U0 subject

to non-negativity of the control variable, c, and the constraints (10.4) and (10.5).
The problem is a slight generalization of the problem studied in Section 9.4 of
the previous chapter.
To solve the problem we shall apply the Maximum Principle. This method can

be applied directly to the problem as stated above or to an equivalent problem
with constraints expressed in per capita terms. Let us follow the latter approach.
From the definition at ≡ At/Lt we get by differentiation w.r.t. t

ȧt =
LtȦt − AtL̇t

L2
t

=
Ȧt
Lt
− atn.

Substitution of (10.4) gives the dynamic budget identity in per capita terms:

ȧt = (rt − n)at + wt − ct, a0 given. (10.6)

By inserting At ≡ atLt = atL0e
nt, the NPG condition (10.5) can be rewritten

lim
t→∞

ate
−
∫ t
0 (rs−n)ds ≥ 0, (10.7)

where the unimportant factor L0 has been eliminated.
We see that in both (10.6) and (10.7) a kind of corrected interest rate appears,

namely the interest rate, r, minus the family size growth rate, n. Although
deferring consumption gives a real interest rate of r, this return is diluted on
a per capita basis because it will have to be shared with more members of the
family when n > 0. In the form (10.7) the NPG condition requires that per capita
debt, if any, in the long run at most grows at a rate less than r − n, assuming
the interest rate is a constant, r.

Solving the consumption-saving problem

The decision problem is now: choose (ct)
0
t=∞ so as to a maximize U0 subject to

the constraints: ct ≥ 0, (10.6), and (10.7). To solve the problem we apply the

3From the previous chapter we know that the NPG condition, in combination with (10.4),
is equivalent to an ordinary intertemporal budget constraint which says that the present value
of the planned consumption path cannot exceed initial total wealth, i.e., the sum of the initial
financial wealth and the present value of expected future labor income.
Violating the NPG condition means running a “Ponzi game”, that is, trying to make a fortune

through the chain-letter principle where old investors are payed off with money from the new
investors.
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Maximum Principle. So we follow the same solution procedure as in the alike
problem (apart from n = 0) of Section 9.4 of the previous chapter:

1) Set up the current-value Hamiltonian

H(a, c, λ, t) = u(c) + λ [(r − n) a+ w − c] ,

where λ is the adjoint variable associated with the differential equation (10.6).
2) Differentiate H partially w.r.t. the control variable, c, and put the result

equal to zero:
∂H

∂c
= u′(c)− λ = 0. (10.8)

3) Differentiate H partially w.r.t. the state variable, a, and put the result
equal to minus the time derivative of λ plus the effective discount rate (appearing
in the integrand of the criterion function) multiplied by λ:

∂H

∂a
= λ(r − n) = −λ̇+ (ρ− n)λ. (10.9)

4) Apply the Maximum Principle: an interior optimal path, (at, ct)
∞
t=0, will

satisfy that there exists a continuous function λ = λt such that for all t ≥ 0,
(10.8) and (10.9) hold along the path, and the transversality condition,

lim
t→∞

atλte
−(ρ−n)t = 0, (10.10)

is satisfied.4

The interpretation of these optimality conditions is as follows. The condition
(10.8) can be considered a MC = MB condition (in utility terms). It illustrates
together with (10.9) that the adjoint variable, λ, constitutes the shadow price,
measured in current utility, of per head financial wealth along the optimal path.
In the differential equation (10.9) λn cancels out, and rearranging (10.9) gives

rλ+ λ̇

λ
= ρ.

This can be interpreted as a no-arbitrage condition. The left-hand side gives the
actual rate of return, measured in utility units, on the marginal unit of saving:
rλ can be seen as a dividend and λ̇ as a capital gain. The right-hand side is the
required rate of return in utility units, ρ. The household is willing to save the

4That in the present problem, optimality does indeed require the “standard” condition
(10.10) satisfied is true (as shown in Chapter 9.4). It is not a general result contained in the
Maximum Principle.
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marginal unit of income only up to the point where the actual return on saving
equals the required return.
The transversality condition (10.10) says that optimality requires that the

present shadow value of per capita financial wealth goes to zero for t → ∞.
Combined with (10.8), the condition can be written

lim
t→∞

atu
′(ct)e

−(ρ−n)t = 0. (10.11)

This requirement is not surprising if we compare with the alternative case where
limt→∞ atu

′(ct)e
−(ρ−n)t > 0. In this case there would be over-saving; U0 could

be increased by reducing the long-run at through consuming more and thereby
saving less. The opposite inequality, limt→∞ atu

′(ct)e
−(ρ−n)t < 0, will reflect over-

consumption and not even satisfy the NPG condition in view of Proposition 2 of
the previous chapter. In fact, from that proposition we know that the transver-
sality condition (10.10) is equivalent to the NPG condition (10.7) being satisfied
with strict equality, i.e.,

lim
t→∞

ate
−
∫ t
0 (rs−n)ds = 0. (10.12)

We should recall that the Maximum Principle gives only necessary conditions
for an optimal plan. But since the Hamiltonian is jointly concave in (a, c) for
every t, the necessary conditions are also suffi cient, by Mangasarian’s suffi ciency
theorem (Math Tools).
The first-order conditions (10.8) and (10.9) give the Keynes-Ramsey rule:

ċt
ct

=
1

θ(ct)
(rt − ρ), (10.13)

where θ(ct) is the (absolute) elasticity of marginal utility,

θ(ct) ≡ −
ct

u′(ct)
u′′(ct) > 0. (10.14)

As we know from previous chapters, this elasticity measures the consumer’s wish
to smooth consumption over time. The inverse of θ(ct) is the elasticity of intertem-
poral substitution in consumption. It measures the strength of the willingness to
vary consumption over time in response to a change in the interest rate.
Note that the population growth rate, n, does not appear in the Keynes-

Ramsey rule. Going from n = 0 to n > 0 implies that rt is replaced by rt − n in
the dynamic budget identity (10.6) and ρ is replaced by ρ − n in the criterion
function. Hence n cancels out in the Keynes-Ramsey rule. Yet n appears in the
transversality condition and is thereby a co-determinant of the level of consump-
tion for given wealth, cf. (10.18) below.
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CRRA utility

In order that the model can accommodate Kaldor’s stylized facts, it should be
capable of generating a balanced growth path. When the population grows at
the same constant rate as the labor force, here n, by definition balanced growth
requires that per capita output, per capita capital, and per capita consumption
grow at constant rates. At the same time another of Kaldor’s stylized facts is
that the general rate of return in the economy tends to be constant. But (10.13)
shows that having a constant per capita consumption growth rate at the same
time as r is constant, is only possible if the elasticity of marginal utility does not
vary with c. Hence, it makes sense to assume that the right-hand-side of (10.14)
is a positive constant, θ. We thus assume that the instantaneous utility function
is of CRRA form:

u(c) =
c1−θ

1− θ , θ > 0; (10.15)

where, for θ = 1, the right-hand side should be interpreted as ln c as explained in
Section 3.3 of Chapter 3.5

In later sections of this chapter we let the time horizon of the decision maker
go to infinity. To ease convergence of an infinite sum of discounted utilities, it is
an advantage not to have to bother with additive constants in the period utilities
and therefore we write the CRRA function as c1−θ/(1 − θ) instead of the form,
(c1−θ−1)/(1−θ), introduced in Chapter 3. As implied by Box 9.1, the two forms
represent the same preferences.
So our Keynes-Ramsey rule simplifies to

ċt
ct

=
1

θ
(rt − ρ). (10.16)

The consumption function∗ The Keynes-Ramsey rule characterizes the opti-
mal rate of change of consumption. The optimal initial level of consumption, c0,
will be the highest feasible c0 which is compatible with both the Keynes-Ramsey
rule and the NPG condition. And for this reason the choice of c0 will exactly
comply with the transversality condition (10.12). Although at this stage an ex-
plicit determination of c0 is not necessary to pin down the equilibrium path of the
economy (see below), we note in passing that c0 can be found by the method de-
scribed at the end of Chapter 9. Indeed, given the book-keeping relation (10.6),
we know from Proposition 1 of that chapter that the transversality condition

5As mentioned in the previous chapter, in problems with infinite horizon it is an advantage
not to have to bother with additive constants in the instantaneous utilities. Otherwise, conver-
gence of the improper integral (10.3) may go by the board. Hence we write the CRRA function
as in (10.15), without subtraction of the constant 1/1− θ).
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(10.12) is equivalent to satisfying the intertemporal budget constraint with strict
equality: ∫ ∞

0

cte
−
∫ t
0 (rs−n)dsdt = a0 + h0. (10.17)

Solving the differential equation (10.16), we get ct = c0e
1
θ

∫ t
0 (rs−ρ)ds which we

substitute for ct in (10.17). Isolating c0 now gives6

c0 = β0(a0 + h0), where (10.18)

β0 =
1∫∞

0
e
∫ t
0

(
(1−θ)rs−ρ

θ
+n)ds

dt
, and

h0 =

∫ ∞
0

wte
−
∫ t
0 (rs−n)dsdt.

Initial consumption is thus proportional to total wealth. The factor of propor-
tionality is β0, also called the marginal (and average) propensity to consume out
of wealth. We see that the entire expected future evolution of wages and inter-
est rates affects c0 through β0. Moreover, β0 is less, the greater is the population
growth rate, n.7 The explanation is that the effective utility discount rate, ρ−n, is
less, the greater is n. The propensity to save is greater the more mouths to feed in
the future. The initial saving level will be r0a0 +w0−c0 = r0a0 +w0−β0(a0 +h0).
In case rt = r for all t and wt = w0e

gt, where g < r − n, we get β0 =
[(θ − 1)r + ρ− θn] /θ and a0 + h0 = a0 + w0/(r − n− g).
In the Solow growth model the saving-income ratio is a parameter, a given

constant. The Ramsey model endogenizes the saving-income ratio. Solow’s para-
metric saving-income ratio is replaced by two “deeper”parameters, the rate of
impatience, ρ, and the desire for consumption smoothing, θ. As we shall see, the
resulting saving-income ratio will not generally be constant outside the steady
state of the dynamic system implied by the Ramsey model. But first we need a
description of production.

10.2.2 Firms

There is a large number of firms. They have the same neoclassical production
function with CRS,

Yt = F (Kd
t , TtL

d
t ) (10.19)

where Yt is supply of output, Kd
t is capital input, and Ldt is labor input, all

measured per time unit, at time t. The superscript d on the two inputs indicates
6These formulas can also be derived directly from Example 1 of Chapter 9.5 by replacing

r(τ) and ρ by r(τ)− n and ρ− n, respectively. As to h0, see the hint in Exercise 9.1.
7This holds also if θ = 1, i.e., u(c) = ln c, since in that case β0 = ρ− n.
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that these inputs are seen from the demand side. The factor Tt represents the
economy-wide level of technology as of time t and is exogenous. We assume there
is technological progress at a constant rate g (≥ 0) :

Tt = T0e
gt, T0 > 0. (10.20)

Thus the economy features Harrod-neutral technological progress, as is needed
for compliance with Kaldor’s stylized facts.
Necessary and suffi cient conditions for the factor combination (Kd

t , L
d
t ), where

Kd
t > 0 and Ldt > 0, to maximize profits under perfect competition are that

F1(Kd
t , TtL

d
t ) = r̂t ≡ rt + δ, (10.21)

F2(Kd
t , TtL

d
t )Tt = wt, (10.22)

r̂t being the rental rate of capital, cf. (10.1).

10.3 General equilibrium and dynamics

We now consider the economy as a whole and thereby the interaction between
households and firms in the various markets. For simplicity, we assume that the
number of households, N, is the same as the number of firms. We normalize this
common number to one so that F (·, ·) from now on is interpreted as the aggregate
production function and Ct as aggregate consumption.

Factor markets

In the short term, i.e., for fixed t, the available quantities of labor, Lt = L0e
nt,

and capital, Kt, are predetermined. The factor markets clear at all points in time,
that is,

Kd
t = Kt, and Ldt = Lt, for all t ≥ 0. (10.23)

It is the rental rate, r̂t, and the wage rate, wt, which adjust (immediately) so that
this is achieved for every t. Aggregate output can be written

Yt = F (Kt, TtLt) = TtLtF (k̃t, 1) ≡ TtLtf(k̃t), f ′ > 0, f ′′ < 0, (10.24)

where k̃t ≡ kt/Tt ≡ Kt/(TtLt) is the effective capital-labor ratio, also sometimes
just called the “capital intensity”. Substituting (10.23) into (10.21) and (10.22),
we find the equilibrium interest rate and wage rate:

rt = r̂t − δ =
∂(TtLtf(k̃t))

∂Kt

− δ = f ′(k̃t)− δ, (10.25)

wt =
∂(TtLtf(k̃t))

∂(TtLt)
Tt =

[
f(k̃t)− k̃tf ′(k̃t)

]
Tt ≡ w̃(k̃t)Tt, (10.26)
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where k̃t is at any point in time predetermined and where in (10.25) we have used
the no-arbitrage condition (10.1).

Capital accumulation

From now on we leave out the explicit dating of the variables when not needed
for clarity. By national product accounting we have

K̇ = Y − C − δK. (10.27)

Let us check whether we get the same result from the wealth accumulation equa-
tion of the household. Because physical capital is the only asset in the economy,
aggregate financial wealth, A, at time t equals the total quantity of capital, K,
at time t.8 With SN denoting aggregate net saving, we thus have

K̇ = Ȧ = SN = rK + wL− cL (by (10.4))

= (f ′(k̃)− δ)K + (f(k̃)− k̃f ′(k̃))TL− cL (by (10.25) and (10.26))

= f(k̃)TL− δK − cL (by rearranging and use of K ≡ k̃TL)

= F (K,TL)− δK − C = Y − C − δK (by C ≡ cL).

Hence the book-keeping is in order (the national product account is consistent
with the national income account).
We now face an important difference as compared with models where house-

holds have a finite horizon, such as the Diamond OLG model. Current consump-
tion cannot be determined independently of the expected entire future evolution
of the economy. Consumption and saving, as we saw in Section 10.2, depend
on the expectations of the future path of wages and interest rates. And given
the presumption of rational expectations, here in the form of perfect foresight,
the households’expectations are identical to the prediction that can be calculated
from the model. In this way there is mutual dependence between expectations and
the level and evolution of consumption. We can determine the level of consump-
tion only in the context of the overall dynamic analysis. In fact, the economic
agents are in some sense in the same situation as the outside analyst. They, too,
have to think through the entire dynamics of the economy, including the mutual
dependency between expectations and actual evolution, in order to form their
rational expectations.

The dynamic system

We get a concise picture of the dynamics by reducing the model to the minimum
number of coupled differential equations. This minimum number is two. The key

8Whatever financial claims on each other the households might have, they net out for the
household sector as a whole.
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endogenous variables are k̃ ≡ K/(TL) and c̃ ≡ C/(TL) ≡ c/T . Using the rule
for the growth rate of a quotient, we get

·
k̃

k̃
=

K̇

K
− Ṫ

T
− L̇

L
=
K̇

K
− (g + n) (from (10.2) and (10.20))

=
F (K,TL)− C − δK

K
− (g + n) (from (10.27))

=
f(k̃)− c̃

k̃
− (δ + g + n) (from (10.24)).

The associated differential equation for c̃ is obtained in a similar way:

·
c̃

c̃
=

ċ

c
− Ṫ

T
=

1

θ
(rt − ρ)− g (from the Keynes-Ramsey rule)

=
1

θ

[
f ′(k̃)− δ − ρ− θg

]
(from (10.25)).

We thus end up with the dynamic system

·
k̃ = f(k̃)− c̃− (δ + g + n)k̃, k̃0 > 0 given, (10.28)
·
c̃ =

1

θ

[
f ′(k̃)− δ − ρ− θg

]
c̃. (10.29)

There is no given initial value of c. Instead we have the transversality condition
(10.12). Using at = Kt/Lt ≡ k̃tTt = k̃tT0e

gt and rt = f ′(k̃t) − δ, we see that
(10.12) is equivalent to

lim
t→∞

k̃te
−
∫ t
0 (f ′(k̃s)−δ−g−n)ds = 0. (10.30)

Phase diagram By a phase diagram for the dynamic system (10.28) − (10.29)
is meant a graph in the (k̃, c̃) plane showing projections of the time paths,
(k̃t, c̃t)

∞
t=0, that are consistent with the system for alternative arbitrary initial

points, (k̃0, c̃0). The phase diagram is shown in Fig. 10.2 below.
Fig. 10.1 is an aid for the construction of the phase diagram in Fig. 10.2.

The curve OEB in Fig. 10.2 represents the points in the (k̃, c̃) plane where
·
k̃ = 0

according to the differential equation (10.28). Such a curve is called a nullcline
for k̃. We see from (10.28) that

·
k̃ = 0 for c̃ = f(k̃)− (δ + g + n)k̃ ≡ c̃(k̃). (10.31)
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The value of c̃(k̃) for alternative values of k̃ can be read off in Fig. 10.1 as the
vertical distance between the curve ỹ = f(k̃) and the line ỹ = (δ + g + n)k̃ (to
save space, the proportions are somewhat distorted).9 The maximum value of
c̃(k̃), if it exists, is reached at the point where the tangent to the OEB curve in
Fig. 10.2 is horizontal, i.e., where c̃′(k̃) = f ′(k̃) − (δ + g + n) = 0 or f ′(k̃) − δ
= g + n. The value of k̃ satisfying this is the golden-rule capital intensity, k̃GR:

f ′(k̃GR)− δ = g + n. (10.32)

By (10.28) follows that
·
∂k̃/∂c̃ = −1. For points above the

·
k̃ = 0 locus we

thus have
·
k̃ < 0, whereas for points below the

·
k̃ = 0 locus,

·
k̃ > 0. The horizontal

arrows in the figure indicate these directions of movement of k̃ in the different
regions.

We see from (10.29) that

·
c̃ = 0 for f ′(k̃) = δ + ρ+ θg or c̃ = 0. (10.33)

Let k̃∗ > 0 satisfy the equation f ′(k̃∗) − δ = ρ + θg. Then the vertical half-line

k̃ = k̃∗, c̃ ≥ 0, represents points where
·
c̃ = 0, and so does the horizontal half-line

c̃ = 0, k̃ ≥ 0. These two half-lines thus make up nullclines for c̃ according to the
differential equation (10.29).

By (10.28) follows that for c̃ > 0, ∂
·
c̃/∂k̃ = θ−1f ′′(k̃)c̃ < 0. For points to

the left of the k̃ = k̃∗ line we thus have
·
c̃ > 0. And for points to the right of

the k̃ = k̃∗ line we have
·
c̃ < 0. The vertical arrows in Fig. 10.2 indicate these

directions of movement of c̃ in the different regions. Four illustrative examples
of solution curves (I, II, III, and IV ) are drawn in the figure. Since our dynamic
system is “autonomous”, the direction of movement depends only on the initial
position, not on time. Hence, generally in a phase diagram the time index on k̃
and c̃ is omitted.

9As the graph is drawn, f(0) = 0, i.e., capital is assumed essential. But none of the conclu-
sions we are going to consider depends on this.
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Steady state

The point E in Fig. 10.2 has coordinates (k̃∗, c̃∗) and represents the unique steady
state.10 From (10.33) and (10.31), respectively, follows that

f ′(k̃∗) = δ + ρ+ θg, and (10.34)

c̃∗ = f(k̃∗)− (δ + g + n)k̃∗. (10.35)

So, in steady state the real interest rate is

r∗ = f ′(k̃∗)− δ = ρ+ θg. (10.36)

The effective capital-labor ratio satisfying this equation is known as the modified-
golden-rule capital intensity, k̃MGR. The modified golden rule is the rule saying
that for a representative agent economy to be in steady state, the capital intensity
must be such that the net marginal productivity of capital equals the required
rate of return, taking into account the pure rate of time preference, ρ, and the
desire for consumption smoothing, θ.11

We show below that the steady state is, in a specific sense, asymptotically sta-
ble. First we have to make sure, however, that the steady state is consistent with
general equilibrium. This consistency requires that the household’s transversality
condition (10.30) holds in the point E, where, for all t ≥ 0, k̃t = k̃∗ and f ′(k̃t)− δ
= ρ+ θg. So the condition (10.30) becomes

lim
t→∞

k̃∗e−(ρ+θg−g−n)t = 0. (10.37)

This is fulfilled if and only if ρ+ θg > g + n, a condition equivalent to

ρ− n > (1− θ)g. (A1)

This “suffi cient impatience”condition also ensures that the improper integral U0

is bounded from above (see Appendix B). If θ ≥ 1, (A1) is fulfilled as soon as

10As (10.33) shows, if c̃t = 0, then
·
c̃ = 0. Therefore, mathematically, point B (if it exists) in

Fig. 10.2 is also a stationary point of the dynamic system. And if f(0) = 0, then according to
(10.29) and (10.31) also the point (0, 0) in the figure is a stationary point. But these stationary
points have zero consumption forever and are therefore not steady states of any economic
system. That is, they are “trivial”steady states.
11The ρ of the Ramsey model corresponds to the intergenerational discount rate R of Barro’s

dynasty model in Chapter 7. In the discrete time Barro model we have 1+r∗ = (1+R)(1+g)θ,
which, by taking logs on both sides and using first-order Taylor approximations of ln(1 + x)
around x = 0 gives r∗ ≈ ln(1 + r∗) = ln(1 + R) + θ ln(1 + g) ≈ R + θg. Recall, however,
that in view of the considerable period length (about 25-30 years) of the Barro model, this
approximation may not be good.
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the effective utility discount rate, ρ − n, is positive. (A1) may even hold for a
negative ρ−n if not “too”negative. If θ < 1, (A1) requires ρ−n to be “suffi ciently
positive”.
Since the parameter restriction (A1) can be written ρ+ θg > g+n, it implies

that the steady-state interest rate, r∗, given in (10.36), is higher than the “nat-
ural”growth rate, g+n. If this did not hold, the transversality condition (10.12)
would fail at the steady-state point E. Indeed, along the steady-state path we
have

ate
−(r∗−n)t = kte

−(r∗−n)t = k0e
gte−(r∗−n)t = k0e

(g+n−r∗)t,

which would take the constant positive value k0 for all t ≥ 0 if r∗ = g + n and
would go to ∞ for t → ∞ if r∗ < g + n. The individual households would thus
be over-saving. Each household would in this situation alter its behavior and the
steady state could not be an equilibrium path.
Another way of seeing that r∗ ≤ g+n can not be an equilibrium in a Ramsey

model is to recognize that this condition would make the infinitely-lived house-
hold’s human wealth =∞ because wage income, wL, would grow at a rate, g+n,
at least as high as the real interest rate, r∗. This would motivate an immediate
increase in consumption and so the considered steady-state path would again not
be an equilibrium.
To have a model of interest, from now on we assume that the preference

and technology parameters satisfy the inequality (A1). As an implication, the
effective capital-labor ratio in steady state, k̃∗, is less than the golden-rule value
k̃GR. Indeed, f ′(k̃∗) − δ = ρ + θg > g + n = f ′(k̃GR) − δ, so that k̃∗ < k̃GR, in
view of f ′′ < 0.
So far we have only ensured that if the steady state, E, exists, it is consistent

with general equilibrium. Existence of a steady state requires that the marginal
productivity of capital is suffi ciently sensitive to variation in the effective capital-
labor ratio:

lim
k̃→0

f ′(k̃)− δ > ρ+ θg > lim
k̃→∞

f ′(k̃)− δ. (A2)

We could proceed with this assumption. To allow comparison of the steady state
of the model with a golden rule allocation, we need that a golden rule allocation
exists. This requires that limk̃→0 f

′(k̃) − δ > g + n > limk̃→∞ f
′(k̃) − δ. This

together with both (A2) and (A1) gives the “synthesized”condition

lim
k̃→0

f ′(k̃)− δ > ρ+ θg > g + n > lim
k̃→∞

f ′(k̃)− δ. (A2’)

By continuity of f ′, these inequalities ensure the existence of both k̃∗ and k̃GR
such that 0 < k̃∗ < k̃GR.

12 As illustrated by Fig. 10.1, the inequalities also ensure

12The often presumed Inada conditions, limk̃→0 f
′(k̃) =∞ and limk̃→∞ f ′(k̃) = 0, are stricter

than both (A2) and (A2’) and are not necessary.
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k̃MGR k̃GR
¯̃
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0

ỹ = f(k̃)

ỹ = (δ + g + n)k̃
δ + ρ+ θg

δ + g + n

k̃

ỹ

Figure 10.1: Building blocks for the phase diagram.

k̃0 k̃∗ = k̃MGR k̃GR
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III
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VI

k̃

c̃

Figure 10.2: Phase diagram for the Ramsey model.

c© Groth, Lecture notes in macroeconomics, (mimeo) 2016.



10.3. General equilibrium and dynamics 417

existence of a k̃ > 0 with the property that f(k̃) − (δ + g + n)k̃ = 0.13 Because
f ′(k̃) > 0 for all k̃ > 0, it is implied by the assumption (A2’) that δ + g + n > 0.
Even without deciding on the sign of n (a decreasing workforce should not be
ruled out in our days), this inequality seems a plausible presumption.

Trajectories in the phase diagram

A first condition for a path (k̃t, c̃t), with k̃t > 0 and c̃t > 0 for all t ≥ 0, to
be a solution to the model is that it satisfies the system of differential equations
(10.28)-(10.29). Indeed, to be technically feasible, it must satisfy (10.28) and to
comply with the Keynes-Ramsey rule, it must satisfy (10.29). Technical feasibility
of the path also requires that the initial value for k̃ equals the historically given
value k̃0 ≡ K0/(T0L0). In contrast, for c̃ we have no given initial value. This is
because c̃0 is a jump variable, also known as a forward-looking variable. These
names are used for an endogenous variable which can immediately shift to another
value if new information arrives so as to alter expectations about the future.
We shall see that the terminal condition (10.30), reflecting the transversality
condition of the households, makes up for this lack of an initial condition for c.
In Fig. 10.2 we have drawn some paths that are consistent with our dynamic

system (10.28)-(10.29). We are especially interested in the paths which are con-
sistent with the historically given k̃0, that is, paths starting at some point on the
stippled vertical line in the figure. If the economy started out with a “high”value
of c̃, it would follow a curve like II in the figure. The low level of saving implies
that the capital stock goes to zero in finite time (see Appendix C). If the economy
starts out with a “low”level of c̃, it will follow a curve like III in the figure. The
high level of saving implies that the effective capital-labor ratio converges toward_

k̃ in the figure.
All in all this suggests the existence of an initial level of consumption some-

where in between, which results in a path like I. Indeed, since the curve II
emerged with a high c̃0, then by lowering this c̃0 slightly, a path will emerge

in which the maximal value of k̃ on the
·
k̃ = 0 locus is greater than curve II’s

maximal k̃ value.14 We continue lowering c̃0 until the path’s maximal k̃ value is
exactly equal to k̃∗, where the the path ends. The path which emerges from this,
namely the path I, starting at the point A, is special in that it converges toward

13We claim that k̃ > k̃GR must hold. Indeed, this inequality follows from f ′(k̃GR) = δ+n+g

≡ f(
_

k̃)/
_

k̃ > f ′(
_

k̃), the latter inequality being due to f ′′ < 0 and f(0) ≥ 0 (consider the graph
of f(k̃)).
14As an implication of the uniqueness theorem for differential equations (see Math Tools),

two solution paths in the phase plane cannot intersect.
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the steady-state point E. No other path starting at the stippled line, k̃ = k̃0, has
this property. Paths starting above A do not, as we just saw. Neither do paths
starting below A, like path III. Either this path never reaches the consumption
level c̃A in which case it can not converge to E, of course. Or, after a while its
consumption level reaches c̃A, but at the same time it must have k̃ > k̃0. From
then on, as long as k̃ ≤ k̃∗, for every c̃-value that path III has in common with

path I, path III has a higher
·
k̃ and a lower

·
c̃ than path I (use (10.28) and

(10.29)). Hence, path III diverges from point E.
Had we considered a value of k̃0 > k̃∗, there would similarly be a unique value

of c̃0 such that the path starting from (k̃0, c̃0) would converge to E (see path IV
in Fig. 10.2).
The point E is a saddle point. By this is meant a steady state with the

following property: there exists exactly two paths in the phase plane, one from
each side of k̃∗, that converge toward the steady-state point. All other paths (at
least if starting in a neighborhood of the steady state) move away from the steady
state and asymptotically approach one of the two diverging paths, the stippled
North-West and South-East curves in Fig. 10.2.15 The two converging paths are
called saddle paths.16 In combination they make up what is known as the stable
branch (or stable arm). The stippled diverging paths in Fig. 10.2, together, make
up the unstable branch (or unstable arm).

The equilibrium path

A solution to the model is a path which is technically feasible and satisfies a set
of equilibrium conditions. In analogy with the definition in discrete time (see
Chapter 3) a path (k̃t, c̃t)

∞
t=0 is called a technically feasible path if (i) the path

has k̃t ≥ 0 and c̃t ≥ 0 for all t ≥ 0; (ii) it satisfies the accounting equation
(10.28); and (iii) it starts out, at t = 0, with the historically given initial effective
capital-labor ratio. An equilibrium path with perfect foresight is then a technically
feasible path (k̃t, c̃t)

∞
t=0 with the properties that the path (a) is consistent with

firms’profit maximization and households’optimization given their expectations
and budget constraints; (b) is consistent with market clearing for all t ≥ 0; and
(c) has the property that the evolution of the pair (wt, rt), where wt = w̃(k̃t)Tt
and rt = f ′(k̃t) − δ, is as expected by the households. Among other things
these conditions require the (transformed) Keynes-Ramsey rule, (10.29), and the
transversality condition, (10.30), to hold for all t ≥ 0.
Consider the case illustrated in Fig. 10.2, where 0 < k̃0 < k̃∗. The path which

15The algebraic definition of a saddle point, in terms of eigenvalues, is given in Appendix A.
16If limk̃→0f(k̃) = 0, then the saddle path on the left-hand side of the steady state in Fig.

10.2 will start out infinitely close to the origin, see Appendix A.
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starts at point A and follows the saddle path toward the steady state is an equi-
librium path because, by construction, it is technically feasible and in addition
has the required properties, (a), (b), and (c). More intuitively: if the households
expect an evolution of wt and rt corresponding to this path (that is, expect a
corresponding underlying movement of k̃t, which we know unambiguously deter-
mines rt and wt), then these expectations will induce a behavior the aggregate
result of which is an actual path for (k̃t, c̃t) that confirms the expectations. And
along this path the households find no reason to correct their behavior because
the path allows both the Keynes-Ramsey rule and the transversality condition to
be satisfied.
No other path than the saddle path can be an equilibrium path. This is

because no other technically feasible path is compatible with the households’
individual utility maximization under perfect foresight. An initial point above
point A can be excluded because the implied path of type II does not satisfy
the household’s NPG condition (and, consequently, not at all the transversality
condition).17 If the individual household expected an evolution of rt and wt
corresponding to path II, then the household would immediately choose a lower
level of consumption, that is, the household would deviate in order not to suffer
the same fate as Charles Ponzi. In fact, all the households would react in this
way. Thus, path II would not be realized and the expectation that it would, can
not be a rational expectation.
Likewise, an initial point below point A can be ruled out because the implied

path of type III does not satisfy the household’s transversality condition but
implies over-saving. Indeed, at some point in the future, say at time t1, the
economy’s effective capital-labor ratio would pass the golden rule value so that
for all t > t1, rt < g + n. But with a rate of interest permanently below the
growth rate of wage income of the household, the present value of human wealth
is infinite. This motivates a higher consumption level than that along the path.
Thus, if the household expects an evolution of rt and wt corresponding to path
III, then the household will immediately deviate and choose a higher initial level
of consumption. But so will all the households react and the expectation that
the economy will follow path III can not be rational.
We have presumed 0 < k̃0 < k̃∗. If instead k̃0 > k̃∗, the economy would move

along the saddle path from above. Paths like V I and V in Fig. 10.2 can be ruled
out because they violate the transversality condition and the NPG condition,
respectively (in fact, violating the NPG implies violating the TVC as well). With
this we have shown:

PROPOSITION 1 Assume (A1) and (A2). Let there be a given k̃0 > 0. Then
the Ramsey model exhibits a unique equilibrium path, characterized by (k̃t, c̃t)

17This is shown in Appendix C.
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converging, for t → ∞, toward a unique steady state with an effective capital-
labor ratio, k̃∗, satisfying f ′(k̃∗)− δ = ρ+ θg. In the steady state the real interest
rate is given by the modified-golden-rule formula, r∗ = ρ + θg, the per capita
consumption path is c∗t = c̃∗T0e

gt, where c̃∗ = f(k̃∗)− (δ + g + n)k̃∗, and the real
wage path is w∗t = w̃(k̃∗)T0e

gt.

A numerical example based on one year as the time unit: g = 0.02, n = 0.01,
θ = 2, and ρ = 0.01. Then, r∗ = 0.05 > 0.03 = g + n.
So output per capita, yt ≡ Yt/Lt ≡ ỹtTt, tends to grow at the rate of techno-

logical progress, g :

ẏt
yt
≡

·
ỹt
ỹt

+
Ṫt
Tt

=
f ′(k̃t)

·
k̃t

f(k̃t)
+ g → g for t→∞,

in view of
·
k̃t → 0 combined with limt→∞ f ′(k̃t)/f(k̃t) = f ′(k̃∗)/f(k̃∗). This is

also true for the growth rate of consumption per capita and the real wage, since
ct ≡ c̃tTt and wt = w̃(k̃t)Tt.
The intuition behind the convergence lies in the neoclassical principle of di-

minishing marginal productivity of capital. Starting from a low effective capital-
labor ratio and therefore a high marginal and average productivity of capital, the
resulting high aggregate saving18 will be more than enough to maintain the ef-
fective capital-labor ratio which therefore increases. But when this happens, the
marginal and average productivity of capital decreases and the resulting saving,
as a proportion of the capital stock, declines until eventually it is only suffi cient
to replace worn-out machines and equip new “effective”workers with enough ma-
chines to just maintain the effective capital-labor ratio. If instead we start from a
high effective capital-labor, a similar story can be told in reverse. In the long run
the effective capital-labor ratio settles down at the steady-state level, k̃∗, where
the marginal saving and investment yields a return as great as the representative
household’s willingness to postpone the marginal unit of consumption. Since the
adjustment process is based on capital accumulation, the process is slow. The
“speed of adjustment”, in the sense of the proportionate rate of decline per year
of the distance to the steady state,

∣∣∣k̃ − k̃∗∣∣∣ , is generally assessed to be in the
interval (0.02, 0.10), assuming absence of disturbances to the system during the
adjustment.
The equilibrium path generated by the Ramsey model is necessarily dynam-

ically effi cient and satisfies the modified golden rule in the long run. Why is
there this contrast to Diamonds OLG model where equilibrium paths may be

18Saving will be high because the negative substitution and wealth effects on current con-
sumption of the high interest rate dominate the income effect.
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dynamically ineffi cient? The reason lies in the fact that only a “single infinity”,
not a “double infinity”, is present in the Ramsey model. The time horizon of
the economy is infinite but the number of decision makers is finite. Births (into
adult life) do not reflect the emergence of new economic agents with separate
interests. In the OLG model, however, births imply entrance of new economic
decision makers whose preferences no-one cared about in advance. In that model
neither is there any final date, nor any final decision maker. Because of this
difference, in several respects the two models give different results. A type of
equilibria, namely dynamically ineffi cient ones, can be realized in the Diamond
model but not so in the Ramsey model. A rate of time preference low enough to
generate a tendency to a long-run interest rate below the income growth rate is
inconsistent with existence of general equilibrium in the Ramsey model. It was
precisely with the aim of ruling out such a low rate of impatience that we imposed
the parameter restriction (A1) above.

The concept of saddle-point stability

The steady state of the model is globally asymptotically stable for arbitrary initial
values of the effective capital-labor ratio (the phase diagram only verifies local
asymptotic stability, but the extension to global asymptotic stability is verified
in Appendix A). If k̃ is hit by a shock at time 0 (say by a discrete jump in the
technology level T0), the economy will converge toward the same unique steady
state as before. At first glance this might seem peculiar considering that the
steady state is a saddle point. Such a steady state is unstable for arbitrary values
of both coordinates of the initial point (k̃0, c̃0). But the crux of the matter is that
it is only the initial k̃ that is arbitrary. The model assumes that the decision
variable c0, and therefore the value of c̃0 ≡ c0/T0, immediately adjusts to the new
situation. That is, the model assumes that c̃0 always takes the value needed for
the household’s transversality condition under perfect foresight to be satisfied.
This ensures that the economy is initially on the saddle path, cf. the point A
in Fig. 10.2. In the language of differential equations conditional asymptotic
stability is present. The condition that transform the conditional stability to
actual stability is the transversality condition.
We shall follow the common terminology in macroeconomics and call a steady

state of a two-dimensional dynamic system (locally) saddle-point stable if:

1. the steady state is a saddle point;

2. one of the two endogenous variables is predetermined while the other is a
jump variable;
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3. at least close to the steady state, the saddle path is not parallel to the
jump-variable axis;

4. there is a boundary condition on the system such that the diverging paths
are ruled out as solutions.

To establish saddle-point stability, all four properties must be verified. If for
instance point 1 and 2 hold but, contrary to point 3, the saddle path is parallel to
the jump variable axis, then saddle-point stability does not obtain. Indeed, given
that the predetermined variable initially deviated from its steady-state value, it
would not be possible to find any initial value of the jump variable such that the
solution of the system would converge to the steady state for t→∞.
In the present case, we have already verified point 1 and 2. And as the phase

diagram indicates, the saddle path is not vertical. So also point 3 holds. The
transversality condition ensures that also point 4 holds. Thus, the Ramsey model
is saddle-point stable. In Appendix A it is shown that the positively-sloped saddle
path in Fig. 10.2 ranges over all k̃ > 0 (there is nowhere a vertical asymptote
to the saddle path). Hence, the steady state is globally saddle-point stable. All
in all, these characteristics of the Ramsey model are analogue to those of Barro’s
dynasty model in discrete time when the bequest motive is operative.

10.4 Comparative analysis

10.4.1 The role of key parameters

The conclusion that in the long run the real interest rate is given by the modified
golden rule formula, r∗ = ρ+ θg, tells us that only three parameters matter: the
rate of time preference, the elasticity of marginal utility, and the rate of techno-
logical progress. A higher ρ, i.e., more impatience and thereby less willingness
to defer consumption, implies less capital accumulation and thus in the long run
smaller effective capital-labor ratio, higher interest rate, and lower consumption
than otherwise. The long-run growth rate is unaffected.
A higher θ will have a similar effect, when g > 0. As θ is a measure of the

desire for consumption smoothing, a higher θ implies that a larger part of the
greater wage income in the future, reflecting technology growth, will be consumed
immediately. This implies less saving and thereby less capital accumulation and
so a lower k̃∗ and higher r∗. Similarly, the long-run interest rate will depend
positively on the technology growth rate g because the higher g is, the greater
is the expected future wage income. Thereby the consumption possibilities in
the future are greater even without any current saving. This discourages current
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saving and we end up with lower capital accumulation and lower effective capital-
labor ratio in the long run, hence higher interest rate. It is also true that the
higher is g, the higher is the rate of return needed to induce the saving required for
maintaining a steady state and resist the desire for more consumption smoothing.
The long-run interest rate is independent of the particular form of the aggre-

gate production function, f . This function matters for what effective capital-labor
ratio and what consumption level per unit of effective labor are compatible with
the long-run interest rate. This kind of results are specific to representative agent
models. This is because only in these models will the Keynes-Ramsey rule hold
not only for the individual household, but also at the aggregate level.
Unlike the Solow growth model, the Ramsey model provides a theory of the

evolution and long-run level of the saving-income ratio. The endogenous saving-
income ratio of the economy is

st ≡
Yt − Ct
Yt

=
K̇t + δKt

Yt
=
K̇t/Kt + δ

Yt/Kt

=

·
k̃t/k̃t + g + n+ δ

f(k̃t)/k̃t

→ g + n+ δ

f(k̃∗)/k̃∗
≡ s∗ for t→∞. (10.38)

By determining the path of k̃t, the Ramsey model determines how st moves over
time and adjusts to its constant long-run level. Indeed, for any given k̃ > 0,
the equilibrium value of c̃t is uniquely determined by the requirement that the
economy must be on the saddle path. Since this defines c̃t as a function, c̃(k̃t),
of k̃t, there is a corresponding function for the saving-income ratio in that st
= 1− c̃(k̃t)/f(k̃t) ≡ s(k̃t). So s(k̃∗) = s∗.

We note that the long-run saving-income ratio is a decreasing function of the
rate of impatience, ρ, and the desire of consumption smoothing, θ. The ratio is an
increasing function of the capital depreciation rate, δ, and the rate of population
growth, n.
For an example with an explicit formula for the long-run saving-income ratio,

consider:

EXAMPLE 1 Suppose the production function is Cobb-Douglas:

ỹ = f(k̃) = Ak̃α, A > 0, 0 < α < 1. (10.39)

Then f ′(k̃) = Aαk̃α−1 = αf(k̃)/k̃. In steady state we get, by use of the steady-
state result (10.34),

f(k̃∗)

k̃∗
=

1

α
f ′(k̃∗) =

δ + ρ+ θg

α
.
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Substitution in (10.38) gives

s∗ = α
δ + g + n

δ + ρ+ θg
< α, (10.40)

where the inequality follows from our parameter restriction (A1). Indeed, (A1)
implies ρ + θg > g + n. The long-run saving-income ratio depends positively
on the following parameters: the elasticity of production w.r.t. to capital, α,
the capital depreciation rate, δ, and the population growth rate, n. The long-
run saving-income ratio depends negatively on the rate of impatience, ρ, and the
desire for consumption smoothing, θ. The role of the rate of technological progress
is ambiguous.19

A numerical example (time unit = 1 year): If n = 0.005, g = 0.015, ρ = 0.025,
θ = 3, and δ = 0.07, then s∗ = 0.21. With the same parameter values except δ
= 0.05, we get s∗ = 0.19.
It can be shown (see Appendix D) that if, by coincidence, θ = 1/s∗, then

s′(k̃) = 0, that is, the saving-income ratio st is also outside of steady state equal
to s∗. In view of (10.40), the condition θ = 1/s∗ is equivalent to the “knife-
edge” condition θ = (δ + ρ)/ [α(δ + g + n)− g] ≡ θ̄. More generally, assuming
α(δ + g + n) > g (which seems likely empirically), we have that if θ Q 1/s∗ (i.e.,
θ Q θ̄), then s′(k̃) Q 0, respectively (and if instead α(δ + g + n) ≤ g, then s′(k̃)
< 0, unconditionally).20 Data presented in Barro and Sala-i-Martin (2004, p. 15)
indicate no trend for the US saving-income ratio, but a positive trend for several
other developed countries since 1870. One interpretation is that whereas the US
has for a long time been close to its steady state, the other countries are still
in the adjustment process toward the steady state. As an example, consider the
parameter values δ = 0.05, ρ = 0.02, g = 0.02 and n = 0.01. In this case we get
θ̄ = 10 if α = 0.33; given θ < 10, these other countries should then have s′(k̃) < 0
which, according to the model, is compatible with a rising saving-income ratio
over time only if these countries are approaching their steady state from above
(i.e., they should have k̃0 > k̃∗). It may be argued that α should also reflect the
role of education and R&D in production and thus be higher; with α = 0.75 we
get θ̄ = 1.75. Then, if θ > 1.75, these countries would have s′(k̃) > 0 and thus
approach their steady state from below (i.e., k̃0 < k̃∗). �

10.4.2 Special case: Solow’s growth model∗

The above results give a hint that Solow’s growth model, with a given constant
saving-income ratio s ∈ (0, 1) and given δ, g, and n (with δ +g+n > 0), can, under
19Partial differentiation w.r.t. g yields ∂s∗/∂g = α [ρ− θn− (θ − 1)δ] /(δ+ρ+θg)2, the sign

of which cannot be determined a priori.
20See Appendix D.
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certain circumstances, be interpreted as a special case of the Ramsey model. The
Solow model in continuous time is given by

·
k̃t = sf(k̃t)− (δ + g + n)k̃t.

The constant saving-income ratio implies proportionality between consumption
and income. In growth-corrected terms per capita consumption is

c̃t = (1− s)f(k̃t).

For the Ramsey model to yield this, the production function must be like in
(10.39) (i.e., Cobb-Douglas) with α > s. And the elasticity of marginal utility, θ,
must satisfy θ = 1/s. Finally, the rate of time preference, ρ, must be such that
(10.40) holds with s∗ replaced by s, which implies ρ = α(δ + g + n)/s −δ −θg.
It remains to show that this ρ satisfies the inequality, ρ− n > (1− θ)g, which is
necessary for existence of an equilibrium in the Ramsey model. Since α/s > 1,
the chosen ρ satisfies ρ > δ+g+n −δ −θg = n+(1−θ)g, which was to be proved.
Thus, in this case the Ramsey model generates an equilibrium path which implies
an evolution identical to that generated by the Solow model with s = 1/θ.21

With this foundation of the Solow model, it will always hold that s = s∗ <
sGR, where sGR is the golden rule saving-income ratio. Indeed, from (10.38) and
(10.32), respectively,

sGR =
(δ + g + n)k̃GR

f(k̃GR)
=
f ′(k̃GR)k̃GR

f(k̃GR)
= α > s∗,

from the Cobb-Douglas specification and (10.40), respectively.
A point of the Ramsey model vis-a-vis the Solow model is to replace a me-

chanical saving rule by maximization of discounted utility and thereby, on the one
hand, open up for (i) a wider range of possible evolutions; (ii) welfare analysis;
and (iii) analysis of incentive effects of economic policy on households’saving.
On the other hand, in some respects the Ramsey model narrows down the range
of possibilities, for example by unconditionally ruling out over-accumulation (dy-
namic ineffi ciency).

10.5 A social planner’s problem

Another implication of the Ramsey framework is that the decentralized market
equilibrium (within the idealized presumptions of the model) brings about the
same allocation of resources as would a social planner facing the same technology
and initial resources as described above and having the same criterion function
as the representative household.
21A proof is given in Appendix D.
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10.5.1 The equivalence theorem

As in Chapter 8, by a social planner we mean a hypothetical central authority
who is ”all-knowing and all-powerful”and is constrained only by the limitations
arising from technology and initial resources. Within these confines the social
planner can fully decide on the resource allocation. Since we consider a closed
economy, the social planner has no access to an international loan market.
Let the economy be closed and let the social welfare function be time separable

with constant elasticity, θ̂, of marginal utility and a pure rate of time preference
ρ̂.22 Then the social planner’s optimization problem is

max
(ct)∞t=0

W0 =

∫ ∞
0

c1−θ̂
t

1− θ̂
e−(ρ̂−n)tdt s.t. (10.41)

ct ≥ 0, (10.42)
·
k̃t = f(k̃t)−

ct
Tt
− (δ + g + n)k̃t, (10.43)

k̃t ≥ 0 for all t ≥ 0. (10.44)

We assume θ̂ > 0 and ρ̂ − n > (1 − θ̂)g in line with the assumption (A1) for
the market economy above. In case θ̂ = 1, the expression c1−θ̂

t /(1 − θ̂) should
be interpreted as ln ct. No market prices or other elements belonging to the spe-
cific market institutions of the economy enter the social planner’s problem. The
dynamic constraint (10.43) reflects the national product account. Because the
economy is closed, the social planner does not have the opportunity of borrowing
or lending from abroad. Hence there is no solvency requirement. Instead we just
impose the definitional constraint (10.44) of non-negativity of the state variable
k̃.
The social planner’s problem is to select, within the technically feasible paths,

the one that maximizes the value of the social welfare function W0. The problem
is a continuous time analogue of the social planner’s problem in discrete time
in Chapter 8. Note, however, a minor conceptual difference, namely that in
continuous time there is in the short run no upper bound on the flow variable ct,
that is, no bound like ct ≤ Tt

[
f(k̃t)− (δ + g + n)k̃t

]
. A consumption intensity

ct which is higher than the right-hand side of this inequality will just be reflected

in a negative value of the flow variable
·
k̃t.

23

22Possible reasons for allowing these two preference parameters to deviate from the corre-
sponding parameters in the private sector were discussed in Chapter 8.1.1.
23As usual we presume that capital can be “eaten”. That is, we consider the capital good to

be instantaneously convertible to a consumption good. Otherwise there would be at any time
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To solve the problem we apply the Maximum Principle. The current-value
Hamiltonian is

H(k̃, c, λ, t) =
c1−θ̂

1− θ̂
+ λ

[
f(k̃)− c

T
− (δ + g + n)k̃

]
,

where λ is the adjoint variable associated with the dynamic constraint (10.43).
An interior optimal path (k̃t, ct)

∞
t=0 will satisfy that there exists a continuous

function λ = λ(t) such that, for all t ≥ 0,

∂H

∂c
= c−θ̂ − λ

T
= 0, i.e., c−θ̂ =

λ

T
, and (10.45)

∂H

∂k̃
= λ(f ′(k̃)− δ − g − n) = (ρ̂− n)λ− λ̇ (10.46)

hold along the path. Finally, in the present problem the “standard”transversality
condition,

lim
t→∞

k̃tλte
−(ρ̂−n)t = 0, (10.47)

is necessary for optimality, when ρ̂− n > (1− θ̂)g, as assumed above.24
The condition (10.45) can be seen as a MC = MB condition and illustrates

that λt is the social planner’s shadow price, measured in terms of current utility,
of k̃t along the optimal path.25 The differential equation (10.46) tells us how this
shadow price evolves over time. The transversality condition, (10.47), together
with (10.45), entails the condition

lim
t→∞

k̃tc
−θ̂
t egte−(ρ̂−n)t = 0,

where the unimportant factor T0 has been eliminated. Imagine the opposite were
true, namely that limt→∞ k̃tc

−θ̂
t e[g−(ρ̂−n)]t > 0. Then, intuitively U0 could be

increased by reducing the long-run value of k̃t, i.e., consume more and save less.
By taking logs in (10.45) and differentiating w.r.t. t, we get −θ̂ċ/c = λ̇/λ− g.

Inserting (10.46) and rearranging gives the condition

ċ

c
=

1

θ̂
(g − λ̇

λ
) =

1

θ̂
(f ′(k̃)− δ − ρ̂). (10.48)

an upper bound on c, namely c ≤ Tf(k̃), saying that the per capita consumption flow cannot
exceed the per capita output flow. The role of such constraints is discussed in Feichtinger and
Hartl (1986).
24See Appendix E.
25Decreasing ct by one unit, increases k̃t by 1/Tt units, each of which are worth λt utility

units to the social planner.
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This is the social planner’s Keynes-Ramsey rule. If the rate of time preference, ρ̂,
is lower than the net marginal productivity of capital, f ′(k̃)−δ, the social planner
will let per capita consumption be relatively low in the beginning in order to attain
greater per capita consumption later. The lower the impatience relative to the
return to capital, the more favorable it becomes to defer consumption.
Because c̃ ≡ c/T, we get from (10.48) qualitatively the same differential equa-

tion for c̃ as we obtained in the decentralized market economy. And the dynamic
resource constraint (10.43) is of course identical to that of the decentralized mar-
ket economy. Thus, the dynamics are in principle unaltered and the phase dia-
gram in Fig. 10.2 is still valid. The solution of the social planner implies that the
economy will move along the saddle path toward the steady state. This trajectory,
path I in the diagram, satisfies both the first-order conditions and the transver-
sality condition. However, paths such as III in the figure do not satisfy the
transversality condition of the social planner but imply permanent over-saving.
And paths such as II in the figure will experience a sudden end when all the cap-
ital has been used up. Intuitively, they cannot be optimal. A rigorous argument
is given in Appendix E, based on the fact that the Hamiltonian is strictly concave
in (k̃, c̃). Thence, not only is the saddle path an optimal solution, it is the unique
optimal solution.
Comparing with the market solution of the previous section, we have estab-

lished:

PROPOSITION 2 (equivalence theorem) Consider an economy with neoclassical
CRS technology and a representative infinitely-lived household with preferences
as in (10.3) with u(c) = c1−θ/(1 − θ). Assume (A1) and (A2). Let there be a
given k̃0 > 0. Then a perfectly competitive market economy brings about the
same resource allocation as that brought about by a social planner with the same
criterion function as the representative household, i.e., with θ̂ = θ and ρ̂ = ρ.

This is a continuous time analogue to the discrete time equivalence theorem of
Chapter 8.
The effective capital-labor ratio k̃ in the social planner’s solution will not

converge toward the golden rule level, k̃GR, but toward a level whose distance to
the golden rule level depends on how much ρ̂ + θ̂g exceeds the natural growth
rate, g + n. Even if society would be able to consume more in the long term if it
aimed for the golden rule level, this would not compensate for the reduction in
current consumption which would be necessary to achieve it. This consumption
is relatively more valuable, the greater is the social planner’s effective rate of time
preference, ρ̂− n. In line with the market economy, the social planner’s solution
ends up in a modified golden rule. In the long term, net marginal productivity
of capital is determined by preference parameters and productivity growth and
equals ρ̂+θ̂g > g+n. Hereafter, given the net marginal productivity of capital, the
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effective capital-labor ratio and the level of the consumption path is determined
by the production function.

Varieties of generational discounting* In the above analysis the social plan-
ner maximizes the sum of discounted per capita utilities weighted by generation
size. This implies utilitaristic discounting. The effective utility discount rate,
ρ− n, varies negatively (one to one) with the population growth rate. Since this
corresponds to how the per capita rate of return on saving, r − n, is “diluted”
by population growth, the net marginal productivity of capital in steady state
becomes independent of n, namely equal to ρ̂+ θ̂g.
Some textbooks, Blanchard and Fischer (1989) for instance, let the social

planner maximize the sum of discounted per capita utilities without weighting
by generation size. Then the effective utility discount rate is independent of the
population growth rate, n. With ρ̂ still denoting the pure rate of time preference,
the criterion function becomes

W0 =

∫ ∞
0

ct
1−θ̂

1− θ̂
e−ρ̂tdt.

The social planner’s solution then converges toward a steady state with net mar-
ginal productivity of capital equal to

f ′(k̃∗)− δ = ρ̂+ n+ θ̂g. (10.49)

Here, an increase in n will imply higher long-run net marginal productivity of
capital and lower effective capital-labor ratio, everything else equal.
The representative household in the market economy described by a Ramsey

model may of course also have a criterion function in line with this, that is, U0

=
∫∞

0
u(ct)e

−ρtdt. Then, the interest rate in the economy will in the long run be
r∗ = ρ+ n+ θg and so an increase in n will increase r∗ and decrease k̃∗.
The more common approach is the utilitaristic accounting, which may be

based on the argument: “if more people benefit, so much the better”.

10.5.2 Ramsey’s original zero discount rate and the over-
taking criterion*

It was mostly the perspective of a social planner, rather than the market mecha-
nism, which was at the center of Ramsey’s original analysis (Ramsey, 1928). The
case considered by Ramsey has g = n = 0. Ramsey maintained that the social
planner should “not discount later enjoyments in comparison with earlier ones,
a practice which is ethically indefensible and arises merely from the weakness of

c© Groth, Lecture notes in macroeconomics, (mimeo) 2016.



430
CHAPTER 10. THE BASIC REPRESENTATIVE AGENT

MODEL: RAMSEY

the imagination”(Ramsey 1928). So Ramsey has ρ − n = ρ = 0. Given the in-
stantaneous utility function, u, where u′ > 0, u′′ < 0, and given ρ = 0, Ramsey’s
original problem was: choose (ct)

∞
t=0 so as to optimize (in some sense, see below)

W0 =

∫ ∞
0

u(ct)dt s.t.

ct ≥ 0,

k̇t = f(kt)− ct − δkt,
kt ≥ 0 for all t ≥ 0.

A condition corresponding to our assumption (A1) above does not apply.
So the improper integral W0 will generally not be bounded26 and Ramsey can
not use maximization of W0 as an optimality criterion. Instead he considers a
criterion akin to the overtaking criterion we considered in a discrete time context
in Chapter 8. We only have to reformulate this criterion for a continuous time
setting.
Let (ct)

∞
t=0 be the consumption path associated with an arbitrary technically

feasible path and let (ĉt) be the consumption path associated with our candidate
as an optimal path, that is, the path we wish to test for optimality. Define

DT ≡
∫ T

0

u(ĉt)dt−
∫ T

0

u(ct)dt. (10.50)

Then the feasible path (ĉt)
∞
t=0 is overtaking optimal, if for any feasible path,

(ct)
∞
t=0, there exists a number T

′ ≥ 0 such that DT ≥ 0 for all T ≥ T ′. That is,
if for every alternative feasible path, the candidate path has from some date on,
cumulative utility up to all later dates at least as great as that of the alternative
feasible path, then the candidate path is overtaking optimal.
We say that the candidate path is weakly preferred in case we just know that

DT ≥ 0 for all T ≥ T ′. If DT ≥ 0 can be replaced by DT > 0, we say it is strictly
preferred.27

Optimal control theory is also applicable for this criterion. The current-value
HamiItonian is

H(k, c, λ, t) = u(c) + λ [f(k)− c− δk] .

The Maximum Principle states that an interior overtaking-optimal path will sat-
isfy that there exists an adjoint variable λ such that for all t ≥ 0 it holds along

26Suppose for instance that ct → c̄ for t → ∞. Then
∫∞
0
u(ct)dt = ±∞ for u(c̄) ≷ 0,

respectively.
27A slightly more generally applicable optimality criterion is the catching-up criterion. The

meaning of this criterion in continuous time is analogue to its meaning in discrete time, cf.
Chapter 8.3. The overtaking as well as the catching-up criterion entail generally only a partial
ordering of alternative technically feasible paths.
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this path that

∂H

∂c
= u′(c)− λ = 0, and (10.51)

∂H

∂k
= λ(f ′(k)− δ) = −λ̇. (10.52)

Since ρ = 0, the Keynes-Ramsey rule reduces to

ċt
ct

=
1

θ(ct)
(f ′(kt)− δ), where θ(c) ≡ − c

u′(c)
u′′(c).

One might conjecture that also the transversality condition,

lim
t→∞

ktλt = 0, (10.53)

is necessary for optimality but, as we will see below, this turns out to be wrong
in this case with no discounting.
Our assumption (A2’) here reduces to limk→0 f

′(k) > δ > limk→∞ f
′(k) (which

requires δ > 0). Apart from this, the phase diagram is fully analogue to that in
Fig. 10.2, except that the steady state, E, is now at the top of the k̇ = 0 curve.
This is because in steady state, f ′(k∗)− δ = 0. This equation also defines kGR in
this case. It can be shown that the saddle path is again the unique solution to
the optimization problem (the method is essentially the same as in the discrete
time case of Chapter 8). The intuitive background is that failing to approach the
golden rule would imply a forgone “opportunity of infinite gain”.
A noteworthy feature is that in this case the Ramsey model constitutes a

counterexample to the widespread presumption that an optimal plan with infinite
horizon must satisfy a transversality condition like (10.53). Indeed, by (10.51),
λt = u′(ct) → u′(c∗) for t → ∞ along the overtaking-optimal path (the saddle
path). Thus, instead of (10.53), we get

lim
t→∞

ktλt = k∗u′(c∗) > 0.

With CRRA utility it is straightforward to generalize these results to the case
g ≥ 0, n ≥ 0 and ρ̂ − n = (1 − θ̂)g. The social planner’s overtaking-optimal
solution is still the saddle path approaching the golden rule steady state. And
this solution violates the seemingly “natural” transversality condition, (10.47),
which is necessary for optimality when ρ̂− n > (1− θ̂)g, as in Section 10.5.1.
Note also that with zero effective utility discounting, there can not be equi-

librium in the market economy version of this story. The real interest rate would
in the long run be zero and thus the human wealth of the infinitely-lived house-
hold would be infinite. But then the demand for consumption goods would be
unbounded and equilibrium thus be impossible.
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10.6 Concluding remarks

The Ramsey model has played an important role as a way of structuring econo-
mists’ thoughts about an array of macrodynamic phenomena. The popularity
of the model probably derives from the fact that is allows taking microeconomic
principles into account without worrying about the usual aggregation problems
when going from micro to macro.
As illustrated in Fig. 10.3, the Ramsey model can be seen as situated at

one end of a line segment where the Diamond OLG model is situated at the op-
posite end. Both models build on idealized assumptions. The Diamond model
ignores any bequest motive and emphasizes life-cycle behavior and heterogeneity
in the population. The Ramsey model implicitly assumes an altruistic bequest
motive which is always operative and which turns households into homogeneous,
infinitely-lived agents. In this way the Ramsey model ends up as an easy-to-
apply framework, suggesting inter alia a clear-cut theory of the level of the real
interest rate in the long run − the modified golden rule. Although this theory
finds little empirical support (Hamilton et al., 2016), it facilitates general equi-
librium analysis of an array of dynamic problems. The next chapter discusses
some examples: effects of unanticipated and anticipated changes in taxation and
endogenous growth theory.
The assumption of a representative household is a main limitation. The lack

of heterogeneity in the model’s population of households implies a danger that
important interdependencies between different classes of agents are unduly ne-
glected. For some problems these interdependencies may be of only secondary
importance, but they are crucial for others (for instance, issues concerning public
debt or interaction between private debtors and creditors). On the other hand,
as Caselli and Ventura (2000) have shown, it is possible to extend the Ramsey
model so as to allow heterogeneity in the population with respect to initial finan-
cial wealth and labor productivity. But regarding preferences only very limited
heterogeneity can be embraced by the Ramsey model.
Another disputed feature of the model is that it endows the households with

an extreme amount of information about the future. Solow (1990, p. 221) warns
against overly reliance on saddle-point stability in the analysis of a market econ-
omy:

“The problem is not just that perfect foresight into the indefinite future
is so implausible away from steady states. The deeper problem is that in
practice − if there is any practice − miscalculations about the equilibrium
path may not reveal themselves for a long time. The mistaken path gives
no signal that it will be ”ultimately“ infeasible. It is natural to comfort
oneself: whenever the error is perceived there will be a jump to a better
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approximation to the converging arm. But a large jump may be required.
In a decentralized economy it will not be clear who knows what, or where
the true converging arm is, or, for that matter, exactly where we are now,
given that some agents (speculators) will already have perceived the need
for a mid-course correction while others have not. This thought makes it
hard even to imagine what a long-run path would look like. It strikes me
as more or less devastating for the interpretation of quarterly data as the
solution of an infinite time optimization problem.”

As we saw in Section 10.5.2, Ramsey’s original analysis (Ramsey 1928) dealt
with a social planner’s infinite horizon optimal control problem. In that opti-
mization problem there are well-defined shadow prices, as implied by an explicit
social welfare function. In a decentralized market economy, however, there are
a multitude of both agents and prices and no god-like auctioneer to ensure that
the long-term price expectations coincide with the long-term shadow prices in the
social planner’s optimal control problem.

Fig. 10.3 about here (not yet available)

While the Ramsey and the Diamond model are polar cases along the line
segment in Fig. 10.3, less abstract macro models are scattered between these
poles, some being closer to one pole than to the other. Sometimes a given model
open up for alternative regimes, one close to Ramsey’s pole, another close to
Diamond’s. An example is Robert Barro’s model with parental altruism discussed
in Chapter 7. When the bequest motive in the Barro model is operative, the model
coincides with a Ramsey model (in discrete time) as was shown in Chapter 8.
But when the bequest motive is not operative, the Barro model coincides with
a Diamond OLG model. This conditionality “places” the Barro model in the
interior of the line segment, but in practice closer to Ramsey’s pole than to
Diamond’s. model
Blanchard’s OLG model in continuous time (to be analyzed and used in chap-

ters 12, 13, and 15) also belongs to the interior of the line segment, but closer to
Diamond’s pole than to Ramsey’s.

10.7 Literature notes

1. Frank Ramsey (1903-1930) died at the age of 26 but he managed to publish
several path-breaking articles in economics. Ramsey discussed economic issues
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with, among others, John Maynard Keynes. In an obituary published in the Eco-
nomic Journal (March 1932) after Ramsey’s death, Keynes described Ramsey’s
article about the optimal savings as “one of the most remarkable contributions to
mathematical economics ever made, both in respect of the intrinsic importance
and diffi culty of its subject, the power and elegance of the technical methods
employed, and the clear purity of illumination with which the writer’s mind is
felt by the reader to play about its subject”.
2. The version of the Ramsey model we have considered is in accordance with

the general tenet of neoclassical preference theory: saving is motivated only by
higher consumption in the future. Extended versions assume that accumulation of
wealth is to some extend an end in itself or perhaps motivated by a desire for social
prestige and economic and political power rather than consumption. In Kurz
(1968b) an extended Ramsey model is studied where wealth is an independent
argument in the instantaneous utility function.
Also Tournemaine and Tsoukis (2008) and Long and Shimomura (2004).
3. The equivalence in the Ramsey model between the decentralized market

equilibrium and the social planner’s solution can be seen as an extension of the
first welfare theorem as it is known from elementary textbooks, to the case where
the market structure stretches infinitely far out in time, and the finite number of
economic agents (family dynasties) face an infinite time horizon: in the absence of
externalities etc., the allocation of resources under perfect competition will lead
to a Pareto optimal allocation. The Ramsey model is indeed a special case in that
all households are identical. But the result can be shown in a far more general
setup, cf. Debreu (1954). The result, however, does not hold in overlapping
generations models where an unbounded sequence of new generations enter and
the “interests”of the new households have not been accounted for in advance.
4. The simple counter-example to the “standard” necessary transversality

condition for an infinite horizon optimal control problem given in Section 10.5.2
was for a problem where the utility integral was not bounded from above. The op-
timality criterion was therefore not maximization but overtaking. But Sydsæter
et al. (2008) contains a counter-example for a problem where maximization is
the optimality criterion.

10.8 Appendix

A. Algebraic analysis of the dynamics around the steady state

To supplement the graphical approach of Section 10.3 with an exact analysis of
the adjustment dynamics of the model, we compute the Jacobian matrix for the
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system of differential equations (10.28) - (10.29):

J(k̃, c̃) =

 ∂
·
k̃/∂k̃ ∂

·
k̃/∂c̃

∂
·
c̃/∂k̃ ∂

·
c̃/∂c̃

 =

[
f ′(k̃)− (δ + g + n) − 1
1
θ
f ′′(k̃)c̃ 1

θ
(f ′(k̃)− δ − ρ+ θg)

]
.

Evaluated in the steady state this reduces to

J(k̃∗, c̃∗) =

[
ρ− n− (1− θ)g − 1
1
θ
f ′′(k̃∗)c̃∗ 0

]
This matrix has the determinant

1

θ
f ′′(k̃∗)c̃∗ < 0.

Since the product of the eigenvalues of the matrix equals the determinant, the
eigenvalues are real and opposite in sign.
In standard math terminology a steady-state point in a two dimensional

continuous-time dynamic system is called a saddle point if the associated eigen-
values are opposite in sign.28 For the present case we conclude that the steady
state is a saddle point. This mathematical definition of a saddle point is equiv-
alent to that given in the text of Section 10.3. Indeed, with two eigenvalues of
opposite sign, there exists, in a small neighborhood of the steady state, a stable
arm consisting of two saddle paths which point in opposite directions. From the
phase diagram in Fig. 10.2 we know that the stable arm has a positive slope.
At least for k̃0 suffi ciently close to k̃∗ it is thus possible to start out on a saddle
path. Consequently, there is a (unique) value of c̃0 such that (k̃t, c̃t)→ (k̃∗, c̃∗) for
t → ∞. Finally, the dynamic system has exactly one jump variable, c̃, and one
predetermined variable, k̃. It follows that the steady state is (locally) saddle-point
stable.
We claim that for the present model this can be strengthened to global saddle-

point stability. Indeed, for any k̃0 > 0, it is possible to start out on the saddle
path. For 0 < k̃0 ≤ k̃∗, this is obvious in that the extension of the saddle path
toward the left reaches the y-axis at a non-negative value of c̃∗. That is to say that
the extension of the saddle path cannot, according to the uniqueness theorem for
differential equations, intersect the k̃-axis for k̃ > 0 in that the positive part of
the k̃-axis is a solution of (10.28) - (10.29).29

28Note the difference compared to a discrete time system, cf. Appendix D of Chapter 8. In
the discrete time system we have next period’s k̃ and c̃ on the left-hand side of the dynamic
equations, not the increase in k̃ and c̃, respectively. Therefore, the criterion for a saddle point
looks different in discrete time.
29Because the extension of the saddle path towards the left in Fig. 10.1 can not intersect the

c̃-axis at a value of c̃ > f(0), it follows that if f(0) = 0, the extension of the saddle path ends
up in the origin.
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For k̃0 > k̃∗, our claim can be verified in the following way: suppose, contrary
to our claim, that there exists a k̃1 > k̃∗ such that the saddle path does not
intersect that region of the positive quadrant where k̃ ≥ k̃1. Let k̃1 be chosen as
the smallest possible value with this property. The slope, dc̃/dk̃, of the saddle
path will then have no upper bound when k̃ approaches k̃1 from the left. Instead
c̃ will approach ∞ along the saddle path. But then ln c̃ will also approach ∞
along the saddle path for k̃ → k̃1 (k̃ < k̃1). It follows that d ln c̃/dk̃ = (dc̃/dk̃)/c̃,
computed along the saddle path, will have no upper bound. Nevertheless, we
have

d ln c̃

dk̃
=
d ln c̃/dt

dk̃/dt
=

·
c̃/c̃
·
k̃

=
1
θ
(f ′(k̃)− δ − ρ− θg)

f(k̃)− c̃− (δ + g + n)k̃
.

When k̃ → k̃1 and c̃ → ∞ , the numerator in this expression is bounded, while
the denominator will approach −∞. Consequently, d ln c̃/dk̃ will approach zero
from above, as k̃ → k̃1. But this contradicts that d ln c̃/dk̃ has no upper bound,
when k̃ → k̃1. Thus, the assumption that such a k̃1 exists is false and our original
hypothesis holds true.

B. Boundedness of the utility integral

We claimed in Section 10.3 that if the parameter restriction

ρ− n > (1− θ)g (A1)

holds, then the utility integral, U0 =
∫∞

0
c1−θ

1−θ e
−(ρ−n)tdt, is bounded, from above

as well as from below, along the steady-state path, ct = c̃∗Tt. The proof is as
follows. Recall that θ > 0 and g ≥ 0. For θ 6= 1,

(1− θ)U0 =

∫ ∞
0

c1−θ
t e−(ρ−n)tdt =

∫ ∞
0

(c0e
gt)1−θe−(ρ−n)tdt

= c0

∫ ∞
0

e[(1−θ)g−(ρ−n)]tdt =
c0

ρ− n− (1− θ)g , (10.54)

which by (A1) is finite and positive since c0 > 0. If θ = 1, so that u(c) = ln c, we
get

U0 =

∫ ∞
0

(ln c0 + gt)e−(ρ−n)tdt, (10.55)

which is also finite, in view of (A1) implying ρ−n > 0 in this case (the exponential
term, e−(ρ−n)t, declines faster than the linear term gt increases). It follows that
also any path converging to the steady state will entail bounded utility, when
(A1) holds.

c© Groth, Lecture notes in macroeconomics, (mimeo) 2016.



10.8. Appendix 437

On the other hand, suppose that (A1) does not hold, i.e., ρ − n ≤ (1 − θ)g.
Then by the third equality in (10.54) and c0 > 0 follows that (1 − θ)U0 = ∞ if
θ 6= 0. If instead θ = 1, (10.55) implies U0 =∞.

C. The diverging paths

In Section 10.3 we stated that paths of types II and III in the phase diagram
in Fig. 10.2 can not be equilibria with perfect foresight. Given the expectation
corresponding to any of these paths, every single household will choose to deviate
from the expected path (i.e., deviate from the expected “average behavior”in the
economy). We will now show this formally.
We first consider a path of type III. A path of this type will not be able to reach

the horizontal axis in Fig. 10.2. It will only converge toward the point (
_

k̃, 0) for
t→∞. This claim follows from the uniqueness theorem for differential equations
with continuously differentiable right-hand sides. The uniqueness implies that
two solution curves cannot intersect. And we see from (10.29) that the positive
part of the x-axis is from a mathematical point of view a solution curve (and

the point (
_

k̃, 0) is a trivial steady state). This rules out another solution curve
hitting the x-axis.

The convergence of k̃ toward
_

k̃ implies limt→∞ rt = f ′(
_

k̃)− δ < g + n, where

the inequality follows from
_

k̃ > k̃GR. So,

lim
t→∞

ate
−
∫ t
0 (rs−n)ds = lim

t→∞
k̃te
−
∫ t
0 (rs−g−n)ds = lim

t→∞
k̃te
−
∫ t
0 (f ′(k̃s)−δ−g−n)ds =

_

k̃e∞ > 0.

(10.56)
Hence the transversality condition of the households is violated. Consequently,
the household will choose higher consumption than along this path and can do
so without violating the NPG condition.
Consider now instead a path of type II. We shall first show that if the economy

follows such a path, then depletion of all capital occurs in finite time. Indeed, in

the text it was shown that any path of type II will pass the
·
k̃ = 0 locus in Fig.

10.2. Let t0 be the point in time where this occurs. If path II lies above the
·
k̃

= 0 locus for all t ≥ 0, then we set t0 = 0. For t > t0, we have

·
k̃t = f(k̃t)− c̃t − (δ + g + n)k̃t < 0.

By differentiation w.r.t. t we get

··
k̃t = f ′(k̃t)

·
k̃t − ċt − (δ + g + n)

·
k̃t = [f ′(k̃t)− δ − g − n]

·
k̃t − ċt < 0,
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where the inequality comes from
·
k̃t < 0 combined with the fact that k̃t < k̃GR

implies f ′(k̃t) − δ > f ′(k̃GR) − δ = g + n. Therefore, there exists a t1 > t0 ≥ 0
such that

k̃t1 = k̃t0 +

∫ t1

t0

·
k̃tdt = 0,

as was to be shown. At time t1, k̃ cannot fall any further and c̃t immediately
drops to f(0) and stay there hereafter.
Yet, this result does not in itself explain why the individual household will

deviate from such a path. The individual household has a negligible impact on
the movement of k̃t in society and correctly perceives rt and wt as essentially
independent of its own consumption behavior. Indeed, the economy-wide k̃ is
not the household’s concern. What the household cares about is its own financial
wealth and budget constraint. In the perspective of the household nothing pre-
vents it from planning a negative financial wealth, a, and possibly a continuously
declining financial wealth, if only the NPG condition,

lim
t→∞

ate
−
∫ t
0 (rs−n)ds ≥ 0,

is satisfied.
But we can show that paths of type II will violate the NPG condition. The

reasoning is as follows. The household plans to follow the Keynes-Ramsey rule.
Given an expected evolution of rt and wt corresponding to path II, this will
imply a planned gradual transition from positive financial wealth to debt. The
transition to positive net debt, d̃t ≡ −ãt ≡ −at/Tt > 0, takes place at time t1
defined above.
The continued growth in the debt will meanwhile be so fast that the NPG

condition is violated. To see this, note that the NPG condition implies the re-
quirement

lim
t→∞

d̃te
−
∫ t
0 (rs−g−n)ds ≤ 0, (NPG)

that is, the productivity-corrected debt, d̃t, is allowed to grow in the long run
only at a rate less than the growth-corrected real interest rate. For t > t1 we get
from the accounting equation ȧt = (rt − n)at + wt − ct that

·
d̃t = (rt − g − n)d̃t + c̃t − w̃t > 0,

where d̃t > 0, rt > ρ + θg > g + n, and where c̃t grows exponentially according
to the Keynes-Ramsey rule, while w̃t is non-increasing in that k̃t does not grow.
This implies

lim
t→∞

·
d̃t

d̃t
≥ lim

t→∞
(rt − g − n),
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which is in conflict with (NPG).
Consequently, the household will choose a lower consumption path and thus

deviate from the reference path considered. Every household will do this and the
evolution of rt and wt corresponding to path II is thus not an equilibrium with
perfect foresight.
The conclusion is that all individual households understand that the only

evolution which can be expected rationally is the one corresponding to the saddle
path.

D. Constant saving-income ratio as a special case

As we noted in Section 10.4, Solow’s growth model can be seen as a special case
of the Ramsey model. Indeed, a constant saving-income ratio may, under certain
conditions, emerge as an endogenous result in the Ramsey model.
Let the rate of saving, (Yt − Ct)/Yt, be st. We have generally

c̃t = (1− st)f(k̃t), and so (10.57)

·
k̃t = f(k̃t)− c̃t − (δ + g + n)k̃t = stf(k̃t)− (δ + g + n)k̃t. (10.58)

In the Solow model the rate of saving is a constant, s, and we then get, by
differentiating with respect to t in (10.57) and using (10.58),

·
c̃t
c̃t

= f ′(k̃t)[s−
(δ + g + n)k̃t

f(k̃t)
]. (10.59)

By maximization of discounted utility in the Ramsey model, given a rate of
time preference ρ and an elasticity of marginal utility θ, we get in equilibrium

·
c̃t
c̃t

=
1

θ
(f ′(k̃t)− δ − ρ− θg). (10.60)

There will not generally exist a constant, s, such that the right-hand sides of
(10.59) and (10.60), respectively, are the same for varying k̃ (that is, outside
steady state). But Kurz (1968a) showed the following:

CLAIM Let δ, g, n, α, and θ be given. If the elasticity of marginal utility θ is
greater than 1 and the production function is ỹ = Ak̃α with α ∈ (1/θ, 1), then a
Ramsey model with ρ = θα(δ + g + n) −δ − θg will generate a constant saving-
income ratio s = 1/θ. Thereby the same resource allocation and transitional
dynamics arise as in the corresponding Solow model with s = 1/θ.
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Proof. Let 1/θ < α < 1 and f(k̃) = Ak̃α. Then f ′(k̃) = Aαk̃α−1. The right-hand-
side of the Solow equation, (10.59), becomes

Aαk̃α−1[s− (δ + g + n)k̃t

Ak̃α
] = sAαk̃α−1 − α(δ + g + n). (10.61)

The right-hand-side of the Ramsey equation, (10.60), becomes

1

θ
Aαk̃α−1 − δ + ρ+ θg

θ
.

By inserting ρ = θα(δ + g + n)− δ − θg, this becomes

1

θ
Aαk̃α−1 − δ + θα(δ + g + n)− δ − θg + θg

θ

=
1

θ
Aαk̃α−1 − α(δ + g + n). (10.62)

For the chosen ρ we have ρ = θα(δ + g + n) − δ − θg > n + (1 − θ)g, because
θα > 1 and δ+ g+ n > 0. Thus, ρ− n > (1− θ)g and existence of equilibrium in
the Ramsey model with this ρ is ensured. We can now make (10.61) and (10.62)
the same by inserting s = 1/θ. This also ensures that the two models require the

same k̃∗ to obtain a constant c̃ > 0. With this k̃∗, the requirement
·
k̃t = 0 gives

the same steady-state value of c̃ in both models, in view of (10.58). It follows
that (k̃t, c̃t) is the same in the two models for all t ≥ 0. �
On the other hand, maintaining ỹ = Ak̃α, but allowing ρ 6= θα(δ + g + n)

−δ − θg, so that θ 6= 1/s∗, then s′(k̃) 6= 0, i.e., the Ramsey model does not
generate a constant saving-income ratio except in steady state. Defining s∗ as in
(10.40) and θ̄ ≡ (δ + ρ)/ [α(δ + g + n)− g], we have: When α(δ + g + n) > g
(which seems likely empirically), it holds that if θ Q 1/s∗ (i.e., if θ Q θ̄), then
s′(k̃) Q 0, respectively; if instead α(δ + g + n) ≤ g, then θ < 1/s∗ and s′(k̃) < 0,
unconditionally. These results follow by considering the slope of the saddle path
in a phase diagram in the (k̃, c̃/f(k̃)) plane and using that s(k̃) = 1 − c̃/f(k̃),
cf. Exercise 10.?? The intuition is that when k̃ is rising over time (i.e., society is
becoming wealthier), then, when the desire for consumption smoothing is “high”
(θ “high”), the prospect of high consumption in the future is partly taken out as
high consumption already today, implying that saving is initially low, but rising
over time until it eventually settles down in the steady state. But if the desire
for consumption smoothing is “low”(θ “low”), saving will initially be high and
then gradually fall in the process toward the steady state. The case where k̃ is
falling over time gives symmetric results.
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E. The social planner’s solution

In the text of Section 10.5 we postponed some of the technical details. First, by
(A2), the existence of the steady state, E, and the saddle path in Fig. 10.2 is en-
sured. Solving the linear differential equation (10.46) gives λt = λ0e

−
∫ t
0 (f ′(k̃s)−δ−ρ̂−g)ds.

Substituting this into the transversality condition (10.47) gives

lim
t→∞

k̃te
−
∫ t
0 (f ′(k̃s)−δ−g−n)ds = 0, (10.63)

where we have eliminated the unimportant positive factor λ0 = c−θ̂0 T0 > 0.
The condition (10.63) is essentially the same as the transversality condition

(10.30) for the market economy and holds in the steady state, given the parameter
restriction ρ̂− n > (1− θ̂)g, which is analogue to (A1). Thus, (10.63) also holds
along the saddle path. Since we must have k̃ ≥ 0 for all t ≥ 0, (10.63) has the
form required by Mangasarian’s suffi ciency theorem. If we can show that the
Hamiltonian is jointly concave in (k̃, c) for all t ≥ 0, then the saddle path is a
solution to the social planner’s problem. And if we can show strict concavity, the
saddle path is the unique solution. We have:

∂H

∂k̃
= λ(f ′(k̃)− (δ + g + n)),

∂H

∂c
= c−θ̂ − λ

T
,

∂2H

∂k̃2
= λf ′′(k̃) < 0 (by λ = c−θ̂T > 0),

∂2H

∂c2
= −θ̂c−θ̂−1 < 0,

∂2H

∂k̃∂c
= 0.

So the leading principal minors of the Hessian matrix of H are

D1 = −∂
2H

∂k̃2
> 0, D2 =

∂2H

∂k̃2

∂2H

∂c2
−
(
∂2H

∂k̃∂c

)2

> 0.

Hence, H is strictly concave in (k̃, c) and the saddle path is the unique optimal
solution.
It also follows that the transversality condition (10.47) is a necessary optimal-

ity condition when the parameter restriction ρ̂ − n > (1 − θ̂)g holds. Note that
we have had to derive this conclusion in a different way than when solving the
household’s consumption/saving problem in Section 10.2. There we could appeal
to a link between the No-Ponzi-Game condition (with strict equality) and the
transversality condition to verify necessity of the transversality condition. But
that proposition does not cover the social planner’s problem where there is no
NPG condition.
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As to the diverging paths in Fig. 10.2, note that paths of type II (those paths
which, as shown in Appendix C, in finite time deplete all capital) can not be
optimal, in spite of the temporarily high consumption level. This follows from
the fact that the saddle path is the unique solution. Finally, paths of type III
in Fig. 10.2 behave as in (10.56) and thus violate the transversality condition
(10.47), as claimed in the text.

10.9 Exercises
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