
Chapter 14

Fixed capital investment and
Tobin’s q

The models considered so far (the OLG models as well as the representative agent
models) have ignored capital adjustment costs. In the closed-economy version
of the models aggregate investment is merely a reflection of aggregate saving
and appears in a “passive” way as just the residual of national income after
households have chosen their consumption. We can describe what is going on by
telling a story in which firms just rent capital goods owned by the households
and households save by purchasing additional capital goods. In these models
only households solve intertemporal decision problems. Firms merely demand
labor and capital services with a view to maximizing current profits. This may
be a legitimate abstraction in some contexts within long-run analysis. In short-
and medium-run analysis, however, the dynamics of fixed capital investment is
important. So a more realistic approach is desirable.
In the real world the capital goods used by a production firm are usually

owned by the firm itself rather than rented for single periods on rental markets.
One reason for this is that capital goods are often firm-specific, designed or at
least adapted to the firm in which they are an integrated part. The capital goods
are therefore generally worth more to the user than to others.
Tobin’s q-theory of investment (after the American Nobel laureate James To-

bin, 1918-2002) is an attempt to model these features. In this theory,

(a) firms make the investment decisions and install the purchased capital goods
in their own businesses with the aim of maximizing discounted expected
earnings in the future;

(b) there are certain adjustment costs associated with this investment: before
acquiring new capital goods there are planning and design costs, and along
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with the implementation of the investment decisions there are costs of in-
stallation of the new equipment, costs of reorganizing the plant, costs of
retraining workers to operate the new machines etc.;

(c) the adjustment costs are strictly convex in the sense that marginal adjust-
ment costs are increasing in the level of investment − think of adding a side
wing to a factory in a quarter of a year rather than a year.

The presence of capital adjustment costs fits well with the general notion
that in the short run, the capital costs of firms are fixed costs. We observe that
firms sometimes make losses. If all production costs were variable costs, this
would not happen. The assumption of strict convexity of the capital adjustment
costs captures the intuitive perception that to increase the capital stock by a
given amount is more costly when doing it fast rather than slowly. We avoid
the unrealistic picture of firms’ capital as a production factor that can move
instantaneously across firms and industries.
When faced with strictly convex installation costs, the optimizing firm has

to take the future into account. So firms’forward-looking expectations become
important. To smooth out the installation costs, the firm will adjust its capital
stock only gradually when new information arises. From an analytical point of
view, we thereby avoid the counter-factual implication in earlier chapters that the
capital stock in a small open economy with perfect mobility of goods and financial
capital is instantaneously adjusted when the interest rate in the world financial
market changes. Moreover, sluggishness in investment is what the data indicate.
Some empirical studies conclude that only a third of the difference between the
current and the “desired”capital stock tends to be covered within a year (Clark
1979).
The strictly convex adjustment costs assign investment decisions an active role

in a macroeconomic model. There will be both a well-defined saving decision and
a well-defined investment decision, separate from each other. Households decide
the saving, firms the physical capital investment; households accumulate financial
assets, firms accumulate physical capital. As a result, in a closed economy the
current and expected future interest rates have to adjust for aggregate demand
for goods (consumption plus investment) to match aggregate supply of goods.
The role of interest rate changes is no longer to clear a rental market for capital
goods.
Under certain conditions, to be described in Section 14.2, the theory leads to

a remarkably simple operational macroeconomic investment function, in which
the key variable explaining aggregate investment is the valuation of the firms by
the stock market relative to the replacement value of the firms’physical capital.
This link between asset markets and firms’aggregate investment is an appealing
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feature of Tobin’s q-theory.

14.1 Convex capital installation costs

Let the technology of a single firm be given by

Ỹ = F (K,L), (14.1)

where Ỹ , K, and L are “potential output”(to be explained), capital input, and
labor input per time unit, respectively, while F is a (jointly) concave neoclassical
production function. So we allow decreasing as well as constant returns to scale
(or a combination of locally CRS and locally DRS), whereas increasing returns
to scale is ruled out. Until further notice technological change is ignored for
simplicity.
Time is continuous. The dating of the variables will not be explicit unless

needed for clarity. The increase per time unit in the firm’s capital stock is given
by

K̇ = I − δK, δ > 0, K0 > 0, (14.2)

where I is gross fixed capital investment per time unit and δ is the rate of wearing
down of capital (physical capital depreciation). (To avoid having to concider
specialties arising when δ = 0, we rule this rare special case out.)
To fix the terminology, from now on the different adjustment costs associated

with investment will as a rule be subsumed under the term capital installation
costs. Let J denote these costs (measured in units of output) per time unit. The
installation costs imply that a part of the potential output, Ỹ , is “used up” in
transforming investment goods into installed capital (possibly simply forgone due
to interruptions of production during the process of installation). Only Ỹ − J is
output available for sale.
Assuming the price of investment goods is one (the same as that of output

goods), then total investment outlay per time unit are I + J, i.e., the direct
purchase price, 1 · I, plus the indirect cost, J, associated with installation. The
q-theory of investment assumes that the installation cost is a strictly convex
function of gross investment and a non-increasing function of the current capital
stock. Thus,

J = G(I,K),

where the installation cost function, G, is a C2 function satisfying

G(0, K) = 0, GI(0, K) = 0, GII(I,K) > 0, and GK(I,K) ≤ 0 (14.3)

for all pairs (I,K) with I R 0 and K ≥ 0, with the exception of pairs where I < 0
and K = 0. Negative gross investment (sell off of capital equipment) is possible,
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Figure 14.1: Installation costs as a function of gross investment when K = K̄.

but of course only when K > 0. The required dismantling and reorganization
involves adjustment costs, the more so the larger is |I| . Thus, GI < 0 for I < 0
whereas GII(I,K) > 0 for any I.
At the cost of some minor and uninteresting loss of generality, we add the

assumption that G is a (jointly) convex function of (I,K). This means that, in
addition to (14.3),

GKK ≥ 0 and GIIGKK − (GIK)2 ≥ 0 (14.4)

for all (I,K).1 Examples of G functions satisfying (14.3) and (14.4) are G(I,K)
= (1

2
)βI2/K as well as the simpler G(I,K) = (1

2
)βI2, where in both cases β > 0.

Although for instance G(I,K) = I2/K does not seem to fit the condition G(0, 0)
= 0, we define in this case G(0, 0) as limK→0+(0/K) = 0. The latter equality
holds in view of L’Hopital’s rule for “0/0”. Nevertheless, in the following we will
concentrate on investment in already established firms (K > 0). This is to avoid
complicating the analysis by discontinuities associated with start-up of firms.2

For fixed K = K̄ > 0, the properties of G are illustrated in Fig. 14.1.
The important property is that GII > 0 (strict convexity in I), implying that
the marginal installation cost is increasing in the level of investment. If the
firm wants to accomplish a given installation project in only half the time, then
the installation costs are more than doubled (the risk of mistakes is larger, the
problems with reorganizing work routines are larger etc.).
The strictly convex graph in Fig. 14.1 illustrates the essence of the matter.

Assume the current capital stock in the firm is K̄ and that the firm wants to

1At the end of Section 14.1.2 a certain technical regularity assumption on G is added for
convenience.

2For instance, G(I,K) = I2/K will be discontinuous at (0, 0), since for I > 0,
limK→0+(I2/K) = ∞ so that limI→0+(limK→0+(I2/K)) = ∞, while, by definition, G(0, 0)
= 0.
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increase it by a given amount ∆K. If the firm chooses the investment level Ī >
0 per time unit in the time interval [t, t+ ∆t), then, in view of (14.2), ∆K
≈ (Ī − δK̄)∆t. So it takes ∆t ≈ ∆K/(Ī − δK̄) units of time to accomplish the
desired increase ∆K, and the installation costs are approximately G(Ī , K̄)∆t.
If, however, the firm slows down the adjustment and invests only half of Ī per
time unit, then it takes approximately twice as long time to accomplish ∆K,
but total costs are now approximately G(1

2
Ī , K̄)2∆t (assuming, for simplicity,

that GK(I,K) = 0, and ignoring discounting). As illustrated in Fig. 14.1, the
last-mentioned cost is smaller than the first-mentioned. This is due to the strict
convexity of installation costs. Haste is waste.
On the other hand, there are limits to how slow the adjustment to the desired

capital stock should be. Slower adjustment means postponement of the potential
benefits of a higher capital stock. So the firm faces a trade-off between fast
adjustment to the desired capital stock and low installation costs.
In addition to the strict convexity of G with respect to I, (14.3) imposes the

condition GK(I,K) ≤ 0. A given amount of investment per time unit may require
more reorganization in a small plant than in a large plant (measured by size of
K). Owing to indivisibilities, when installing a new machine, a small firm has
to stop production altogether, whereas a large firm can to some extent continue
its production by shifting some workers to another production line. A further
argument, but less accurate, is that the more a firm has invested historically,
the more experienced it is now concerning how to avoid large installation costs.
So, for a given I today, the associated installation costs are lower, given a larger
accumulated K.

14.1.1 The decision problem of the firm

In the absence of tax distortions, asymmetric information, and problems with
enforceability of financial contracts, the Modigliani-Miller theorem (Modigliani
and Miller, 1958) entails that the financial structure of the firm is both indeter-
minate and irrelevant for production decisions (see Appendix A). Although the
conditions required for validity of this theorem are quite idealized, the q-theory of
investment accepts them as a starting point, allowing the analyst to concentrate
on the production aspects in a first approach.
We assume that the output good as well as the investment good has the

price 1 throughout. Let the operating cash flow (the net payment stream to the
firm before interest payments on debt, if any) at time t be denoted Rt (for net
“receipts”). Then

Rt ≡ F (Kt, Lt)−G(It, Kt)− wtLt − It, (14.5)
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where the wage rate at time t is denoted wt. As mentioned, the installation cost
G(It, Kt) implies that a part of production, F (Kt, Lt), is used up in transforming
investment goods into installed capital. Only the difference F (Kt, Lt)−G(It, Kt)
is available for sale. This sacrifice of a part of potential output arises from the
need to devote some of the firms’resources to the installation of new machines.
Throughout this chapter we assume the firm is a price taker in the labor

market. At the start it is also a price taker in the output market. We ignore
uncertainty.The interest rate is rt, which we assume is positive at least in the
long run. Given our normalization of prices, wt and rt are to be interpreted as a
real wage and real interest rate, respectively. The decision problem, as seen from
time 0, is the following: given the expected evolution of market prices, (wt, rt)

∞
t=0,

choose a plan (Lt, It)
∞
t=0 so as to maximize the firm’smarket value, i.e., the present

(discounted) value of the future stream of expected cash flows:

max
(Lt,It)∞t=0

V0 =

∫ ∞
0

Rte
−
∫ t
0 rτdτdt s.t. (14.5) and (14.6)

Lt ≥ 0, It “free”(i.e., no restriction on It), (14.7)

K̇t = It − δKt, K0 > 0 given, (14.8)

Kt ≥ 0 for all t. (14.9)

There is no specific terminal constraint but we have posited the feasibility con-
dition (14.9) saying that the firm can never have a negative capital stock.3

In the previous chapters the firm was described as solving a series of static
profit maximization problems. Such a description is no longer valid, however,
when there is dependence across time, as is the case here. When installation
costs are present, current decisions depend on the expected future circumstances.
What the firm can control at each moment is the rate of investment, not the
stock of capital. The firm makes a plan for the whole future so as to maximize
the value of the firm, which is what matters for the owners. This is the general
neoclassical hypothesis about firms’investment behavior. We use the terms value
maximization and intertemporal profit maximization synonymously.4

3It is assumed that wt and rt are piecewise continuous functions. At points of discon-
tinuity (if any) in investment, we consider investment to be a right-continuous function of
time. That is, It0 = limt→t+0

It. Likewise, at such points of discontinuity, by the “time deriva-

tive”of the corresponding state variable, K, we mean the right-hand time derivative, i.e., K̇t0

= limt→t+0
(Kt−Kt0)/(t− t0). Mathematically, these conventions are inconsequential, but they

help the intuition.
4When strictly convex installation costs, or other dependencies across time, are absent, then,

as shown in Appendix A, value maximization is equivalent to solving a sequence of isolated static
profit maximization problems, and we are back in the previous chapters’description.

c© Groth, Lecture notes in macroeconomics, (mimeo) 2017.



14.1. Convex capital installation costs 605

To solve the problem (14.6) − (14.9), where Rt is given by (14.5), we apply
the Maximum Principle. The problem has two control variables, L and I, and
one state variable, K. We set up the current-value Hamiltonian:

H(K,L, I, q, t) ≡ F (K,L)− wL− I −G(I,K) + q(I − δK), (14.10)

where q (to be interpreted economically below) is the adjoint variable associated
with the dynamic constraint (14.8). For each t ≥ 0 we maximize H with respect
to the control variables. Thus, ∂H/∂L = FL(K,L)− w = 0, i.e.,

FL(K,L) = w, (14.11)

and ∂H/∂I = −1−GI(I,K) + q = 0, i.e.,

1 +GI(I,K) = q. (14.12)

Next, we partially differentiate H with respect to the state variable and set the
result equal to rq − q̇, where r is the discount rate in (14.6):

∂H

∂K
= FK(K,L)−GK(I,K)− qδ = rq − q̇. (14.13)

Then, the MaximumPrinciple says that for an interior optimal path (Kt, Lt, It)
∞
t=0,

there exists an adjoint variable q, which is a continuous function of t, written qt,
such that for all t ≥ 0 the conditions (14.11), (14.12), and (14.13) hold along the
path. Moreover, it can be shown that the path will for all t ≥ 0 have qt ≥ 0 and
satisfy the “standard”infinite horizon transversality condition

lim
t→∞

Ktqte
−
∫ t
0 rτdτ = 0. (14.14)

The optimality condition (14.11) is the usual employment condition equalizing
the marginal productivity of labor to the real wage. In the present context with
strictly convex capital installation costs, this condition attains a distinct role as
labor will in the short run be the only variable input. Indeed, the firm’s installed
capital is in the short run a fixed production factor due to the strictly convex
capital installation costs. So, effectively there are diminishing returns (equivalent
to rising marginal costs) in the short run even though the production function
might have CRS.
The left-hand side of (14.12) gives approximately the extra cost associated

with increasing the investment level by one unit per time unit. This extra invest-
ment cost will be the sum of the purchase price of the investment good, here 1,
and the rise in total installation costs per time unit it causes. The left-hand side
is thus the marginal procurement cost, MC, of capital in the firm. Since (14.12)
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is a necessary condition for optimality, the right-hand side of (14.12) must then
be the marginal benefit, MB, of installed capital along the optimal path. So qt
represents the value to the optimizing firm of having one more unit of installed
capital at time t. To put it differently: the adjoint variable qt can be seen as
the shadow price (measured in current output units) of capital along the optimal
path.5 Thereby qt can also be seen as the total cost saving associated with reduc-
ing the investment by one unit. In this situation the firm recovers qt by saving
on installation costs as well as the one-time cost to buy a new machine.
Continuing along this line of thought, by reordering in (14.13), we get the

“no-arbitrage”condition

FK(K,L)−GK(I,K)− δq + q̇ = rq, (14.15)

saying that along the optimal path, whenever qt > 0, the rate of return on the
marginal unit of installed capital must equal the interest rate. Rearranging, the
condition says that the firm at every t has acquired capital up to the point where
the “total marginal productivity of capital”, FK −GK , equals the imputed mar-
ginal “operating cost of capital”, rtqt +(δqt − q̇t). The first term in this cost
represents imputed interest cost and the second term the imputed economic de-
preciation. The “total marginal productivity of capital” appears as FK −GK ,
thereby taking into account the reduction, −GK , of installation costs brought
about by the marginal unit of installed capital. From a “technical”point of view,
the importance of (14.13) is that it delivers a differential equation for the shadow
price q to supplement the differential equation for K given by the constraint
(14.8).
The transversality condition (14.14) says that along an optimal path the

present value of the state variable “left over” at infinity must be zero. Such
a terminal condition is necessary for optimality in many economic problems with
infinite horizon, including the present one where the state variable is the stock of
capital.6 Valued capital “left over”at eternity is like “money left on the table”.
So violation of (14.14) means “overinvesting”: in the long run investment and
installation costs exceeds the benefits of the extra installed capital.
It can also be shown that, irrespective the time path of the capital stock, opti-

mality requires that the present value of the shadow price itself, when discounted
by r + δ, is asymptotically zero, i.e.,

lim
t→∞

qte
−
∫ t
0 (rτ+δ)dτ = 0. (14.16)

5Recall that a shadow price, measured in some unit of account, of a good, from the point of
view of the buyer, is the maximum number of units of account that he or she is willing to offer
for one extra unit of the good.

6A proof is given in Appendix B.
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If along an optimal path, Kt is declining in the long run, the condition (14.16)
gives additional information relatve to (14.14).
In connection with (14.12) we claimed that qt can be interpreted as the shadow

price (measured in current output units) of capital along the optimal path. A
confirmation of this interpretation is obtained by solving the differential equation
(14.13). Indeed, multiplying by e−

∫ t
0 (rτ+δ)dτ on both sides of (14.13), we get by

integration and application of (14.16),7

qt =

∫ ∞
t

[FK(Ks, Ls)−GK(Is, Ks)] e
−
∫ s
t (rτ+δ)dτds > 0. (14.17)

The right-hand side here is the present value, as seen from time t, of the expected
future increases of the firm’s cash-flow that would result if one extra unit of
capital were installed at time t. Indeed, FK(Ks, Ls) is the direct contribution
to output of one extra unit of capital, while −GK(Is, Ks) ≥ 0 represents the
reduction of installation costs in the next instant brought about by the marginal
unit of installed capital. Note that the marginal future increases of cash-flow
in (14.17) are discounted at a rate equal to the interest rate plus the capital
depreciation rate. The reason is that from one extra unit of capital at time t
there are only e−δ(s−t) units left at time s. The inequality in (14.17) is ensured
because we consider an interior optimal path and FK > 0, while GK ≤ 0.
To concretize our interpretation of qt, let us make a thought experiment.

Assume that a extra units of installed capital at time t drops down from the sky.
At time s > t there are a · e−δ(s−t) units of these still in operation so that the
stock of installed capital is

K ′s = Ks + a · e−δ(s−t), (14.18)

where Ks denotes the stock of installed capital as it would have been without this
“injection”. In (14.5), imagine t is replaced by s and consider the optimizing firm’s
cash-flow Rs as a function of (Ks, Ls, Is, s, t, a). Taking the partial derivative of
Rs with respect to a at the point (Ks, Ls, Is, s, t, 0), gives

∂Rs

∂a |a=0
= [FK(Ks, Ls)−GK(Is, Ks)] e

−δ(s−t). (14.19)

Next we consider the value of the optimizing firm at time t as a function of
installed capital, Kt, and t itself. This function is called the (optimal) value
function. We write it V ∗(Kt, t). Intuitively, we have

∂V ∗(Kt, t)

∂Kt

=

∫ ∞
t

(
∂Rs

∂a |a=0

)
e−

∫ s
t rτdτds

=

∫ ∞
t

[FK(Ks, Ls)−GK(Is, Ks)]e
−
∫ s
t (rτ+δ)dsds = qt, (14.20)

7For details, see Appendix B.
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when the firm moves along the optimal path.8 The second equality sign comes
from (14.19) and the third is implied by (14.17). We see that the value of the
adjoint variable, q, at time t equals the contribution to the firm’s maximized
value of a fictional marginal “injection”of installed capital at time t. In brief: the
shadow price qt equals the present value of expected future “marginal operating
profits”.
These considerations provide economic intuition to the Maximum Principle

saying that the control variables at any point in time should be chosen so that
the Hamiltonian function is maximized. Thereby one maximizes the properly
weighted sum of the immediate contribution to the criterion function and the
indirect contribution, which is the benefit (as measured approximately by qt∆Kt)
of having a higher capital stock in the future.
As we know, the Maximum Principle gives only necessary conditions for an

optimal path, not suffi cient conditions. We use the principle as a tool for finding
candidates for a solution. Having found in this way a candidate, one way to
proceed is to check whether Mangasarian’s suffi cient conditions are satisfied.
Given the transversality condition (14.14) and the non-negativity of the state
variable, K, the only additional condition to check is whether the Hamiltonian
function in (14.10) is for every t (jointly) concave in the endogenous variables that
enter (here K, L, and I). This is indeed satified since the Hamiltonian function
is a sum of concave functions (note that −G(I,K) is concave in (I,K) since we
assumed G(I,K) itself to be convex in (I,K)). It follows that the first-order
conditions together with the transversality condition are not only necessary, but
also suffi cient for an optimal solution.

14.1.2 The implied investment function

From the first-order condition (14.12) we can derive an investment function.
Rewriting (14.12), we have that an optimal path satisfies

GI(It, Kt) = qt − 1. (14.21)

Combining this with the assumption (14.3) on the installation cost function, we
see that

It T 0 for qt T 1, respectively, (14.22)

8The qualification “intuitively” is motivated by the fact that, in general, optimal control
theory does not guarantee differentiability of the value function in every point. In particular,
an equality like the first one in the upper line of (14.20) need not hold because generally, an
arbitrarily small change in the initial value of the state variable may change the whole optimal
path qualitatively. But this kind of diffi culty does not arise in the present problem. This is
shown in Appendix D for the case where the functions F and G are homogeneous of degree
one. For the general case, see Weitzman, 2003, Ch. 3.
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Figure 14.2: Marginal installation costs as a function of the gross investment level, I,
for a given amount, K̄, of installed capital. The optimal gross investment for q = qt > 1
and for q = q′t ∈ (0, 1) are indicated.

cf. Fig. 14.2.9 By the implicit function theorem, in view of GII 6= 0, (14.21)
defines investment, It, as an implicit function of the shadow price, qt, and the
state variable, Kt,

It =M(qt, Kt), (14.23)

with partial derivatives

∂It
∂qt

=
1

GII(M(qt, Kt), Kt)
> 0, and

∂It
∂Kt

= −GIK(M(qt, Kt), Kt)

GII(M(qt, Kt), Kt)
,

(14.24)
The latter cannot be signed without further specification. In view of (14.22), we
have M(1, Kt) = 0.10

It follows that optimal investment is an increasing function of the shadow
price of installed capital. In view of (14.22), M(1, K) = 0. Qualitatively, the
investment rule is: invest now, if and only if the value to the firm of the marginal
unit of installed capital is larger than the price of the capital good (which is
1, excluding installation costs). Quantitatively, the rule says that, because of

9From the assumptions made in (14.3), we only know that the graph of GI(I, K̄) is an
upward-sloping curve going through the origin. Fig. 14.2 shows the special case where this
curve happens to be linear.
10A method for calculating the formulas without consulting the implicit function theorem is

to apply implicit differentiation in (14.21). That is, first, replace the dependent variable, It, in
(14.21) by the implicit functionM(qt,Kt). Second, calculate the partial derivative with respect
to qt on both sides of (14.21), using the chain rule. Third, by rearranging solve for ∂It/∂qt.
Fourth, calculate in a similar way the partial derivative with respect to Kt on both sides of
(14.21) and solve for ∂It/∂Kt.
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the convex installation costs, invest only up to the point where the marginal
installation cost, GI(It, Kt), equals qt − 1, cf. (14.21).
Unfortunately, the investment equation (14.23) is not a recursive formula from

which the firm — or the economic researcher — can directly infer the optimal
investment level. At time t the current capital stock Kt is given and observable,
but the firm’s qt is not. So (14.23) is a relationship between two unknowns, It and
qt. As we shall see, to pin down the firm’s optimal qt is a complicated dynamic
problem —for the firm as well as for the researcher. An intertemporal mutual
dependency between q and K is involved. While (14.23) tells us that optimal
current investment depends on qt, the equation (14.17) tells us that qt depends
on the expected future “marginal operating profits”, and these will depend on
investment today.
Still, when through a dynamic analysis, taking the expected future environ-

ment into account, the firm’s “true”, or optimal, qt, has been found, it is remark-
able how much information it contains. All the information about the production
function, input prices, and interest rates now and in the future, which is relevant
to the investment decision, is summarized in one number, qt. Knowing this, to-
gether with the installation cost function G, the firm knows its optimal level of
investment (since, when G is known, so is also the function M, which is the
inverse of GI with respect to q, given K).
It remains to clarify the domain of the implicit “investment function”M. At

the cost of only uninteresting loss of generality, we add a regularity assumption
concerning G to ensure that the domain ofM includes all relevant pairs (q,K):

for all K > 0, lim
I→∞

GI(I,K) =∞ and lim
I→−∞

GI(I,K) < −1. (A1)

The absence of an upper bound for GI(I,K) ensures that for any value of q ≥ 1,
there is a unique nonnegative investment level, I, satisfying (14.21). The second
part of (A1) ensures that for any q ∈ (0, 1), there exists, for a given K > 0, a
unique negative investment level (disinvestment) satisfying (14.21). In this case
the worth to the firm of the marginal unit of installed capital is positive but less
than 1. While the marginal unit can be sold at the selling price 1, this requires
to first defray the dismantling costs, G(I,K), associated with the chosen level
of negative investment, given K. This level, I1 say, will satisfy the optimality
condition 1 +GI(I1, K) = 1− |GI(I1, K)| = q < 1.

Technical Remark. What about q ≤ 0? At q = 0, the firm would be indifferent
between dismantling (choosing I1 < 0 such that |GI(I1, K)| = 1) and I = 0, and
soM is not defined. A negative q is impossible, because free disposal rules out
a negative shadow price of an asset. �
As an example consider the following special case.
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The capital adjustment principle Suppose the installation costs are J =
G̃(I) = (β/2)I2, β > 0, and let F have CRS and satisfy the Inada conditions.
Let the interest rate be a constant r > 0 and the wage rate a constant w > 0.
We than have Y = F (K,L) = LF (k, 1) ≡ Lf(k), where k ≡ K/L. By first-

order condition (14.11), FL(K,L) = f(k) − kf ′(k) ≡ ψ(k) = w. Since ψ′(k)
= −kf ′′(k) > 0, this allows writing k = ψ−1(w) ≡ k(w) with

k′(w) =
1

ψ′(k(w))
= − 1

k(w)f ′′(k(w))
> 0, (14.25)

which is to be used in a moment. At every t, Kt is given, and the firm will chose
Lt such that Kt/Lt = k, where k is a constant given by k = k(w). Note also that
FK(Kt, Lt) = f ′(k(w)) for all t.
The first-order condition (14.12) reads G̃′(It) = βIt = qt − 1, implying the

investment function It = (qt − 1)/β ≡ M(qt). The differential equation for Kt

thus is
K̇t = (qt − 1)/β − δKt, K0 > 0 given. (*)

So
K̇t T 0 for qt T 1 + βδKt, respectively.

The differential equation for q is obtained by rearranging the first-order condition
(14.13) to get

q̇t = (r + δ)qt − FK(Kt, Lt) = (r + δ)qt − f ′(k(w)), (**)

implying

q̇t T 0 for qt T
f ′(k(w))

r + δ
≡ q∗(w), respectively,

where we have suppressed the dependency of q∗ on the parameters r and δ. Finally,
the necessary transversality condition is

lim
t→∞

Ktqte
−rt.

To determine the optimal investment path, we (as well as the firm) need
the “true”shadow price, i.e., the optimal initial value of q. To find this value, we
construct the phase diagram shown in Fig. 14.3. We assume that f ′(k(w))/(r+δ)
> 1, because existence of a positive steady-state value for K, K∗, requires that
q∗(w) ≡ f ′(k(w))/(r + δ) = 1 + βδK∗ > 1.
The direction of movement in the different regions of the phase diagram are

determined by (*) and (**) and is indicated by arrows in Fig. 14.3. The arrows
taken together show that the steady state is a saddle point. In this example
the saddle path is horizontal and coincides with the q̇ = 0 locus. As the capital
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stock is pre-determined, initially the firm must be situated at some point on the
vertical line K = K0 in the figure. A reasonable supposition is that the optimal
initial value of q is the ordinate to the point of intersection between this line and
the saddle path, i.e., the point A. This ordinate is q∗. With this initial q, the
firm will follow the saddle path over time and converge to the steady state, E.
In the steady state, the transversality condition is clearly satisfied since r > 0.
The same holds for any path converging to the steady state, whether K0 < K∗,
as in the figure, or K0 > K∗. Since the Hamiltonian is concave in (L, I,K), by
Mangasarian’s suffi ciency theorem follows that the considered path is an optimal
path. Could there be other solutions? No! Paths starting above the saddle path
will have q̇t/qt = r + δ − f ′(k(w))/qt → r + δ for t → ∞. At least ultimately,
also K will be growing, and then K · q will ultimately grow at a rate higher
than r. The transversality condition will thus be violated. Paths starting below
the saddle path will for all t have q below q∗(w) and thus not fully exploit the
potential benefits of capital.11

The unique optimal investment plan is thus

It =
1

β
(q∗(w)− 1) =

1

β

(
f ′(k(w))

r + δ
− 1

)
≡ Ī for all t ≥ 0,

thereby maintaining gross investment constant. This is the investment function
in the sense of a relationship giving optimal investment as a function of exogenous
variables and parameters. The resulting capital dynamics is K̇t = Ī − δKt, and
this linear differential equation has the solution

Kt = (K0 −K∗)e−δt +K∗, K∗ =
Ī

δ
=

1

δβ

(
f ′(k(w))

r + δ
− 1

)
. (***)

What explains the constancy of optimal gross investment? We know from
(14.17) that the shadow price of installed capital equals the present value of
expected future marginal profits along the optimal plan. Thus, in this example,

11This argument can be unfolded in detail by applying the general formula for the value
function V ∗(Kt, t) given in (14.67) of Appendix D, letting t = 0. Anyway, uniqueness of the
solution to dynamic optimization problems in economics is common. In particular, uniqueness
is to be expected when, as here, the Hamiltonian is at every t strictly concave in the control
vector, here (L, I) (and uniqueness would be ensured if the Hamiltonian is strictly concave in
(L, I,K), but that is not the case here).
It would be incorrect, however, to rule out optimality of a path starting with q0 < q∗ by

arguing that such a path, in view of (**), will violate the transversality condition in that q
ultimately becomes negative and declines faster and faster. The truth is that the shadow price
q can never become negative, cf. Technical Remark above. The differentials equations (*) and
(**) are thus only valid as long as qt > 0. After q has reached zero, q remains at zero while K
gradually declines towards zero.
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where GK ≡ 0,

qt =

∫ ∞
t

f ′(k(w))e−(r+δ)(s−t)ds =
f ′(k(w))

r + δ
,

which is independent of t and is identical to our q∗(w). Then the first-order
condition (14.12) reduces to 1 + βIt = q∗(w), and so optimal gross investment,
It, must be constant. The intuition behind the constancy of gross investment is
that the strictly convex installation costs implies an incentive to smooth out the
investment.
Optimal net investment is

Int ≡ It − δKt = Ī − δKt = δK∗ − δKt = δ(K∗ −Kt). (****)

This relationship has traditionally been called the capital adjustment principle
because it can be interpreted as describing the gradual adjustment of actual to
“desired capital”, K∗. The principle says that optimal net investment is pro-
portional to the distance between desired and actual capital. Net investment is
positive (negative) as long as the actual capital stock is below (above) the desired
capital stock. This is so whatever the size of r. There is thus no stable relationship
between net investment and r.
How large is the speed of adjustment (≡ the rate of decline of the distance

to the steady state)? In view of d(Kt − K∗)/dt = K̇t = Int = δ(K∗ − Kt), by
(****), the speed of adjustment is constant and equal to the rate of (physical)
depreciation, δ. Why? Because, for the steady-state level of capital, K∗, to be
consistent with the level of gross investment, Ī , K∗ must be such that depreciation
per time unit, δK∗, equals Ī .
The strictly convex installation costs thus provide a “micro foundation”of the

capital adjustment principle. In the absence of these costs, the desired capital
would be reached immediately by acquiring capital in a bulk. Mathematically,
this would amount to an upward jump in K. As the capital formation technique
is formulated in the decision problem of the firm, cf. (14.8), this is impossible.
An interpretation is that it is infinitely costly.
In steady state, as well as during the approach towards steady state, in view

of q∗(w) > 1, net marginal productivity of capital exceeds the interest rate:

FK(K,L) = f ′(k(w)) = (r + δ)q∗(w) > r + δ.

In spite of this, there is no incentive to increase K further. The reason is that
the marginal cost of doing so exceeds the marginal benefit due to the installation
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costs. Note also that, by (***),

∂Ī

∂w
=

∂(δK∗)

∂w
= δ

∂K∗

∂w
=
f ′′(k(w))k′(w)

β(r + δ)
=

−1

β(r + δ)k(w)
< 0, (from (14.25))

∂Ī

∂r
=

∂(δK∗)

∂r
= δ

∂K∗

∂r
= − f

′(k(w))

β(r + δ)2
< 0,

Gross investment and the desired capital stock thus depend negatively on both
cost variables, w and r. This also follows graphically by curve shifting in Fig.
14.3.
Considering the role of w, the positive substitution effect on K/L of a higher

w is (under perfect competition) more than neutralized by a negative level effect
(on the “desired capital stock”) of the higher cost of production implied by the
higher labor cost. The explanation is that the present value of expected future
marginal profits is reduced by the higher cost of production.
Note that the capital adjustment principle builds on restrictive assumptions.

The idea of a constant desired capital stock seems best fitted to a stationary econ-
omy. What should in particular be emphasized is that the analysis above is only
partial analysis. The focus is on the behavior of a single firm in a given simplified
economic “environment”—a constant arbitrary wage rate and a constant arbi-
trary interest rate. When many firms act in a similar environment, the aggregate
result is usually that this “environment”is affected. So for instance the assumed
constancy of the wage rate can no longer be maintained, and the dynamics of q is
thus affected qualitatively. Taking these feedbacks —and feedbacks on feedbacks
—into account implies a shift to general equilibrium analysis of firms’investment
behavior. This is our focus in Section 14.3. �

(new Fig. 14.3 about here)

14.1.3 When G is homogeneous of degree one

While variation in the stock of capital is seldom quantitatively important in short-
run analysis, it really matters in long-run analysis. We will now concentrate on the
case where not only does K matter for the installation costs, but the installation
cost function G is homogeneous of degree one with respect to I and K. For K > 0
we thus have

J = G(I,K) = G(
I

K
, 1)K ≡ g(

I

K
)K, or (14.26)

J

K
= g(

I

K
),
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where g(·) represents the installation cost-capital ratio.
LEMMA 1 Let the function G be homogeneous of degree one in addition to
satisfying (14.3). Then the function g(I/K) ≡ G(I/K, 1) has the following prop-
erties:
(i) g(0) = 0;
(ii) g′(I/K) = GI(I,K) R 0 for I R 0, respectively;
(iii) g′′(I/K) = GII(I,K)K > 0 for K > 0;
(iv) g(I/K)− g′(I/K)I/K = GK(I,K) = GK(I/K, 1) < 0 for I 6= 0.

Proof. (i) g(0) ≡ G(0, 1) = 0. (ii) GI = Kg′/K = g′. (iii) GII = g′′/K. (iv) GK

= ∂(g(I/K)K)/∂K = g(I/K) − g′(I/K)I/K. Moreover, in view of g′′ > 0 and
g(0) = 0, we have g(x) < g′(x)x for all x 6= 0. Finally, GK(I,K) = GK(I/K, 1)
follows from Euler’s theorem, saying that when G is homogeneous of degree 1,
then the partial derivatives of G are homogeneous of degree 0. �
The graph of g(I/K) is qualitatively the same as that in Fig. 14.1 (imagine we

have K̄ = 1 in that graph). The installation cost relative to the existing capital
stock is now a strictly convex function of the investment-capital ratio, I/K. Note
that in relation to our original characterization of the adjustment cost function G
in (14.3), the only qualitative modification implied by the homogeneity of degree
one is that the property GK ≤ 0 is sharpened to GK < 0 except when I = 0.
A further important property of (14.26) is that the cash-flow function in (14.5)

becomes homogeneous of degree one with respect to K, L, and I in the “normal”
case where the production function has CRS. This has two implications. First,
Hayashi’s theorem applies (see below). Second, the q-theory can easily be incor-
porated into a model of economic growth.12

Does the hypothesis of homogeneity of degree one of the cash flow in K, L,
and I make economic sense? According to a standard replication argument it
does. Suppose a given firm has K units of installed capital and produces Y
units of output with L units of labor. When at the same time the firm invests
I units of account in new capital, it obtains the cash flow R after deducting the
installation costs, G(I,K). Then it makes sense to assume that the firm could do
the same thing at another place, hereby doubling its cash-flow. (Of course, owing
to the possibility of indivisibilities, this reasoning does not take us all the way to
homogeneity of degree one. Moreover, the argument ignores that also land is a
necessary input. As discussed in Chapter 2, in spite of mixed empirical evidence,
the assumption of constant returns to scale with respect to capital and labor is in
macroeconomics generally considered an acceptable approximation with regard
to industrialized economies.)

12The relationship between the function g and other ways of formulating the theory in the
literature is commented on in Appendix C.
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In view of (i) of Lemma 1, the homogeneity-of-degree-one assumption for G
allows us to write (14.21) as

g′(I/K) = q − 1. (14.27)

This equation defines the investment-capital ratio, I/K , as an implicit function,
m, of q :

I

K
= m(q), where m(1) = 0 and m′(q) =

1

g′′(m(q))
> 0, (14.28)

by implicit differentiation in (14.27) and rearranging. We see that q encompasses
all information that is of relevance to the decision about the investment-capital
ratio.

EXAMPLE 1 Let J = G(I,K) = (β/2)I2/K, where β > 0. Then G is homo-
geneous of degree one with respect to I and K and gives J/K = (β/2)(I/K)2

≡ g(I/K), hence, g′(I/K) = βI/K. Then, by (14.27), I/K = (q − 1)/β ≡ m(q).
And finally, by (iv) of Lemma 1, GK = −(q − 1)2/(2β) (= −g(I/K)). �
In this examplem(q) is linear, as illustrated in Fig. 14.3. The parameter β can

be interpreted as the degree of sluggishness in the capital adjustment. The degree
of sluggishness reflects the degree of convexity of installation costs.13 Generally
the graph of the investment function is positively sloped, but not necessarily
linear. The interpretation of the stippled lines and q∗ and n in Fig. 14.3 is as
follows. Suppose the firm’s employment grows at a constant rate n ≥ 0. Then a
constant capital-labor ratio, K/L, requires K̇/K = n, hence I/K− δ = m(q)− δ
= n. The investment-capital ratio, I/K, required to match not only depreciation
at rate δ but also employment growth at rate n is thus δ + n. The level of q
required to motivate such an investment-capital ratio is denoted q∗ in the figure.
By (iv) of Lemma 1, when G is homogeneous of degree 1, we have

GK(I,K) = g(
I

K
)− g′( I

K
)
I

K
= g(m(q))− (q − 1)m(q) ≡ −ϕ(q), (14.29)

where the second equality comes from (14.28) and (14.27). Recall that−GK(It, Kt),
hence ϕ(q), indicates how much lower the installation costs approximately are
due to the marginal unit of installed capital.

LEMMA 2 Let the function G be homogeneous of degree one in addition to
satisfying (14.3). Let the function ϕ be defined as in (14.29). Then:

13For a twice differentiable function, f(x), with f ′(x) 6= 0, we define the degree of convexity
in the point x by f ′′(x)/f ′(x). So the degree of convexity of g(I/K) is g′′/g′ = (I/K)−1

= β(q − 1)−1 and thereby we have β = (q − 1)g′′/g′. So, for given q, the degree of sluggishness
is proportional to the degree of convexity of adjustment costs.
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Figure 14.3: Optimal investment-capital ratio as a function of the shadow price of
installed capital when g(I/K) = 1

2β(I/K)2.

(i) ϕ(q) > 0, when q 6= 1. In the special case G(I,K) = (β/2)I2/K, β > 0,
ϕ(q) = (q − 1)2/(2β).
(ii) ϕ′(q) = m(q) R 0 for q R 1, respectively.

Proof. (i) That ϕ(q) > 0 when q 6= 1, follows from the definition in (14.29)
combined with (iv) of Lemma 1 and (14.28); for the special case apply that
ϕ(q) ≡ −GK(I,K). (ii) ϕ′(q) = (q−1)m′(q)+m(q)−g′(m(q))m′(q) = m(q) since
g′(m(q)) = q − 1 by (14.28) and (14.27). �
To see the implication for how the shadow price q changes over time along the

optimal path, we first rearrange (14.13):

q̇t = (rt + δ)qt − FK(Kt, Lt) +GK(It, Kt). (14.30)

When G be homogeneous of degree one, we have from (14.29)

q̇t = (rt + δ)qt − FK(Kt, Lt) + g(m(qt))− (qt − 1)m(qt) (14.31)

≡ (rt + δ)qt − FK(Kt, Lt)− ϕ(qt),

This differential equation for the shadow price qt is very useful in macroeconomic
analysis, as we will soon see, cf. Fig. 14.4 below.
We now consider an example with technical progress in production.

A growing firm under perfect competition In case of technical change af-
fecting installation costs, we should write the installation costs as Jt = G(It, Kt, t).
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We ignore this possible extension, and let the installation costs be as in Example
1 above. Thus It/Kt = (qt − 1)/β, and

K̇t =

(
qt − 1

β
− δ
)
Kt, K0 > 0 given. (*)

The production technology is given by a CRS-neoclassical production function
satisfying the Inada conditions, now with Harrod-neutral technological progress:

Ỹ = F (K,TL) = F (
K

TL̄
, 1)TL ≡ f(k̃)TL,

where k̃ ≡ K/(TL), and the technology level, T, grows exogenously acording
to Tt = T0e

γt, where γ ≥ 0.Of course Let the real wage faced by the firm at
time t be denoted wt. From the firm’s point of view, at every t, both wt and
Kt are given, and the firm chooses Lt so as to satisfy ∂Ỹt/∂Lt = F2(Kt, TtLt)Tt

=
[
f(k̃t)− k̃tf ′(k̃t)

]
Tt ≡ ψ(k̃t)Tt = wt. Consequently, ψ(k̃t) = wt/Tt ≡ w̃t, so

that k̃t = ψ−1(w̃t) ≡ k̃(w̃t), k̃
′ > 0 in analogy with (14.25) above. Assume

that also wt grows at the rate γ. Then w̃t will be a constant, w̃. The chosen
effective capital-labor ratio, k̃t, will likewise be a constant, k̃(w̃). This requires Lt
= Kt/(Ttk̃t) = Kt/(Ttk̃(w̃)) ≡ k̂t/k̃(w̃) and implies FK(Kt, TtLt) = f ′(k̃(w̃)), a
constant.
Thus, by (14.31) together with (i) of Lemma 2,

q̇t = (r + δ)qt − f ′(k̃(w̃))− (qt − 1)2

2β
. (**)

We assume that f ′(k̃(w̃)) > r+ δ). Then, for some q > 1, f ′(k̃(w̃)) = (r+ δ)q,
and for some unique q = q∗ even larger. q̇t = 0.
(to be continued)

14.2 Marginal q and average q

Our q above, determining investment, should be distinguished from what is usu-
ally called Tobin’s q or average q. Let pIt denote the current purchase price
(relative to some output price index) per unit of the investment good (before
installation). Then Tobin’s q, or average q, qat , is defined as q

a
t ≡ Vt/(pItKt) (the

top index “a”stands for “average”). Tobin’s q is thus the ratio of the market
value of the firm to the replacement value (before installation costs) of the firm’s
capital stock. In our simplified context we have pIt ≡ 1 (the price of the in-
vestment good is the same as that of the output good). In this case Tobin’s q
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is

qat =
Vt
Kt

=
V ∗(Kt, t)

Kt

, (14.32)

where the second equality, by definition of the value function V ∗(Kt, t), holds for
an optimizing firm.
Conceptually, qat is different from the firm’s shadow price on capital, our qt

in the previous sections. In the language of the q-theory of investment, this qt
is called the “marginal q”. This name is natural since along the optimal path
we have qt = ∂V ∗(Kt, t)/∂Kt according to (14.20). Letting qmt be our symbol for
“marginal q”, we can thus, for the case pIt ≡ 1, write

qmt = qt =
∂V ∗(Kt, t)

∂Kt

. (14.33)

If we want to allow for pIt 6= 1, we define “marginal q”as representing the value
to the optimizing firm of one extra unit of installed capital relative to the price
of the investment good, that is, qmt ≡ qt/pIt = (∂V ∗(Kt, t)/∂Kt)/pIt.
The two concepts, average q and marginal q, have not always been clearly

distinguished in the literature. What is directly relevant to the investment de-
cision is marginal q. The analysis above showed that optimal investment is an
increasing function of qm. Further, the analysis showed that a “critical” value
of qm is 1 in the sense that if and only if qm > 1, is positive gross investment
warranted.
The importance of the variable qa from the point of view of the economic

researcher is that it can be measured empirically as the firms’market value (the
sum of equity and debt) relative to the replacement value of the firm’s capital
stock, i.e., excluding installation costs. Since qm is much harder to measure
than qa, it is important to know the theoretical relationship between qm and qa.
Fortunately, we have a simple theorem giving conditions under which qm = qa.

THEOREM (Hayashi, 1982) Assume that the firm is a price taker, that the pro-
duction function F is neoclassical and concave in (K,L), and that the installation
cost function G is convex in (I,K).14 Then, along an optimal path we have:
(i) qmt = qat for all t ≥ 0, if F and G are homogeneous of degree 1.
(ii) qmt < qat for all t, if F is strictly concave in (K, L) and/or G is strictly

convex in (I, K).
Proof. See Appendix D.

The intuitive background to point (i) of the theorem is the following. Let the
policy (Lt, It)

∞
t=0 be the optimal policy for a firm with capital stock K0 > 0 at

14That is, in addition to (14.3), we assume GKK ≥ 0 and GIIGKK −G2IK ≥ 0. The specifi-
cation in Example 1 above satisfies this.
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time 0. Assume the production and installation cost functions are homogeneous
of degree 1. Then also the cash flow R(K,L, I) ≡ F (K,L) −G(I,K) − wL − I
is homogeneous of degree 1. Let another firm with the same production and
installation cost functions have capital stockK ′0 > 0 at time 0. The policy (L′t, Í

′
t)

= (Lt, It) ·K ′0/K0 for all t ≥ 0 must then be optimal for this firm. Moreover, the
firm’s optimized market value must beK ′0/K0 times the optimized market value of
the first firm. Indeed, for all t ≥ 0 we will have that the optimized forward-looking
market value, V ∗(Kt, t), is proportional to the current capital stockKt. The factor
of proportionality is what we have denoted qat . The in this way ascertained linear
relationship V ∗(Kt, t) = qat · Kt implies that qmt ≡ ∂V ∗(Kt, t)/∂Kt = qat for all
t ≥ 0.

The assumption that the firm is a price taker may, of course, seem critical.
The Hayashi theorem has been generalized, however. Also a monopolistic firm,
facing a downward-sloping demand curve and setting its own price, may have a
cash flow which is homogeneous of degree one in the three variables K,L, and I.
If so, then the condition qmt = qat for all t ≥ 0 still holds (Abel 1990). Abel and
Eberly (1994) show that .... NN present further generalizations.

In any case, when qm is approximately equal to (or just proportional to) qa,
the theory gives a remarkably simple operational investment function,

I = m(qa)K,

cf. (14.28). At the macro level we interpret qa as the market valuation of the
mass of firms relative to the replacement value of their total capital stock. Under
the conditions in (i) of the Hayashi theorem, the market valuation also indicates
the marginal earnings potential of the firms, hence, it becomes a determinant of
their investment. This establishment of a relationship between the stock market
and firms’aggregate investment is the basic point in Tobin (1969).

Does the hypothesis of homogeneity of degree one of the cash flow in K, L,
and I make economic sense? According to a standard replication argument it
does. Suppose a given firm has K units of installed capital and produces Y units
of output with L units of labor. When at the same time the firm invests I units of
account in new capital, it obtains the cash flow R after deducting the installation
costs, G(I,K). Then it makes sense to assume that the firm could do the same
thing at another place, hereby doubling its cash-flow.
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14.3 Applications

14.3.1 Capital installation costs in a closed economy

Allowing for convex capital installation costs in the economy has far-reaching
implications for the causal structure of a model of a closed economy. Investment
decisions attain an active role in the economy and forward-looking expectations
become important for these decisions. Expected future market conditions and an-
nounced future changes in corporate taxes and depreciation allowance will affect
firms’investment already today.
The essence of the matter is that current and expected future interest rates

have to adjust for aggregate saving to equal aggregate investment, that is, for
the output market to clear. Given full employment (Lt = L̄t), the output market
clears when aggregate supply equals aggregate demand, i.e.,

F (Kt, L̄t)−G(It, Kt) (= value added ≡ GDPt) = Ct + It,

where Ct is determined by the intertemporal utility maximization of the forward-
looking households, and It is determined by the intertemporal value maximization
of the forward-looking firms facing strictly convex installation costs. Like in the
determination of Ct, current and expected future interest rates now also matter
for the determination of It. This is the first time in this book where clearing in the
output market is assigned an active role. In the earlier models investment was just
a passive reflection of household saving. Desired investment was automatically
equal to the residual of national income left over after consumption decisions had
taken place. Nothing had to adjust to clear the output market, neither interest
rates nor output. In contrast, in the present framework adjustments in interest
rates and/or the output level are needed for the continuous clearing in the output
market and these adjustments are decisive for the macroeconomic dynamics.
A related implication of the theory is that we have to discard the simple

conception from our previous models that the real interest rate is the variable
which adjusts so as to clear a rental market for capital goods. The interest rate
will no longer be tied down by a requirement that such markets clear, and will,
even under perfect competition, no longer in equilibrium equal the net marginal
productivity of capital. This is seen for instance in the formula (14.15).
In actual economies there may of course exist “secondary markets” for used

capital goods and markets for renting capital goods owned by others. In view of
installation costs and similar, however, shifting capital goods from one plant to
another is generally costly. Therefore the turnover in that kind of markets tends
to be limited (with the exception of rental markets for cars, trucks, air planes, and
similar). And, importantly for our theory, the effective capital cost per time unit
for a firm that hire its capital goods, rather than buying them, will still consist
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not only of the simple rental rate (interest plus depreciation costs, r+ δ) but also
costs associated with installation and presumably also the later dismantling.
In for instance Abel and Blanchard (1983), a Ramsey-style model integrating

the q-theory of investment and Hayashi’s theorem is presented. The authors study
the two-dimensional general equilibrium dynamics resulting from the adjustment
of current and expected future interest rates needed for the output market to clear.
Adjustments of the whole structure of interest rates (the yield curve) take place
and constitute the equilibrating mechanism in the output and asset markets.
By having output market equilibrium playing this role in the model, a first

step is taken towards medium- and short-run macroeconomic theory. We take
further steps in later chapters, by allowing imperfect competition and nominal
price rigidities to enter the picture. Then the demand side gets an active role
both in the determination of q (and thereby investment) and in the determination
of aggregate output and employment. This is what Keynesian theory (old and
new) deals with.
In the remainder of this chapter we will still assume perfect competition in all

markets including the labor market. In this sense we will stay within the neoclas-
sical framework (supply-dominated models) where, by instantaneous adjustment
of the real wage, labor demand continuously matches labor supply. The next
two subsections present simple examples of how Tobin’s q-theory of investment
can be integrated into the neoclassical framework. To avoid the complications
arising from an endogenous interest rate, the focus is on a small open economy.
In that context, households financial wealth is distinct from the market value of
the capital stock. Anyway, our focus will be on firms’capital accumulation, and
the analysis will largely not need appeal to Hayashi’s theorem.

14.3.2 A small open economy with capital installation costs

By introducing convex capital installation costs in a model of a small open econ-
omy (SOE), we avoid the counterfactual outcome that the capital stock adjusts
instantaneously when the interest rate in the world financial market changes.
In simple neoclassical models for a small open economy, without convex capital
installation costs, a rise in the interest rate leads immediately to a complete ad-
justment of the capital stock so as to equalize the net marginal productivity of
capital to the new higher interest rate. Moreover, in that model expected future
changes in the interest rate or in corporate taxes and depreciation allowances do
not trigger an investment response until these changes actually happen. In con-
trast, when convex installation costs are present, expected future changes tend
to influence firms’investment already today.
We assume:
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1. Perfect mobility across borders of goods and financial capital.

2. Domestic and foreign financial claims are perfect substitutes.

3. No mobility across borders of labor.

4. Labor supply is inelastic.

5. Both the production function and the capital installation cost function are
homogeneous of degree 1.

In this setting the SOE faces an exogenous interest rate, r, given from the
world financial market. We assume r is a positive constant. There are N firms,
i = 1, 2, . . . , N, all facing the same production function, F (K,L), which is neo-
classical, has CRS, and satisfies the Inada conditions. The firms also face the same
installation cost function, G(I,K), which is homogeneous of degree 1. Markets
are competitive, and firms have perfect foresight and maximize profits intertem-
porally.
We consider two cases.

Case 1: Constant labor supply and absence of technical change

Let L̄ > 0 denote the constant labor supply. At time t firm i has capital equal to
Kit (predetermined due to the convex installation costs) and adjusts its employ-
ment Lit so as to satisfy

FL(Kit, Lit) = FL(kit, 1) = wt, i = 1, 2, . . . , N, (14.34)

where kit ≡ Kit/Lit and wt is the current market wage. The first equality follows
from Euler’s theorem saying that if F is homogeneous of degree 1, then the partial
derivatives of F are homogeneous of degree 0. We see that the chosen capital-
labor ratio, kit, will be the same for all firms and thus the same as the aggregate
capital-labor ratio, Kt/Lt, where Kt ≡

∑N
i=1 Kit and Lt ≡

∑N
i=1 Lit. Clearing in

the labor market requires that Lt = L̄. Hence,

kit = Kt/L̄ ≡ kt, i = 1, 2, . . . , N.

Substituting this into (14.34), and rearranging, we have, for all t ≥ 0,

wt = FL(Kt, L̄) = FL(kt, 1) = f(kt)− ktf ′(kt) ≡ w(kt), w′ = −kf ′′ > 0,
(14.35)

where we have introduced the production function in intensive form.
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On the one hand, since kt is predetermined, the equation (14.35) determines
the market real wage wt. On the other hand, the labor input chosen by firm i,
with given Kit and facing a given market wage rate wt, will be

Lit = Kit/kt = Kit/w
−1(wt), (14.36)

where the inverse function w−1(wt) comes from (14.35). Looking ahead, the firm
knows that at time s in the future, depending on its expected ws and planned
capital, Kis, its optimal employment will be Lis = Kis/w

−1(ws).
We now put ourselves in the position of firm i and try to make an optimal

production and investment plan for this firm as seen from time 0. To pin down
the optimal plan, given r and the expected evolution of the market wage rate,
(wt)

∞
t=0, we derive from the first-order conditions in Section 14.1.1 two coupled

differential equations in Kit and qit. By (14.28),

K̇it = Iit − δKit = (m(qit)− δ)Kit, Ki0 > 0 given. (14.37)

Since the capital installation cost function G is homogeneous of degree 1, point
(iv) of Lemma 1 applies, and so we can write (14.31) as

q̇it = (r + δ)qit − FK(Kit, Kit/w
−1(wt)) + g(m(qit))− (qit − 1)m(qit)

≡ (r + δ)qit − FK(1, 1/w−1(wt)) + g(m(qit))− (qit − 1)m(qit), (14.38)

where we have first applied (14.36) and then again Euler’s theorem on FK .
As r and wt are exogenous to the firm, the planned capital stock, Kit, and

its shadow price, qit, are the only endogenous variables in the differential equa-
tions (14.39) and (14.40). In addition, we have an initial condition for Ki and a
necessary transversality condition involving qi, namely

lim
t→∞

Kitqite
−rt = 0.

From the firm’s perspective, the problem is to find out what its optimal investment
“guide”, qi0, is. If this problem is solved, the dynamic system (14.37)-(14.38)
determines the capital accumulation of firm i. Indeed, given both qi0 and Ki0,
(14.37) determines the change in Ki in the short time interval (0, ε) and thereby
the new Ki at time ε. And given both qi0 and, from the market, w0, (14.38)
similarly determines the new qi at time ε, and so on.
We see that the firm’s optimal path depends on the evolution of wt, which

according to (14.35) is determined by the evolution of aggregate capital, Kt. This
illustrates the importance of general equilibrium analysis. The parts depends on
the system as a whole, and the whole depends, of cource, on its parts.
We need to find out how aggregate capital will move. This is a complicated

matter, unless the firms have the same initial optimal q. This requires their Ki0

c© Groth, Lecture notes in macroeconomics, (mimeo) 2017.



14.3. Applications 625

to be the same, which we will now assume they are. Consequently, Kit = Kt/N
and qit = qt for all t ≥ 0. Then (14.37) implies

K̇t = It − δKt = (m(qt)− δ)Kt, K0 > 0 given. (14.39)

Moreover, since Kt/L̄ ≡ kt = w−1(wt), we have, again applying Euler’s theorem,

FK(1, 1/w−1(wt)) = FK(1, L̄/Kt) = FK(Kt, L̄).

Hence, with qit = qt for all t ≥ 0, (14.38) becomes

q̇t = (r + δ)qt − FK(Kt, L̄) + g(m(qt))− (qt − 1)m(qt). (14.40)

Finally, the above transversality condition implies

lim
t→∞

Ktqte
−rt = 0. (14.41)

Fig. 14.4 shows the phase diagram for these two coupled differential equations.
Let q∗ be defined as the value of q satisfying the equationm(q) = δ. Sincem′ > 0,
q∗ is unique. Suppressing for convenience the explicit time subscripts, we then
have

K̇ = 0 for m(q) = δ, i.e., for q = q∗.

As δ > 0, we have q∗ > 1. This is so because also mere reinvestment to offset
capital depreciation requires an incentive, namely that the marginal value to
the firm of replacing worn-out capital is larger than the purchase price of the
investment good (since the installation cost must also be compensated). From
(14.39) is seen that

K̇ ≷ 0 for m(q) ≷ δ, respectively, i.e., for q ≷ q∗, respectively,

cf. the horizontal arrows in Fig. 14.4.
From (14.40) we have

q̇ = 0 for 0 = (r + δ)q − FK(K, L̄) + g(m(q))− (q − 1)m(q). (14.42)

If, in addition K̇ = 0 (hence, q = q∗ and m(q) = m(q∗) = δ), this gives

0 = (r + δ)q∗ − FK(K, L̄) + g(δ)− (q∗ − 1)δ, (14.43)

where the right-hand-side is increasing in K, in view of FKK < 0. Hence, there
exists at most one value of K such that the steady state condition (14.43) is
satisfied. And our assumption that F satisfies the Inada conditions ensures that
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Figure 14.4: Phase diagram for investment dynamics in a small open economy (a case
where δ > 0).

such a value exists since (14.43) gives FK(K, L̄) = rq∗ + g(δ) + δ > 0. This value
is denoted K∗, cf. the steady state point E in Fig. 14.4.
The next question is: what is the slope of the q̇ = 0 locus? In Appendix

E, calculating dq/dK subject to the condition (14.42), we find that at least in
a neighborhood of the steady-state point E, this slope is negative in view of the
assumption r > 0 and FKK < 0. From (14.40) we see that

q̇ ≶ 0 for points to the left and to the right, respectively, of the q̇ = 0 locus,

since FKK(Kt, L̄) < 0. The vertical arrows in Fig. 14.4 show these directions of
movement.
Altogether the arrows in the four regions, I, II, III, and IV, in the phase

diagram show that the steady state E is a saddle point. If we imagine that
instead of aggregate capital, K, along the horizontal axis in Fig. 14.4, we have
K/N and the scale is correspondingly adjusted by 1 : N, then the phase diagram
depicts the dynamics of the individual firm. Hence, from now, we can interpret
the figure as describing the dynamics of a “representative firm” as well as the
economy as a whole.
As the capital stock is pre-determined, initially the economy must be situated

at some point on the vertical line K = K0 in Fig. 14.4. A reasonable supposition
is that the initial value of the jump variable q will be the ordinate to the point
of intersection of this line and the saddle path. Over time the economy will
then move along the saddle path towards the steady state. Along this path the
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transversality condition (14.41) is satisfied since r > 0. From the perspective
of the alike firms, following this path means intertemporal profit maximization
under perfect foresigt. This is implied by Mangasarian’s suffi cient conditions, as
we saw at the end of Section 14.1.1. And by construction, there is clearing in the
labor market for all t along the path. So we have found an equilibrium path in
this economy.

Uniqueness?* Could there exist other equilibrium paths? The fact that the
Hamiltonian is a concave function of (K,L, I) and that there is a unique steady
state makes uniqueness “likely” to hold. All other paths in the phase diagram
consistent with the model’s differential equations can then “normally”be shown
to violate a necessary transversality condition or some other condition that an
equilibrium path with perfect foresight must satisfy. Let us check here.
Paths starting above the point B on the vertical lineK = K0 end up in Region

II in Fig. 14.4. So both q and K are ultimately growing for all future t, and the
transversality condition (14.41) can be shown to be violated (see Appendix F).
Hence such a path cannot be optimal. A path starting below the point B on the
vertical line K = K0 will ultimately have both K and q declining. Since neither
K nor q can become negative,15 such a path will not violate the transversality
condition. Yet our intuitive feeling is that such a path cannot be optimal. And
by appealing to Hayashi’s theorem we can prove this. Indeed, from this theorem
we know that the homogeneity of both F and G implies that the maximized value
of the firm satisfies

V ∗(K0, 0) = q0K0,

where q0 is the largest possible initial value of the shadow price, given the re-
quirement that the associated trajectory in the phase diagram does not violate
the transversality condition (14.41). The largest possible initial value with this
property is qB. If q0 < qB we have q0K0 < qBK0. Thus, V ∗(K0, 0) = qBK0. The
argument is the same if we start from a K0 > K∗.
We conclude that the trajectory starting at (K0, qB) and moving along the

saddle path towards the steady state E in Fig. 14.4 is the unique equilibrium
path of the model.

The effect of an unanticipated rise in the interest rate Suppose that
until time 0 the economy has been in the steady state E in Fig. 14.4. Then,
an unexpected shift in the interest rate occurs so that the new interest rate is
a constant r′ > r. We assume that the new interest rate is rightly expected to
remain at this level forever. From (14.39) we see that the K̇ = 0 locus, hence

15Free disposal rules out a negative shadow price, cf. Section 14.1.2.
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Figure 14.5: Phase portrait of an unanticipated rise in r (the case δ > 0).

also q∗, is unaffected by this shift. However, (14.42) implies that the q̇ = 0 locus,
and so also K∗, shift to the left, in view of FKK(K, L̄) < 0.

Fig. 14.5 illustrates the situation for t > 0. At time t = 0 the shadow price q
jumps down to a level corresponding to the point B in Fig. 14.5. There is now
a heavier discounting of the future benefits that the marginal unit of capital can
provide. As a result the incentive to invest is diminished and gross investment
will not even compensate for the depreciation of capital. Hence, the capital
stock decreases gradually. This is where we see a crucial role of convex capital
installation costs in an open economy. For now, the installation costs are the costs
associated with disinvestment (dismantling and selling out of machines). If these
convex costs were not present, we would get the same counterfactual prediction
as from the previous open-economy models in this book, namely that the new
steady state is attained immediately after the shift in the interest rate.

As the capital stock is diminished, the marginal productivity of capital rises
and so does q. The economy moves along the new saddle path and approaches
the new steady state E’ as time goes by.

Suppose the described decrease in the capital stock is not considered desirable
from a social point of view. This could be because of positive external effects
of investing and working with capital equipment, a kind of “learning by doing”.
Then the government could decide to implement an investment subsidy σ ∈ (0, 1).
Then, to attain the investment level I, purchasing the investment goods costs
(1−σ)I. Assuming the subsidy is financed by a tax not affecting firms’behavior,
investment is increased again and the economy will over time end up at a steady-
state level of K higher than without the subsidy. In Exercise 14.? the reader is
asked to examine whether q∗ is affected by such a policy.
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The effect of an unanticipated one-time rise in the labor force Suppose
that until time 0 the economy has been in the steady state E in Fig. 14.4. Then an
unexpected sharp increase in the labor force to the level L̄′ > L̄ occurs (a sudden
immigration, say). Assume the new size of the labor force is rightly expected
to remain at this level forever. While q∗ remains unchanged, immediately after
the labor supply shock, K∗ shifts to the right, in view of steady-state condition
(14.43) combined with FKL(K, L̄) > 0 (this complementarity follows from F being
neoclassical with CRS). Hence, the q̇ = 0 locus shifts. A dynamics in the opposite
direction compared with the above case with a positive permanent interest rate
shock arrises, and the economy moves along the new saddle path and approaches
a new steady state with a higher level of capital. The steady-state real wage
was w∗ = FL(K∗, L̄) in the old steady state and will be w∗′ = FL(K∗′, L̄′) in
the new. In view of (14.43), including the constant interest rate, FK(K∗, L̄) and
FK(K∗′, L̄′) have to be the same. Because FK is homogeneous of degree zero, the
ratios K∗/L̄ and K∗′/L̄′ then have to be the same, and so this holds for w∗ and
w∗′ as well. The rise in the labor force thus leads in the medium term to a rise
in capital so as to leave the capital-labor ratio and the real wage unchanged.

Case 2: A growing small open economy with capital installation costs*

The basic assumptions are the same as in the previous section except that now
labor supply, L̄t, grows at the constant rate n ≥ 0, while the technology level,
T, grows at the constant rate γ ≥ 0 (both rates exogenous and constant). The
world market real interest rate, r, is still a constant and satisfies r > γ + n. We
have full employment: Lt = L̄t = L̄0e

nt. So

Ỹ = F (K,T L̄) = F (
K

TL̄
, 1)TL̄ ≡ f(k̃)TL̄,

where k̃ ≡ K/(TL̄) and f satisfies f ′ > 0 and f ′′ < 0. In view of perfect compe-
tition, the market-clearing real wage at time t is determined as

wt = F2(Kt, TtL̄t)Tt =
[
f(k̃t)− k̃tf ′(k̃t)

]
Tt ≡ w̃(k̃t)Tt,

where both k̃t and Tt are predetermined. The equilibrium real wage at any time
is thus determined by the pre-determined effective capital-labor ratio.
All firms are again assumed completely alike. By analogue logic as in Case

1 above, we can go directly to the aggregate dynamics. Log-differentiation of

k̃ ≡ K/(TL̄) with respect to time gives
·
k̃t/k̃t = K̇t/Kt − (γ + n). Substituting

(14.39), we get
·
k̃t = [m(qt)− (δ + γ + n)] k̃t. (14.44)
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Figure 14.6: Phase portrait of an unanticipated fall in r (a growing economy with
δ + γ + n ≥ γ + n > 0).

The change in the shadow price of installed capital is described by

q̇t = (r + δ)qt − f ′(k̃t) + g(m(qt))− (qt − 1)m(qt), (14.45)

by straightforward generalization of (14.40). Finally, the transversality condition,

lim
t→∞

k̃tqte
−(r−γ−n)t = 0, (14.46)

must hold.
The differential equations (14.44) and (14.45) constitute our new dynamic

system. Fig. 14.6 shows the phase diagram, which is qualitatively similar to that
in Fig. 14.4. We have

·
k̃ = 0 for m(q) = δ + γ + n, i.e., for q = q∗,

where q∗ is defined by the requirement m(q∗) = δ + γ + n. Notice, that when
γ+n > 0, we get a larger steady state value q∗ than in the previous section. This
is because now a higher investment-capital ratio is required for a steady state to
be possible. In view of r > γ + n, the transversality condition (14.46) is satisfied
in the steady state.
From (14.45) we see that q̇ = 0 now requires

0 = (r + δ)q − f ′(k̃) + g(m(q))− (q − 1)m(q).
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If, in addition
·
k̃ = 0 (hence, q = q∗ and m(q) = m(q∗) = δ + γ + n), this gives

0 = (r + δ)q∗ − f ′(k̃) + g(δ + γ + n)− (q∗ − 1)(δ + γ + n). (14.47)

Here, the right-hand-side is increasing in k̃ (in view of f ′′(k̃) < 0). Hence, the
steady-state value k̃∗ of the effective capital-labor ratio is unique, cf. the point E
in Fig. 14.6.
By the assumption r > γ + n we have, at least in a neighborhood of E in

Fig. 14.6, that the q̇ = 0 locus is negatively sloped (see Appendix E).16 Again
the steady state is a saddle point, and the economy moves along the saddle path
towards the steady state.
It is still true, as in the simple Case 1 above, that the market real wage per

unit of effective labor plays a role for the firms’adjustment process. In the long
run, however, it is the real wage that adjusts. Indeed, in the steady state we have
w∗t = w̃(k̃∗)Tt, where k̃∗ is determined by the production function, the installation
cost function, and the parameters r, δ, γ, and n, cf. (14.47).

An unanticipated fall in r. Assume that until time 0, the economy has been
in the steady state E. Then, an unexpected shift in the interest rate to a lower
constant level, r′, takes place. Assume the new interest rate is rightly expected
to remain at this level forever. In view of f ′′ < 0, the lower interest rate shifts
the q̇ = 0 locus to the right, as illustrated in Fig. 14.6. The shadow price, q,
immediately jumps up to a level corresponding to the point B in the figure. The
economy moves along the new saddle path and approaches the new steady state
E’ with a higher effective capital-labor ratio as time goes by. In Exercise 14.?
the reader is asked to examine the analogue situation where an unanticipated
downward shift in the rate of technological progress takes place.

14.4 Concluding remarks

Tobin’s q-theory of investment gives a remarkably simple operational macroeco-
nomic investment function, in which aggregate investment is an increasing func-
tion of the valuation of the firms by the stock market relative to the replacement
value of the firms’physical capital. This link between asset markets and firms’
aggregate investment is an appealing feature of Tobin’s q-theory.
When faced with strictly convex installation costs, the firm has to take the

future into account to invest optimally. Therefore, the firm’s expectations become

16In our perfect foresight model we in fact have to assume r > γ+n for the firm’s maximization
problem to be well-defined. If instead r ≤ γ + n, the market value of the representative firm
would be infinite, and maximization would loose its meaning.
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important. Owing to the strictly convex installation costs, the firm adjusts its
capital stock only gradually when new information arises.
By incorporating these features, Tobin’s q-theory helps explaining the slug-

gishness in investment that corresponds to our intuition and which we see in the
data. The theory avoids the unrealistic picture of firms’ capital as a produc-
tion factor that can move instantaneously across firms and industries. And it
avoids the counterfactual outcome from earlier chapters that the capital stock
in a small open economy with perfect mobility of goods and financial capital is
instantaneously adjusted when the interest rate in the world market changes. So
the theory takes into account the time lags in capital adjustment in real life.
Possibly, this feature can be abstracted from in long-run analysis and models of
economic growth, but not in short- and medium-run analysis.
Many econometric tests of the q theory of investment have been made, often

with critical implications. Movements in qa, even taking account of changes in
taxation, seems capable of explaining only a minor part of the movements in
investment. And the estimated equations relating fixed capital investment to qa

typically give strong auto-correlation in the residuals. Other variables, in particu-
lar availability of current profits for internal financing, seem to have explanatory
power independently of qa (see Abel 1990, Chirinko 1993, Gilchrist and Him-
melberg, 1995). There is thus reason to be sceptical towards the notion that all
information of relevance for the investment decision is reflected by the market val-
uation of firms. The assumption in Hayashi’s theorem (and its generalizations),
that firms’cash flow tends to be homogeneous of degree one with respect to K,
L, and I, may of course also be questioned.
Further circumstances are likely to relax the link between qa and investment.

In the real world with many production sectors, physical capital is heterogeneous.
If for example a sharp unexpected rise in the price of energy takes place, a firm
with energy-intensive technology is likely to loose in market value. At the same
time it has an incentive to invest in energy-saving capital equipment. Hence, we
might observe a fall in the firm’s qa at the same time as its investment increases.
Imperfections in credit markets are ignored by the q-theory. Their presence

further loosens the relationship between qa and investment and may help explain
the observed positive correlation between investment and corporate profits.
It could also be questioned that capital installation costs really have the hy-

pothesized strictly convex form. It is one thing that there are costs associated
with installation, reorganizing and retraining etc., when new capital equipment
is procured. But should we expect these costs to always be strictly convex in
the volume of investment? To think about this, let us for a moment ignore the
role of the existing capital stock and write total installation costs as J = G(I)
with G(0) = 0. It does not seem problematic to assume G′(I) > 0 for I > 0.
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The question concerns the assumption that G′′(I) > 0 at all levels of I and
thereby that the average installation cost G(I)/I is increasing in I everywhere.17

Indeed, capital installation may involve indivisibilities and fixed costs, in which
case a tendency to decreasing average costs arises. So, at least at firm level there
may be reason to expect unevenness in capital adjustment rather than the above
smooth adjustment.
Because of the mixed empirical success of the convex installation cost idea, ad-

ditional factors have been introduced to account for sluggish and sometimes lumpy
capital adjustment: uncertainty, investment irreversibility and option values, in-
divisibility, and financial frictions due to bankruptcy costs. In their book, Invest-
ment Under Uncertainty, Princeton University Press, 1994, Dixit and Pindyck
show that the traditional present value maximization rule for capital investment
can lead to wrong answers because it ignores the irreversibility of many invest-
ment decisions, hence the importance of the option of delaying an investment.
A survey of the theory and empirics about fixed capital investment is given in
Caballero (1999).
The different approaches may be complementary rather than substitutes. It

turns out that the q-theory of investment has recently been somewhat rehabili-
tated from both a theoretical and an empirical point of view. At the theoretical
level Wang and Wen (2010) show that financial frictions in the form of collat-
eralized borrowing at the firm level can give rise to strictly convex adjustment
costs at the aggregate level yet at the same time generate lumpiness in plant-level
investment. For large firms, unlikely to be much affected by financial frictions,
Eberly et al. (2008) find that the q-theory does a quite good job in explaining
investment behavior.
Whatever the detailed merits or weaknesses of the q-theory of investment, its

basic point, that capital adjustment is time-consuming and involves adjustment
costs, remains in force. Varieties of the q-theory of investment are widely used
in short- and medium-run macroeconomics, both because of the simplicity of the
theory and the link it establishes between asset markets and firms’investment.
Elements of the q-theory have also had an important role in studies of housing
market dynamics, a theme to which we return in the next chapter.

14.5 Literature notes

The label “Tobin’s q-theory of investment is a short-hand for a fusion of two
strands of contributions to macroeconomic investment theory. One is the convex

17Indeed, for I 6= 0 we have d[G(I)/I]/dI = [IG′(I)−G(I)]/I2 > 0, when G is strictly convex
(G′′ > 0) and G(0) = 0.
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adjustment cost approach, originally developed by Lucas (1967), Gould (1968),
Uzawa (1969), and Treadway (1969). Along this strand Mussa (1977) compares
different ways of modeling internal and external adjustment costs and discusses
conditions for aggregation. An early and instructive survey of the theory and
empirics of firms’fixed capital investment is provided by Nickell (1979). The
other strand is the hypothesis put forward in Tobin (1969) that firms’fixed capital
investment is positively related to “average q”. In fact this notion can be traced
back to Keynes (1936, p. 151).

Later advances in the theory took place through the “synthesizing”contribu-
tions of Abel (1982).and Hayashi (1982). By distinguishing between “marginal q”
and “average q”, a synthesis of the convex adjustment cost approach and Tobin’s
macro-oriented “average q”approach was built, as surveyed in Abel (1990). For
instance, Summers (1981) and Dixit (1990) use the framework to study dynamic
effects of tax policy on corporate investment. From the empirical side, Abel and
Blanchard (1986) computed series of expected present values of marginal profits
based on US data. They found that the variations in this present values series
are, surprisingly, due more to variations in the cost of capital than to variations in
marginal profits. The present value series, although significantly related to invest-
ment, still left unexplained a large serially correlated fraction of the movement
in investment. See also Blanchard, Rhee, and Summers (1993).

Tobin’s q-theory of investment has been integrated in a variety of dynamic
macroeconomic models. Abel and Blanchard (1983) studied dynamic effects of
fiscal policy (an investment tax credit and taxes on output, profit, consumption,
respectively) in a Ramsey model extended by adding strictly convex capital in-
stallation costs. In a similar framework Lim and Weil (2003) study effects of
population aging on the stock market. ..... For instance Baxter and Cruzini
(1993) and Christiano and Fisher (2003) integrate Tobin’s q-theory into the RBC
approach to business cycles. Groth and Madsen (2016) study medium-term fluc-
tuations in a closed economy, arising in a Tobin’s q framework combined with
sluggishness in real wage adjustments.

More recent advances in the theory of lumpy capital investment are treated in,
e.g., Zeira (1987), Dixit and Pindyck (1994), ... and Cooper (2003) and surveyed
in Caballero (1999).

The theory and empirics concerning inventory investment also emphasize con-
vex adjustment costs. Ramey and West (Handbook of Macro, vol. 1B, 1999)
provide a survey.
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14.6 Appendix

A. When value maximization is —and is not —equivalent to continuous
static profit maximization

For the idealized case where tax distortions, asymmetric information, and prob-
lems with enforceability of financial contracts are absent, the Modigliani-Miller
theorem (Modigliani and Miller, 1958) says that the market value (debt plus eq-
uity) does not depend on the level of the debt. The financial structure of the firm
will be both indeterminate and irrelevant for production outcomes. Considering
the firm described in Section 14.1, the implied separation of the financing decision
from the production and investment decision can be exposed in the following way.

The Modigliani-Miller theorem in action Although the theorem allows for
risk, we here ignore risk. Let the real debt of the firm be denoted Bt and the real
dividends, Xt. We then have the accounting relationship

Ḃt = Xt − (F (Kt, Lt)−G(It, Kt)− wtLt − It − rtBt) .

A positive Xt represents dividends in the usual meaning (payout to the owners
of the firm), whereas a negative Xt can be interpreted as emission of new shares
of stock. Since we assume perfect competition, the time path of wt and rt is
exogenous to the firm.
Consider first the firm’s combined financing and production-investment prob-

lem, which we call Problem I. Assume (realistically) that those who own the firm
at time 0 want it to maximize its net worth, i.e., the present value of expected
future dividends:

max
(Lt,It,Xt)∞t=0

Ṽ0 =

∫ ∞
0

Xte
−
∫ t
0 rsdsdt s.t.

Lt ≥ 0, It “free”,

K̇t = It − δKt, K0 > 0 given, Kt ≥ 0 for all t,

Ḃt = Xt − (F (Kt, Lt)−G(It, Kt)− wtLt − It − rtBt) ,

where B0 is given, (14.48)

lim
t→∞

Bte
−
∫ t
0 rsds ≤ 0. (NPG)

The last constraint is the firm’s No-Ponzi-Game condition, saying that a positive
debt should in the long run at most grow at a rate which is less than the interest
rate.
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In Section 14.1 we considered another problem, namely a separate investment-
production problem, which we name Problem II :

max
(Lt,It)∞t=0

V0 =

∫ ∞
0

Rte
−
∫ t
0 rsdsdt s.t.,

Rt ≡ F (Kt, Lt)−G(It, Kt)− wtLt − It,
Lt ≥ 0, It free,

K̇t = It − δKt, K0 > 0 given, Kt ≥ 0 for all t.

In this problem the financing aspects are ignored. Regarding the relationship
between Problem I and Problem II the following mathematical fact is useful.

LEMMA A1 Consider a continuous function a(t) and a differentiable function
f(t). Then∫ t1

t0

(f ′(t)− a(t)f(t))e
−
∫ t
t0
a(s)ds

dt = f(t1)e−
∫ t1
t0
a(s)ds − f(t0).

Proof. By integration by parts from time t0 to time t1, we have∫ t1

t0

f ′(t)e
−
∫ t
t0
a(s)ds

dt = f(t)e
−
∫ t
t0
a(s)ds

∣∣t1
t0 +

∫ t1

t0

f(t)a(t)e
−
∫ t
t0
a(s)ds

dt.

Hence, ∫ t1

t0

(f ′(t)− a(t)f(t))e
−
∫ t
t0
a(s)ds

dt

= f(t1)e−
∫ t1
t0
a(s)ds − f(t0). �

CLAIM 1 If (K∗t , B
∗
t , L

∗
t , I
∗
t , X

∗
t )∞t=0 is a solution to Problem I, then (K∗t , L

∗
t , I
∗
t )∞t=0

is a solution to Problem II.

Proof. By (14.48) and the definition of Rt, Xt = Rt + Ḃt − rtBt so that

Ṽ0 =

∫ ∞
0

Xte
−
∫ t
0 rsdsdt = V0 +

∫ ∞
0

(Ḃt − rtBt)e
−
∫ t
0 rsdsdt. (14.49)

In Lemma A1, let f(t) = Bt, a(t) = rt, t0 = 0, t1 = T and consider T → ∞.
Then

lim
T→∞

∫ T

0

(Ḃt − rtBt)e
−
∫ t
0 rsdsdt = lim

T→∞
BT e

−
∫ T
0 rsds −B0 ≤ −B0,
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where the weak inequality is due to (NPG). Substituting this into (14.49), we
see that maximum of net worth Ṽ0 is obtained by maximizing V0 and ensuring
limT→∞BT exp(−

∫ T
0
rsds) = 0, in which case net worth equals (maximized V0)−

B0, where B0 is given. So a plan that maximizes net worth of the firm must also
maximize V0 in Problem II. �
In view of Claim 1, it does not matter for the firm’s production and investment

decision whether the investment is financed by issuing new debt or by issuing
shares of stock. Moreover, if we assume investors do not care about whether
they receive the firm’s earnings in the form of dividends or valuation gains on the
shares, the firm’s dividend policy is also irrelevant. Hence, from now on we can
concentrate on the investment-production problem, Problem II above.

The case with no capital installation costs Let (pure) profit at time t be
denoted Πt. Then:

Πt = F (Kt, Lt)− wtLt − (rt + δ)Kt ≡ Π(Kt, Lt).

CLAIM 2 When there are no capital installation costs, Problem II can be reduced
to a series of isolated static profit maximization problems.

Proof. Consider Problem II above with G(It, Kt) ≡ 0. Applying the Maximum
principle, for every t ≥ 0 we have the first-order conditions:

∂H/∂Lt = FL(Kt, Lt)− wt = 0, (*)

∂H/∂It = −1 + qt = 0, (**)

∂H/∂Kt = FK(Kt, Lt)− qtδ = −q̇t + rtqt. (***)

(**) and (***) in combination implies FK(Kt, Lt) = rt+δ. This condition and (*)
make up the standard first-order conditions for static maximization of the profit
Πt as defined above. �
The background for this result is the following. In the absence of capital

installation costs, the cash flow Rt can be written

Rt = F (Kt, Lt)− wtLt − It = Πt + (rt + δ)Kt − (K̇t + δKt), (14.50)

since It = K̇t + δKt. Hence,

V0 =

∫ ∞
0

Πte
−
∫ t
0 rsdsdt+

∫ ∞
0

(rtKt − K̇t)e
−
∫ t
0 rsdsdt. (14.51)
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The first integral on the right-hand side of this expression is independent of the
second. Indeed, in the absence of installation costs, the factor cost of production
is wtLt +(rt + δ)Kt, since the operating cost of capital is rt + δ per unit of capital
service, whether the firm itself owns the used capital or rents it. can maximize
the first integral by renting capital and labor, Kt and Lt, at the going factor
prices, rt + δ and wt, respectively, such that Πt = Π(Kt, Lt) is maximized at each
t.18 The factor costs are accounted for in the definition of the profit function Π.

But maximization of V0 requires maximization not only of the first integral in
(14.51), but also the second, which can be interpreted as the present value of net
revenue from accumulating capital and renting it out to others. In Lemma A1,
let f(t) = Kt, a(t) = rt, t0 = 0, t1 = T and consider T →∞. Then

lim
T→∞

∫ T

0

(rtKt − K̇t)e
−
∫ t
0 rsdsdt = K0 − lim

T→∞
KT e

−
∫ T
0 rsds. (14.52)

We see that maximization of the second integral in (14.51) requires, since K0

is given, minimization of limT→∞KT exp(−
∫ T

0
rsds). This latter expression is

always non-negative and can, when r > 0, be made zero by letting the long-
run growth rate of Kt be less than the interest rate in the long run. (This
reflects the principle expressed in Claim 3 below.) So the maximized value of
the left-hand side of (14.52) is K0. Substituting this into (14.51), we get V0 =∫∞

0
Πt exp(−

∫ T
0
rsds)dt+K0.

The conclusion is that, given K0,19 V0 is maximized if and only if Kt and Lt
are at each t chosen such that Πt = Π(Kt, Lt) is maximized.

CLAIM 3 At least in the absence of capital installation costs, it does not pay
the firm to accumulate costly capital in the long run at a rate as high as, or even
higher than, the interest rate.

Proof. Sustained accumulation at a rate at least as high as the interest rate
implies limT→∞KT exp(−

∫ T
0
rsds) > 0. This inequality shows that the right-hand

side of (14.52) is not maximized, and so V0 is not maximized. �

18Continuously renting capital is from an accounting point of view equivalent to continuous
renewal of short-term loans.
19Note that in the absence of capital installation costs, the historically given K0 is no more

“given”than the firm may instantly let it jump to a lower or higher level. In the first case the
firm would immediately sell or rent out a bunch of its machines and in the latter case it would
immediately buy or rent a bunch of machines. Indeed, without convex capital installation costs
nothing rules out jumps in the capital stock at firm level. Such a jump will just leave the net
worth of the firm unchanged, being counterbalanced by an immediate jump, in the opposite
direction, of another asset in the firm’s balance sheet.

c© Groth, Lecture notes in macroeconomics, (mimeo) 2017.



14.6. Appendix 639

The case with strictly convex capital installation costs Now we reintro-
duce the capital installation cost function G(It, Kt), satisfying in particular the
strict convexity assumption GII(I,K) > 0 for all (I,K). Then we define current
(pure) profit as

Π̃t = F (Kt, Lt)−G(It, Kt)− wtLt − (rt + δ)Kt ≡ Π̃(Kt, Lt, It),

and write cash flow as

Rt = F (Kt, Lt)−G(It, Kt)−wtLt − (K̇t + δKt) = Π̃t + (rt + δ)Kt − (K̇t + δKt).

Hence,

V0 =

∫ ∞
0

Π̃te
−
∫ t
0 rsdsdt+

∫ ∞
0

(rtKt − K̇t)e
−
∫ t
0 rsdsdt.

From an accounting point of view this expression looks similar to (14.51). The
new feature is, however, that the first integral on the right-hand side is no longer
independent of the second integral. Via the installation costs, the current capital
stock, Kt, and investment rate, It, affect both current profit and profit in the
next instant.
As shown in the text, the intertemporally profit-maximizing firm will then

adjust to a change in its environment, say a downward shift in r, by a gradual
adjustment of K (upward in this case), rather than attempting an instantaneous
maximization of Π̃(Kt, Lt, It). In a continuous-time framework, to attempt the
latter would in principle entail an instantaneous upward jump in Kt of size ∆Kt

= a for some a > 0, requiring It ·∆t = a for ∆t = 0. This would require It =∞,
which implies G(It, Kt) =∞. This implication may be interpreted either as such
a jump being impossible or at least so costly that no firm would pursue it.

B. Necessary transversality conditions

Proof of necessity of (14.16) For convenience we name (14.16) (*) and repeat
it here:

lim
t→∞

qte
−
∫ t
0 (rτ+δ)dτ = 0. (*)

Consider an interior optimal path (Kt, Lt, It)
∞
t=0, our reference path. Accord-

ing to the Maximum Principle, the path must for every t ≥ 0 satisfy the first-order
conditions (14.11), (14.12), and (14.13). Rearranging (14.13) and multiplying
through by the factor e−

∫ t
0 (rτ+δ)dτ , we get

[(rt + δ)qt − q̇t] e−
∫ t
0 (rτ+δ)dτ = (FK(Kt, Lt)−GK(It, Kt))e

−
∫ t
0 (rτ+δ)dτ . (14.53)
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Integration on both sides of (14.53) yields∫ T

0

[(rt + δ)qt − q̇t] e−
∫ t
0 (rτ+δ)dτ =

∫ T

0

(FK(Kt, Lt)−GK(It, Kt)) e
−
∫ t
0 (rτ+δ)dτdt.

(14.54)
In Lemma A1, let f(t) = qt, a(t) = rt + δ, t0 = 0, t1 = T, and multiply through
by −1 to get ∫ T

0

[(rt + δ)qt − q̇t] e−
∫ t
0 (rτ+δ)dτ = q0 − qT e−

∫ T
0 (rτ+δ)dτ .

Comparing with (14.53), we have

q0 − qT e−
∫ T
0 (rτ+δ)dτ =

∫ T

0

(FK(Kt, Lt)−GK(It, Kt)) e
−
∫ t
0 (rτ+δ)dτdt. (14.55)

Rearranging and letting T →∞, gives

q0 =

∫ ∞
0

(FK(Kt, Lt)−GK(It, Kt)) e
−
∫ t
0 (rτ+δ)dτdt+ lim

T→∞
qT e

−
∫ T
0 (rτ+δ)dτ . (14.56)

Now, suppose initial investment per time unit is reduced by one unit of account
relative to the reference path over the short time interval [0,∆t) . Then the firm
would save an amount approximately equal to (1+GI(I0, K0))∆t = q0∆t, in view
of the first-order condition (14.12). If, contrary to (*), limT→∞ qT exp(−

∫ T
0

(rτ +
δ)dτ) > 0, then the saved approximative amount, q0∆t, would exceed the first
term on the right-hand side of (14.56) multiplied by ∆t, which represents the
present value of the stream of forgone gains from this marginal unit of installed
capital during the ∆t time units. Since a reduction in investment would thus
be beneficial to the firm, the firm would have overinvested in the original situ-
ation. If instead, contrary to (*), limT→∞ qT exp(−

∫ T
0

(rτ + δ)dτ) < 0, then the
saved amount would be less than the present value of the stream of forgone gains
from the marginal unit of installed capital during the ∆t time units. Since an
increase in investment would thus be beneficial to the firm, the firm would have
underinvested in the original situation. This proves (*).
Together with (14.56), (*) implies

qt =

∫ ∞
t

(FK(Ks, Ls)−GK(Is, Ks))e
−
∫ s
t (rτ+δ)dτds. (14.57)

This proves (14.17).20

20An equivalent approach to derivation of (*) and (14.17) can be based on the general solu-
tion formula for linear inhomogeneous first-order differential equations. Indeed, the first-order
condition (14.13) provides such a differential equation in qt.

c© Groth, Lecture notes in macroeconomics, (mimeo) 2017.



14.6. Appendix 641

Proof of necessity of (14.14) For convenience we name the transversality
condition (14.14) (**) and repeat it here:

lim
t→∞

Ktqte
−
∫ t
0 rτdτ = 0. (**)

In cases where along an optimal path, Kt is not bounded from above for t →
∞, this transversality condition is stronger than (14.16) because the implied
constraint on the long-run evolution of qt is sharper.
To prove (**),21 consider an interior optimal path (Kt, Lt, It)

∞
t=0. As noted

in Section 14.1.1, we may interpret the maximized V0 as a function of the initial
capital and initial time:

V ∗(K0, 0) =

∫ ∞
0

[F (Kt, Lt)−G(It, Kt)− wtLt − It] e−
∫ t
0 rτdτdt ≡

∫ ∞
0

Φ(Kt, Lt, It, t)e
−
∫ t
0 rτdτdt.

(14.58)
where, to save notation, we have introducedΦ(Kt, Lt, It, t)≡ F (Kt, Lt)−G(It, Kt)−
wtLt − It.
By the “principle of optimality”all subtrajectories of an optimal trajectory

must also be optimal. Thus, if we have found the fastest way to go from A to
C and this path goes via B, the fastest way to go from B to C is to follow the
B to C portion of our original A-B-C path. In the present case, the principle of
optimality allows us to write, for arbitray t ≥ 0,

V ∗(K0, 0) =

∫ t

0

Φ(Ks, Ls, Is, s)e
−
∫ s
0 rτdτds+ e−

∫ t
0 rτdτV ∗(Kt, t), (14.59)

where V ∗(Kt, t) is defined in a way analogue to (14.58), but with (Kt, t) as starting
point. We may rewrite (14.59) as

V ∗(Kt, t) = e
∫ t
0 rτdτ

[
V ∗(K0, 0)−

∫ t

0

Φ(Ks, Ls, Is, s)e
−
∫ s
0 rτdτds

]
. (14.60)

This function, the value function, is thus well-defined for all t ≥ 0, given the
interior optimal path considered.

LEMMA B1 For all t ≥ 0 and Kt > 0, the function Φ(Kt, Lt, It, t) ≡ F (Kt, Lt)−
G(It, Kt)−wtLt−It has the properties: ΦK ≥ 0, Φ(Kt, 0, 0, t)≥ 0, andΦ(Kt, Lt, It, t)
is concave in its first three arguments.
Proof. The stated properties of Φ follow by construction, given the properties of
F and G stated in Section 14.1.1. �
LEMMA B2 Consider an interior optimal path, (Kt, Lt, It)

∞
t=0, with associated

value function V ∗(Kt, t). Then:

21The following draws upon Weitzman (2003, Chapter 3).
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(i) Along the path, the function Φ has the property ΦK > 0 for all t ≥ 0.
(ii) V ∗(Kt, t) is a positive, increasing, and concave function of Kt for all t ≥ 0.
(iii) qt > 0 for all t ≥ 0.

(iv) limt→∞ V
∗(Kt, t)e

−
∫ t
0 rτdτ = 0.

Proof (sketch). (i) Along an interior optimal path, by definition, Kt > 0 and
Lt > 0 for all t ≥ 0. It follows, by definition of a neoclassical production function,
that FK > 0 along the path. Since GK ≤ 0, we then have ΦK = FK − GK > 0
for all t ≥ 0. (ii) For all t ≥ 0 and Kt > 0, a possible choice is Lt = 0 = It, in
which case Φ = Φ(Kt, 0, 0, t) ≥ 0 by Lemma B1. It follows that V ∗(Kt, t) ≥ 0
for all t ≥ 0. We also have 1

2
Kt > 0 and so V ∗(1

2
Kt, t) ≥ 0. Consequently, in

view of ΦK > 0 from (i), V ∗(Kt, t) > V ∗(1
2
Kt, t) ≥ 0. This proves V ∗(Kt, t)

> 0 for all t ≥ 0. As to the second part of (ii), note that an extra unit of
capital has durability (although declining exponentially over time), that ΦK > 0,
and that there is always the option of maintaining I and L unchanged. Hence,
more installed capital is always better than less installed capital at the same
time. This proves that V ∗(Kt, t) is increasing in Kt. The concavity of V ∗(Kt, t)
with respect to Kt is more intricate, but proved in Weitzman (2003, pp. 79-
81). (iii) In Section 14.1.1 we saw that at points where V ∗ is differentiable with
respect to Kt, ∂V ∗(Kt, t)/∂Kt equals the right-hand side of (14.57). Hence, qt
= ∂V ∗(Kt, t)/∂Kt. By (ii), ∂V ∗(Kt, t)/∂Kt > 0, and so qt > 0. (iv) From (14.60)
follows

lim
t→∞

V ∗(Kt, t)e
−
∫ t
0 rτdτ = V ∗(K0, 0)− lim

t→∞

∫ t

0

Φ(Ks, Ls, Is, s)e
−
∫ s
0 rτdτds

= V ∗(K0, 0)− V ∗(K0, 0) = 0,

where the second equality is due to the considered path (Kt, Lt, It)
∞
t=0 being an

optimal path. �
By concavity of V ∗(Kt, t) follows

lim
K→0

V ∗(K, t) ≤ V ∗(Kt, t) +
∂V ∗(Kt, t)

∂Kt

(0−Kt), (14.61)

because a concave function nowhere lies above its tangent. Substituting qt into
(14.61) and rearranging gives

qtKt ≤ V ∗(Kt, t)− lim
K→0

V ∗(K, t).

Multiplying through by e−
∫ t
0 rτdτ and letting t→∞, we get

lim
t→∞

qtKte
−
∫ t
0 rτdτ ≤ lim

t→∞
V ∗(Kt, t)e

−
∫ t
0 rτdτ − lim

K→0
V ∗(K, t)e−

∫ t
0 rτdτ = 0− 0 = 0,
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where we have used (iv) of Lemma B1 and that rτ > 0 at least in the long
run. Since both qt and Kt are nonnegative, so is the left-hand side of this weak
inequality. This shows that (14.14) is necessary for optimality.

C. On different specifications of the adjustment costs

Sometimes in the literature installation costs, J , appear in a form different from
the one focused on in this chapter. Abel and Blanchard (1983), followed by
the textbooks Blanchard and Fischer (1989) and Barro and Sala-i-Martin (2004,
pp. 152-160), introduce a function, φ, representing capital installation costs per
unit of investment as a function of the investment-capital ratio. That is, total
installation cost is J = φ(I/K)I, where φ(0) = 0, φ′ > 0. This implies that J/K
= φ(I/K)(I/K). The right-hand side of this equation may be called g(I/K), and
then we are back at the formulation in Section 14.1. Indeed, defining x ≡ I/K,
we have installation costs per unit of capital equal to g(x) = φ(x)x, and assuming
φ(0) = 0, φ′ > 0, it holds that

g(x) = 0 for x = 0, g(x) > 0 for x 6= 0,

g′(x) = φ(x) + xφ′(x) R 0 for x R 0, respectively.

For the theory to work, we also need that g′′(x) (= 2φ′(x) + xφ′′(x)) > 0. When
x ≥ 0, this inequality is guaranteed by the assumptions φ(0) = 0 and φ′ > 0. But
when x < 0, it is not guaranteed. Then the less graceful additional assumption
2φ′(x) + xφ′′(x) > 0 is needed.
Sometimes an alternative hypothesis is considered, namely that the capital

installation cost G(I, K) takes the form of a reduction in capital formation rather
than in output. Then we may write

K̇ = I −G(I,K)− δK ≡ Ψ(I,K)− δK, (14.62)

where the “capital installation function”Ψ(I,K) is defined for I ≥ 0 and has
the properties Ψ(0, K) = 0, 0 < ΨI ≤ 1 = ΨI(0, K), ΨII < 0, and ΨK ≥ 0.22

This approach is used in for instance Hayashi (1982) and the textbook Heijdra
and Ploeg (2002). With Ψ(I,K) homogeneous of degree one, we can define
ψ(I/K) ≡ Ψ(I/K, 1) and write capital accumulation as K̇/K = ψ(I/K) − δ,
with ψ′ = ΨI and ψ

′′ < 0. In the next chapter we use this approach to describe
housing construction. Apart from silence about situations with disinvestment,
the approcah gives qualitatively similar results as the one we have used in this
chapter.

22To be consistent with these properties, the G function should not be “too convex”. For
instance, our favorite example in this chapter, G(I,K) = (β/2)I2/K, would not do. A certain
class of CES functions will do for Ψ(I,K), cf. Section 15.2.
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Finally, some analysts, e.g., Abel (1990), assume that installation costs are a
strictly convex function of net investment, I−δK. This agrees well with intuition
if mere replacement investment occurs in a smooth way not involving new tech-
nology, work interruption, and reorganization. To the extent capital investment
is lumpy because of indivisibilities and new technology, it seems more plausible
to specify the installation costs as a convex function of gross investment.

D. Proof of Hayashi’s theorem

The point of departure is the production-investment problem in Section 14.1.1.
The value of the firm as seen from time t is

Vt =

∫ ∞
t

(F (Ks, Ls)−G(Is, Ks)− wsLs − Is)e−
∫ s
t rτdτds, (14.63)

where the production function F is neoclassical and concave in (K, L), and that
the installation cost function G is convex in (I,K). We introduce the functions

A(K,L) ≡ F (K,L)− (FK(K,L)K + FL(K,L)L), (14.64)

B(I,K) ≡ GI(I,K)I +GK(I,K)K −G(I,K). (14.65)

Then the cash-flow of the firm at time s can be written

Rs = F (Ks, Ls)− FL(Ks, Ls)Ls −G(Is, Ks)− Is
= A(Ks, Ls) + FK(Ks, Ls)Ks +B(Is, Ks)−GI(Is, Ks)Is −GK(Is, Ks)Ks − Is,

where we have used first FL(Ks, Ls) = ws and next the definitions of A(·) and B(·)
in (14.64) and (14.65), respectively. This allows us to decompose tha maximized
value of the firm, the value function Vt = V ∗(Kt, t), the following way:

V ∗(Kt, t) =

∫ ∞
t

(A(Ks, Ls) +B(Is, Ks)) e
−
∫ s
t rτdτds (14.66)

+

∫ ∞
t

[(FK(Ks, Ls)−GK(Is, Ks))Ks − (1 +GI(Is, Ks))Is]e
−
∫ s
t rτdτds

=

∫ ∞
t

(A(Ks, Ls) +B(Is, Ks))e
−
∫ s
t rτdτds+ qtKt, (14.67)

where the last equality is implied by Lemma D1 below.

LEMMA D1 Consider the firm’s problem in Section 14.1.1. The associated
necessary transversality condition (14.14) implies that the term in the second
line of (14.66) equals qtKt, when investment follows the optimal path.
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Proof. We want to characterize a given optimal path (Ks, Is, Ls)
∞
s=t. Keeping t

fixed and using s as our varying time variable, we have for all s ≥ 0,

(FK(Ks, Ls)−GK(Is, Ks))Ks−(1+GI(Is, Ks))Is = [(rs+δ)qs−q̇s]Ks−(1+GI(Is, Ks))Is

= [(rs + δ)qs − q̇s]Ks − qs(K̇s + δKs) = rsqsKs − (q̇sKs + qsK̇s) ≡ rsus − u̇s,

where we have used (14.13), (14.12), (14.8), and the definition us ≡ qsKs. Defin-
ing ξs ≡ (FK(Ks, Ls)−GK(Is, Ks))Ks − (1 +GI(Is, Ks))Is, the function us thus
satisfies the differential equation: u̇s − rsus = −ξs. The solution to this linear
differential equation is

us =

(
ut −

∫ s

t

ξze
−
∫ z
t rτdτdz

)
e
∫ s
t rτdτ .

By multiplying through by e−
∫ s
t rτdτ , rearranging, and inserting the definitions of

u and ξ, we get∫ s

t

[(FK(Kz, Lz)−GK(Iz, Kz))Kz − (1 +GI(Iz, Kz))Iz]e
−
∫ z
t rτdτdz

= qtKt − qsKse
−
∫ s
t rτdτ → qtKt for s→∞,

by the transversality condition (14.14) with t replaced by s and 0 replaced by t.
�
For convenience, from Section 14.2 we repeat:

THEOREM (Hayashi) Assume that the firm is a price taker, that the production
function F is neoclassical and concave in (K,L), and that the installation cost
function G is convex in (I,K). Then, along the optimal path we have:
(i) qmt = qat for all t ≥ 0, if F and G are homogeneous of degree 1.
(ii) qmt < qat for all t, if F is strictly concave in (K,L) and/or G is strictly

convex in (I,K).

Proof. Isolating qt in (14.67), it follows that

qmt ≡ qt =
V ∗(Kt, t)

Kt

− 1

Kt

∫ ∞
t

[A(Ks, Ls) +B(Is, Ks)]e
−
∫ s
t rτdτds, (14.68)

when moving along the optimal path. Since F is a concave C1 function and, as a
production function, has F (0, 0) = 0, we have for all K and L, A(K,L) ≥ 0 with
equality sign, if and only if F is homogeneous of degree one. Similarly, since G is
a convex C1 function and has G(0, 0) = 0, we have for all I and K, B(I,K) ≥ 0
with equality sign, if and only if G is homogeneous of degree one. Now the
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conclusions (i) and (ii) follow from (14.68) and the definition qat ≡ V ∗(Kt, t)/Kt

from (14.32). �
Concerning item (i) of Hayashi’s theorem, a simple —and perhaps more illumi-

nating —way to understand it is the following (based on D’Autume and Michel,
1985). Suppose G and F are homogeneous of degree one. Then A = B = 0,
G(I,K) = g(I/K)K, and F (K,L) = FK(K,L)K + FL(K,L)L = f ′(k)K + wL,
hence

F (K,L)− wL = f ′(k)K, and FL(K,L) = f(k)− kf ′(k) = w, (14.69)

where f is the production function in intensive form and where the first-order con-
dition FL(K,L) = w has been applied. Consider an optimal path (Ks, Is, Ls)

∞
s=t

and let ks ≡ Ks/Ls and xs ≡ Is/Ks along this path which we now want to
characterize. As the path is assumed optimal, from (14.63) and (14.69) follows

Vt = V ∗(Kt, t) =

∫ ∞
t

[f ′(ks)− g(xs)− xs]Kse
−
∫ s
t rτdτds. (14.70)

From K̇t = (xt − δ)Kt follows Ks = Kt exp(
∫ s
t

(xτ − δ)dτ). Substituting this into
(14.70) yields

V ∗(Kt, t) = Kt

∫ ∞
t

[f ′(ks)− g(xs)− xs]e−
∫ s
t (rτ−xτ+δ)dτds.

In view of (14.28), the optimal investment ratio xs depends, for all s, only on qs,
not on Ks and so not on Kt. Similarly, in view of (14.69), for all s the chosen ks
depends only on the market wage ws, not on Ks and so not on Kt. Hence,

∂V ∗(Kt, t)

∂Kt

=

∫ ∞
t

[f ′(ks)− g(xs)− xs]e−
∫ s
t (rτ−xτ+δ)dτds =

V ∗(Kt, t)

Kt

.

From the definitions (14.33) and (14.32), we now conclude qmt = qat .

Remark. We have assumed throughout that G is strictly convex in I. This
does not imply that G is strictly convex in (I,K). For example, the function
G(I,K) = I2/K is strictly convex in I (since GII = 2/K > 0). But at the same
time this function has B(I,K) = 0 and is therefore homogeneous of degree one.
Hence, it is not strictly convex in (I,K).

E. The slope of the q̇ = 0 locus in the SOE case

For Case 1 we shall determine the sign of the slope of the q̇ = 0 locus in the case
g + n = 0, considered in Fig. 14.4. Substitute ϕ(q) ≡ − [g(m(q))− (q − 1)m(q)]
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into (14.42) and on both sides take the total differential with respect to K and q
to get

0 = −FKK(K, L̄)dK + [r + δ −m(q)] dq,

where we have applied that ϕ′(q) = m(q), see Lemma 2 of Section 14.1.3. Hence

dq

dK |q̇=0
=

FKK(K, L̄)

r + δ −m(q)
for m(q) 6= r + δ.

From this it is not possible to sign dq/dK at all points along the q̇ = 0 locus. But
in a small neighborhood of the steady state we havem(q) ≈ δ, hence r+δ−m(q) ≈
r > 0. And since FKK < 0, this implies that at least in a small neighborhood of
E in Fig. 14.4, the q̇ = 0 locus is negatively sloped.
In Case 2, consider the case g + n > 0, illustrated in Fig. 14.6. Here we get

in a similar way

dq

dk̃ |q̇=0

=
f ′′(k̃∗)

r + δ −m(q)
for m(q) 6= r + δ.

From this it is not possible to sign dq/dk̃ at all points along the q̇ = 0 locus. But
in a small neighborhood of the steady state, we have m(q) ≈ δ + γ + n, hence
r + δ −m(q) ≈ r − γ − n > 0, where the parameter inequality was assumed in
the text. Since f ′′ < 0, then, at least in a small neighborhood of E in Fig. 14.6,
the q̇ = 0 locus is negatively sloped, when r > γ + n.

F. The divergent paths (Section 14.3.2)

It is enough to consider Case 1, as Case 2 is in this respect similar. From the
differential equations (14.39) and (14.40) follows that d(qtKt)/dt =

qtK̇t + q̇tKt =
[
qt(m(qt)− δ) + (r + δ)qt − FK(Kt, L̄) + g(m(qt))− (qt − 1)m(qt)

]
Kt

=
[
rqt − FK(Kt, L̄) +m(qt) + g(m(qt))

]
Kt

=
[
r + (m(qt)− FK(Kt, L̄) + g(m(qt)))/qt

]
Ktqt. (*)

There are two categories of divergent paths, those that ultimately enter Region
II in Fig. 14.4 and move north-east and those that ultimately enter Region IV
and move south-west. Consider the first category. After entering Region II,
we have K̇t > 0 and q̇t > 0. Since K̇t/Kt = m(qt) − δ is positive as well as
growing, Kt has no upper bound. So, by the upper Inada condition, FK → 0 for
K →∞, the positive term in square brackets in (*) will sooner or later necessarily
exceed r, thus implying that qtKt grows at a rate higher than r. This violates the
transversality condition (14.41) and is therefore not consistent with intertemporal
profit maximization, hence not with an equilibrium path under perfect foresight.
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Paths starting below the saddle path will not violate the transversality condi-
tion. Indeed, in view of free disposal, an optimal q can never be negative. These
paths will, however, for all t have qt below q∗ and therefore, as detailed in the
text, not fully exploit the potential benefits of capital.
Nevertheless, let us see how in detail paths ultimately entering Region IV

behave. After entering Region IV, say at t = t0 ≥ 0, such a path has K̇t < 0
and q̇t < 0. Differentiating with respect to t on both sides of (14.40), after having
substituted ϕ(q) ≡ − [g(m(q))− (q − 1)m(q)] , gives

��
qt = (r + δ)q̇t − FKK(Kt, L̄)(m(qt)− δ)Kt − ϕ′(qt)q̇t

= (r + δ)q̇t − FKK(Kt, L̄)(m(qt)− δ)Kt −m(qt)q̇t (from Lemma 2 in Section 14.1)

< (r + δ −m(qt))q̇t (since FKK < 0 and m(qt) < δ for qt < q∗)

< 0 for all t,

the latter inequality coming from q̇t < 0 and r+δ−m(qt) > r+δ−m(q∗) = r > 0
in view of qt < q∗. So, in Region IV, we have, for all t, that not only is q̇t < 0,
but q̇t remains bounded away from 0. Hence, there exists a t1 > t0 ≥ 0 such that

qt1 = qt0 +

∫ t1

t0

q̇tdt = 0.

Also K is decreasing in Region IV. Might Kt reach zero before qt does? No.
We prove this by contradiction. Suppose that the smallest t for which Kt = 0 is
t = τ < t1. Then, for all t ∈ (t0, τ ] , we have

0 > K̇t = It − δKt = (m(qt)− δ)Kt > (m(q(τ))− δ)Kt, (14.71)

where the second inequality is due to q̇t < 0 and m′(q) > 0. The solution to the
differential equation for Kt in (14.71) thus satisfies the inequality

Kt > Kt0e
(m(q(τ))−δ)(t−t0) > 0 for all t ∈ (t0, τ ] .

This contradicts that Kτ = 0, and we conclude that Kt > 0 for all t < t1.
We know from Technical remark at the end of Section 14.1.2, that if the

optimal q really is 0, then the firm can do no better at time t1 than letting
It1 = 0. And since an optimal q cannot be negative, we have for t ≥ t1, qt = 0
and K̇t = −δKt, so that Kt → 0 for t→∞.

14.7 Exercises

14.1
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14.2 Let F be Cobb-Douglas with CRS and let G(I) = (β/2)I2, β > 0. a)
Find q∗, I, L, and K along the optimal path. Hint: the differential equation
ẋ(t) + ax(t) = b with a 6= 0 has the solution x(t) = (x(0) − x∗)e−at + x∗, where
x∗ = b/a. b) Evaluate the model.

14.3 (see end of Section 14.3)
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