
Chapter 15

Further applications of
adjustment cost theory

In the previous chapter we studied how strictly convex capital installation costs
affect firms’fixed capital investment and how changes in the world market inter-
est rate affect aggregate fixed capital investment in a small open economy with
perfect mobility of financial capital. In the first part of the present chapter this
basic setup is extended by adding a third production factor, imported oil, and
then considering the effects on the economy of an oil price shock. This includes the
effects on households’aggregate consumption where the modeling of the house-
hold sector is based on the Blanchard OLG framework. The aim is not only to
examine effects of an oil price shock per se, but also to set up a more complete
accounting framework for an open economy than in earlier chapters. In the con-
cluding remarks virtues of the OLG approach compared with the representative
agent approach as modeling devices for open economies are discussed.
The strictly convex capital installation costs can be seen as an exemplification

of the more general notion of strictly convex adjustment costs. This leads to the
second part of the chapter where we apply adjustment cost theory in a dynamic
analysis of the housing market from a macroeconomic point of view. The idea is
that like firms’fixed capital investment, residential construction can be seen as a
time-consuming activity involving strictly convex adjustment costs.

15.1 Oil price shock in a small oil-importing econ-
omy

Our focus is here on medium- and long-run effects on a small open economy
(abbreviated SOE) of a supply shock in the form of a shift in the world market
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price of some raw material or energy, that the SOE imports. The reader may
think of any imported raw material of some importance. But for concreteness we
consider the imported good to be oil. This is an interesting example because of
its considerable weight in many countries’imports and because of the large and
sudden changes that sometimes occur in the world market price of this natural
resource. In 1973-74 the real price of oil almost tripled, and in 1979-80 more than
a doubling of the real price of oil took place, see Fig. 15.1.
We assume:

1. Perfect mobility of goods and financial capital across borders.

2. Domestic and foreign financial claims are perfect substitutes.

3. No mobility of labor across borders.

4. Labor supply is inelastic and constant.

5. There is no government sector and no technological progress.

6. The capital adjustment cost functionG(I,K) is homogeneous of degree one.

7. There is perfect competition in all markets.

Our SOE thus faces an exogenous real interest rate, rt, given from the world
financial market. For convenience, let rt = r for all t ≥ 0, where r is a positive
constant. Our analysis takes output to be supply-determined as if there is always
full employment, that is, we ignore the short-term Keynesian demand effects of an
oil price shock. Such effects would be due to the purchasing power of consumers
being undermined by a sudden increase in the price of imported oil. We shall
see that even without Keynesian effects, the overall effect of an adverse oil price
shock is an economic contraction in both the short and the long run.

15.1.1 Three inputs: capital, labor, and raw material

The models in the previous chapters assumed that all output is produced in one
sector using only capital and labor. We could also say that the earlier models
implicitly assume that at a lower stage of production raw materials and energy
are continuously produced by capital and labor, but are then immediately used
up at a higher stage of production, using capital, labor, raw materials, and energy.
In effect, raw materials and energy need not be treated as a separate input.
When raw materials and/or energy are imported, we have to treat them as a

separate input. The technology of the representative firm in the SOE is conse-
quently given as a three-factor production function,

Ỹt = F (Kt, Lt,Mt), Fi > 0, Fii < 0 for i = K,L,M, (15.1)
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Figure 15.1: Real oil price per barrel and U.S. unemployment rate 1948-2013. Source:
Bureau of Labor Statistics and Federal Reserve Bank of St. Louis.

where Ỹ is aggregate output gross of adjustment costs and physical capital
depreciation, K is capital input, and L is labor input, whereas M is the input of
the imported raw materials or energy (M for "Materials”), say oil, all measured
per time unit.1 The production function F is assumed neoclassical with CRS
w.r.t. its three arguments. Thus, as usual there are positive, but diminishing
marginal productivities of all three production factors. But in addition we shall
need the assumption that the three inputs are direct complements in the sense
that all the cross derivatives of F are positive:

Fij > 0, i 6= j. (15.2)

In words: the marginal productivity of any of the production factors is greater,
the more input there is of any of the other production factors.2

The increase per time unit in the firm’s capital stock is given by

K̇t = It − δKt, δ ≥ 0,

1As long as we have oil import in our mind, we should not primarily think of, for example,
Denmark (even less so UK and Norway) as our case in point. Denmark has since 1996 been
a net exporter of oil and natural gas. But most other European countries will fit as good
examples.

2For a two-factor neoclassical production function with CRS we always have direct comple-
mentarity, i.e., F12 > 0. But with more than two production factors, direct complementarity
for all pairs of production factors is not assured. Therefore, in general, direct complementarity
is an additional assumption. However, the Cobb-Douglas function, Y = Kα1Lα2M1−α1−α2 ,
where αi > 0, i = 1, 2, and α1 + α2 < 1, automatically satisfies all the conditions in (15.2).
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Figure 15.2: Capital adjustment cost per unit of installed capital.

where I is gross investment per time unit and δ is the rate of physical wearing-
down of capital (physical depreciation in this model has to be distinguished from
economic depreciation, cf. Section 15.1.3 below).
The firm faces strictly convex capital installation costs. Let these installation

costs (measured in units of output) at time t be denoted Jt and assume they
depend only on the level of investment and the existing capital stock; that is Jt
= G(It, Kt). The installation cost function G is assumed homogeneous of degree
one so that we can write

J = G(I,K) = G(
I

K
, 1)K ≡ g(

I

K
)K, (15.3)

where the function g is strictly convex and satisfies

g(0) = 0, g′(0) = 0 and g′′ > 0. (15.4)

The graph of g is shown in Fig. 15.2.
Gross domestic product (value added) at time t is

GDPt ≡ Ỹt − Jt − pMMt, (15.5)

where pM is the real price of oil, this price being exogenous to the SOE. For
simplicity we assume that this price is a constant, but it may shift to another
level (i.e., we use pM as a shift parameter).

The decision problem of the firm

Let cash flow (before interest payments) at time t be denoted Rt. Then

Rt ≡ F (Kt, Lt,Mt)− g(
It
Kt

)Kt − wtLt − pMMt − It, (15.6)
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where wt is the real wage. The decision problem, as seen from time 0, is to choose
a plan (Lt,Mt, It)

∞
t=0 to maximize the market value of the firm,

V0 =

∫ ∞
0

Rte
−rtdt s.t. (15.6), and (15.7)

Lt ≥ 0,Mt ≥ 0, It free, (i.e., no restriction on It) (15.8)

K̇t = It − δKt, K0 given, (15.9)

Kt ≥ 0 for all t. (15.10)

To solve the problem, we use the Maximum Principle. The problem has three
control variables, L, M, and I, and one state variable, K. We set up the current-
value Hamiltonian:

H(K,L,M, I, q, t) ≡ F (K,L,M)−g(
I

K
)K−wL−pMM−I+q(I−δK), (15.11)

where qt is the adjoint variable associated with the dynamic constraint (15.9).
For each t ≥ 0 we maximize the Hamiltonian w.r.t. the control variables: ∂H/∂L
= FL(K,L,M)− w = 0, i.e.,

FL(K,L,M) = w; (15.12)

∂H/∂M = FM(K,L,M)− pM = 0, i.e.,

FM(K,L,M) = pM ; (15.13)

and ∂H/∂I = −g′( I
K

)− 1 + q = 0, i.e.,

1 + g′(
I

K
) = q. (15.14)

Next, we partially differentiate w.r.t. the state variable, K, and equates this
derivative to rqt − q̇t, since r is the discount rate in (15.7):
The Maximum Principle now says that an interior optimal path (Kt, Lt,Mt, It)

satisfies that there exists an adjoint variable qt such that for all t ≥ 0, the con-
ditions (15.12), (15.13), (15.14), and (??) hold along the path, and the transver-
sality condition,

lim
t→∞

Ktqte
−rt = 0, (15.15)

is satisfied.
The only new optimality condition compared to the previous chapter is (15.13)

which just says that optimality requires equalizing the marginal productivity of
the imported input to its real price, pM . By (15.14), the adjoint variable, qt, can
be interpreted as a shadow price (measured in current output units) of installed
capital along the optimal path. That is, qt represents the value to the firm
of the marginal unit of installed capital at time t along the optimal path. The
transversality condition says that the present value of the stock of installed capital
“left over”at infinity must be vanishing.
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Figure 15.3

The implied investment function

Since g′′ > 0, the optimality condition (15.14) implicitly defines the optimal
investment ratio, I/K, as a function of the shadow price q,

It
Kt

= m(qt), where m(1) = 0 and m′ = 1/g′′ > 0. (15.16)

This in the investment function of the representative firm. An example is illus-
trated in Fig. 15.3.
To see what the optimality condition (??) implies, notice that

∂
[
g( I

K
)K
]

∂K
= g(

I

K
) +Kg′(

I

K
)
−I
K2

= g(
I

K
)− g′( I

K
)
I

K
= g(m(q))− g′(m(q))m(q) = g(m(q))− (q − 1)m(q)

from (15.14) and (15.16). Insert this into (??) to get

q̇t = (r + δ)qt − FK(Kt, Lt,Mt) + g(m(qt))− (qt − 1)m(qt). (15.17)

By reordering, this can be written as a no-arbitrage condition,

FK(Kt, Lt,Mt)− [g(m(qt))− (qt − 1)m(qt)]− δqt + q̇t
qt

= r, (15.18)
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saying that, the rate of return on the marginal unit of installed capital must equal
the (real) interest rate.
To simplify the expression for the marginal productivity of capital in the

differential equations (15.17), we shall now invoke some general equilibrium con-
ditions.

15.1.2 General equilibrium and dynamics

We assume households’ behavior is as described by a simple Blanchard OLG
model (without retirement). Yet, in the general equilibrium of the SOE, firms’
choices are independent of households’consumption/saving behavior, the analysis
of which we therefore postpone to Section 15.1.4.
Clearing in the labor market implies that employment, Lt, equals the exoge-

nous constant labor supply, L̄, for all t ≥ 0. In view of the convex installation
costs, Kt is given in the short run and changes only gradually. We now show that
the demand for oil, the market clearing wage, and the marginal productivity of
capital all can be written as functions of Kt and pM (for fixed L̄).
First, since FMM < 0, the firm’s optimality condition (15.13) determines oil

demand, Mt, as an implicit function of Kt, pM , and L̄ :

Mt = M(Kt, pM), MK =
−FMK

FMM

> 0,MpM =
1

FMM

< 0, (15.19)

where the exogenous constant L̄ has been suppressed as an argument, for sim-
plicity. The alleged signs on the partial derivatives are implied (see Appendix A)
by the standard assumption FMM < 0 and the assumption of direct complemen-
tarity: FMK > 0.
Second, by inserting (15.19) and Lt = L̄ in the optimality condition (15.12),

we find an expression for the real wage,

wt = FL(Kt, L̄,M(Kt, pM)) ≡ w(Kt, pM), wK > 0, wpM < 0. (15.20)

The alleged signs on the partial derivatives are implied (see Appendix A) by the
direct complementarity assumptions FLK > 0 and FLM > 0.
Third, in view of (15.19) and Lt = L̄ we can can simplify the expression for

the marginal productivity of capital:

FK(Kt, L̄,M(Kt, pM)) ≡MPK(Kt, pM), MPKK < 0,MPKpM < 0, (15.21)

The label MPK for this function comes from “Marginal Productivity of K”.
The alleged sign on the first mentioned partial derivative is implied by F being
neoclassical with non-increasing returns to scale combined with the input factors
being complementary (see Appendix A). ThatMPKpM < 0 follows from FMM <
0 and FKM > 0.

c© Groth, Lecture notes in macroeconomics, (mimeo) 2017.



658
CHAPTER 15. FURTHER APPLICATIONS OF

ADJUSTMENT COST THEORY

Dynamics of the capital stock

We have thus established that even when the effect of increased K on oil input is
taken into account, increased K implies lower marginal productivity of capital.
By implication, the analysis of the dynamics of the capital stock is completely
similar to that in Chapter 14.3. Indeed, inserting (15.21) into (15.17), we get

q̇t = (r + δ)qt −MPK(Kt, pM) + g(m(qt))−m(qt)(qt − 1), (15.22)

where we have applied Lemma 1 of Chapter 14.1.3. Since r and pM are exogenous,
this is a differential equation with the capital stock, K, and its shadow price, q,
as the only endogenous variables. Another differential equation with these two
variables being endogenous can be obtained by inserting (15.16) into (15.9) to
get

K̇t = (m(qt)− δ)Kt. (15.23)

Fig. 15.4 shows the phase diagram for these two coupled differential equations.
We have (suppressing, for convenience, the explicit time subscripts)

K̇ = 0 for m(q) = δ, i.e., for q = q∗,

where q∗ is defined by the requirement m(q∗) = δ. Notice, that this implies q∗ > 1
when δ > 0. We see that

K̇ ≷ 0 for m(q) ≷ δ, respectively, i.e., for q ≷ q∗, respectively.

This is illustrated by the horizontal arrows in Fig. 15.4.
From (15.22) we have q̇ = 0 for

0 = (r + δ)q −MPK(K, pM) + g(m(q))−m(q)(q − 1). (15.24)

If, in addition K̇ = 0 (hence, q = q∗ and m(q) = m(q∗) = δ), this gives 0
= (r + δ)q∗ −MPK(K, pM) + g(δ)− δ(q∗ − 1) or

rq∗ = MPK(K, pM)− g(δ)− δ, (15.25)

where the right-hand-side is decreasing inK, in view ofMPKK < 0 (see (15.21)).
Hence, there exists at most one value of K such that the steady state condition
(15.25) is satisfied.3 This value is called K∗, corresponding to the steady state,
point E, in Fig. 15.4.
As in Chapter 14.3, we end up with a phase diagram as in Fig. 15.4, where

the steady state is saddle-point stable. The question now is: what is the slope of

3Assuming that F satisfies the Inada conditions, such a value does exist.

c© Groth, Lecture notes in macroeconomics, (mimeo) 2017.



15.1. Oil price shock in a small oil-importing economy 659

Figure 15.4

the q̇ = 0 locus? In the appendix of the previous chapter it was shown that at
least in a neighborhood of the steady state point E this slope is negative, in view
of MPKK < 0 and the assumption r > 0. From (15.22) we see that

q̇ ≶ 0 for points to the left and to the right, respectively, of the q̇ = 0 locus,

since MPKK < 0. The vertical arrows in Fig. 15.4 show these directions of
movement.
Altogether the phase diagram shows that the steady state, E, is a saddle

point, and since there is one predetermined variable, K, and one jump variable,
q, and the saddle path is not parallel to the jump variable axis, this steady
state is saddle-point stable. We can exclude the divergent paths by appealing
to the representative firm’s necessary transversality condition (15.15). Hence, a
movement along the saddle path towards the steady state is the unique solution
for the path of the capital stock and the shadow price of installed capital.

Effect of an oil price shock

Assume that until time 0, the economy has been in the steady state E in Fig.
15.4. Then, an unexpected shift in the world market price of oil occurs so that
the new price is a constant p′M > pM (and is expected to remain for ever at
this level). From (15.23) we see that q∗ is not affected by this shift, hence, the
K̇ = 0 locus is not affected. But the q̇ = 0 locus shifts downward, in view of
MPKpM < 0. Indeed, to offset the fall of MPK when pM increases, a lower K is
required, given q.
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Figure 15.5

Fig. 15.5 illustrates the situation for t ≥ 0. At time t = 0 the shadow price q
jumps down to a level corresponding to the point B in Fig. 15.5. This is because
the cost of oil is now higher, reducing current and future optimal input of oil and
therefore (by complementarity) reducing also the current and future marginal
productivity of capital. As a result, the value to the firm of the marginal unit
of capital is immediately diminished, implying a diminished incentive to invest.
Hence, gross investment jumps to a lower level not suffi cient to make up for the
wearing-down of capital. The capital stock decreases gradually. But this implies
increasing marginal productivity of capital, hence, increasing q, and the economy
moves along the new saddle path and approaches the new steady state E’as time
goes by.
This is where we see the crucial role of strictly convex capital installation

costs. If these costs were not present, the model would lead to the counterfactual
prediction that the new steady state would be attained instantaneously when the
oil price shock occurs.
Notice, however, an important limitation of the theory. In a Keynesian short-

run perspective, where firms solve a cost minimization problem for a given desired
level of output (equal to the demand faced by the firms), the increase in the price
of oil leads to less demand for oil, but more demand for capital equipment (a pure
substitution effect). Hence, in the real world we may observe a fall in qa (due to
higher production costs) at the same time as investment increases, contrary to
what the q-theory of investment predicts under perfect competition.4

4This is where we see the crucial role of strictly convex capital installation costs. If these
costs were not present, the model would lead to the counterfactual prediction that the new
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The reader should recognize that to determine the investment dynamics of the
SOE we did not need to consider the households’saving decision. Indeed, one
of the convenient features of the SOE model is that it can be solved recursively:
the total system can be decomposed into an investment subsystem, describing
the dynamics of physical capital, and a saving subsystem, describing the dynam-
ics of human wealth and financial wealth of households, H and A, respectively.
Although the total system has five endogenous variables, K, q,H,A, and C, the
dynamics of K and q are determined by (15.23) and (15.22) independently of the
other variables. Thus, (15.23) and (15.22) constitute a self-contained subsystem
of zero order. We shall soon see that, given the solution of this subsystem of
zero order, the dynamics of H are determined in a subsystem of first order in
the causal ordering, and, given this determination, the dynamics of A are deter-
mined in a subsystem of second order in the causal ordering. Finally, given the
determination of H and A, the path of C is determined in a subsystem of third
order.
Before turning to household behavior, however, some remarks on national

income accounting for this open economy with capital installation costs may be
useful.

15.1.3 National income accounting for an open economy
with capital installation costs

We ignore the government sector, and therefore national wealth is identical to
aggregate private financial wealth, which is here, as usual, called A. We have, by
definition,

A = V + Af ,

where V is the market value of firms and Af is net foreign assets (financial claims
on the rest of the world).5 Sometimes, it is more convenient to consider net
foreign debt, NFD ≡ −Af , so that A = V − NFD. As usual, we define qa
(“average q”) as the ratio of the market value of firms to the replacement cost of
the capital stock,

qa ≡
Vt
Kt

.

steady state would be attained instantaneously when the oil price shock occurs.
Notice, however, an important limitation of the theory. In a Keynesian short-run perspective,

where firms solve a cost minimization problem for a given desired level of output (equal to the
demand faced by the firms), the increase in the price of oil leads to less demand for oil, but more
demand for capital equipment (a pure substitution effect). Hence, in the real world we may
observe a fall in “average q”(due to higher production costs) at the same time as investment
increases, contrary to what the q-theory of investment predicts under perfect competition.

5Housing wealth and land are ignored.
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Hence, national wealth can be written

A = qaK + Af , (15.26)

The current account surplus is

Ȧf = NX + rAf , (15.27)

where NX is net export of goods and services, also called the trade surplus. We
have

NX ≡ GDP − C − I = Ỹ − J − pMM − C − I, (15.28)

by (15.5).
Now, look at the matter from the income side rather than the production

side. Gross national income, also called gross national product, GNP, is generally
defined as the gross income of inputs owned by residents of the home country,
i.e., GNP ≡ GDP + rAf + wLf . Here rAf + wLf is total net factor income
earned in other countries by residents of the home country, the first term, rAf ,
being net capital income from abroad, while the second term, wLf , represents
labor income earned in other countries by residents of the home country minus
labor income earned in the home country by residents in the rest of the world.
Our present model ignores mobility of labor so that wLf = 0. Hence,

GNP = GDP + rAf . (15.29)

At the theoretical level net national product, NNP, is defined, following Hicks
(1939), as that level of consumption which would leave financial wealth, A, un-
changed. We shall see that this is equivalent to defining NNP as GNP minus
economic depreciation, D, that is,

NNP = GNP −D. (15.30)

We have
D ≡ I − In, (15.31)

where I is domestic gross investment, whereas In is domestic net investment in
the following value sense:6

In ≡
d(qaK)

dt
= qaK̇ + q̇aK. (15.32)

6Net investment in a physical sense is K̇ = I−δK, since δ is the rate of physical wearing-down
of capital.
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To check whether this is consistent with the Hicksian definition of NNP , insert
(15.31) and (15.32) into (15.30) to get

NNP = GNP − I +
d(qaK)

dt
= GDP + rAf − I +

d(qaK)

dt
(by (15.29))

= C +NX + rAf +
d(qaK)

dt
(by (15.28))

= C + Ȧf +
d(qaK)

dt
(by (15.27))

= C + Ȧ, (15.33)

where the last equality follows from (15.26)). This is consistent with the theoret-
ical definition of NNP as the level of consumption which would leave financial
wealth, A, unchanged.
From (15.33) we get

Ȧ = NNP − C ≡ Sn, (15.34)

where Sn is aggregate net saving. This is consistent with the standard definition
of aggregate gross saving as S ≡ GNP − C, since

Sn ≡ NNP − C = GNP −D − C (by (15.30))

≡ S −D.

Observe also that

S ≡ Sn +D = GNP − C = GDP + rAf − C (by (15.29))

= rAf +NX + I (by (15.28)) (15.35)

= Ȧf + I. (by (15.27) and (15.31))

So we end up with the national accounting relationship that the current account
surplus, Ȧf , is the same as the excess of saving over domestic investment, S − I.
Finally, in a steady state with Ȧ = 0 and d(qaK)/dt = 0, (15.26) gives Ȧf = 0.

Hence, by (15.27), we have
NX = −rAf (15.36)

in the steady state, so that (in this model without economic growth) net exports
exactly matches interest payments on net foreign debt, −Af .

15.1.4 Household behavior and financial wealth

As already mentioned, households are described as in the simple Blanchard OLG
framework with constant population, no retirement, no technical progress, and
no government sector. Hence, aggregate consumption at time t is

Ct = (ρ+ µ)(At +Ht), (15.37)

c© Groth, Lecture notes in macroeconomics, (mimeo) 2017.



664
CHAPTER 15. FURTHER APPLICATIONS OF

ADJUSTMENT COST THEORY

where ρ ≥ 0 is the pure rate of time preference, and µ > 0 is the mortality rate
(here equal to the birth rate, since n = 0). Human wealth, Ht, is the present
discounted value of future labor income of those people who are alive at time t,
that is,

Ht =

∫ ∞
t

wτ L̄e
−(r+µ)(τ−t)dτ =

∫ ∞
t

w(Kτ , pM)L̄e−(r+µ)(τ−t)dτ , (15.38)

in view of (15.20). Inserting the solution for (Kτ )
∞
τ=t, found above, (15.38) gives

the solution for (Ht)
∞
t=0. Notice, that whatever the initial value of K, we know

from Section 15.1.2 above that Kt → K∗ for t → ∞. Applying this on (15.38)
we see that, for t→∞,

Ht →
∫ ∞
t

w(K∗, pM)L̄e−(r+µ)(τ−t)dτ =
w(K∗, pM)L̄

r + µ
≡ H∗. (15.39)

In view of perfect competition and that the production function F and the
capital installation cost function G are homogeneous of degree one, we know from
Hayashi’s theorem that “average q”= “marginal q”, i.e., qa = q (= ∂V ∗/∂Kt).

7

Therefore, by (15.26), national wealth can be written

A = qK + Af . (15.40)

Wealth and consumption dynamics

Observe that

GDP = Ỹ − pMM − J = F (K, L̄,M)− FM(K, L̄,M)M − J
(by (15.5) and (15.13))

= FK(K, L̄,M)K + FL(K, L̄,M)L̄− J
= FK(K, L̄,M)K + wL̄− J, (by (15.12)) (15.41)

where the second equality comes from Euler’s Theorem applied to the CRS func-
tion F (K, L̄,M).
From (15.34) we have

Ȧ = Sn = NNP − C = GNP −D − C (by (15.34) and (15.30))

= GDP + rAf −D − C (by (15.29))

= FK(K, L̄,M)K + wL̄− J − (I − In) + rAf − C (by (15.41) and (15.31))

= FK(K, L̄,M)K + wL̄− J − (I − qK̇ − q̇K) + rAf − C
7See the previous chapter. Hayashi’s theorem is valid also when, as here, there are three (or

more) production factors.
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by (15.32) and the fact that qa equals q. Continuing, we have

Ȧ = FK(K, L̄,M)K + wL̄− J + (q − 1)I − δqK + q̇K + rAf − C (by (15.9))

=
[
FK(K, L̄,M)− g(m(q)) +m(q)(q − 1)− δq + q̇

]
K + rAf + wL̄− C

(by (15.3) and (15.16))

= rqK + rAf + wL̄− C, (by the no-arbitrage condition (15.18))

= rA+ wL̄− C. (by (15.40)).

Comparing this with (15.26) we see that in equilibrium, NNP = r(qK+Af )+wL̄.
That is, national income is equal to the sum of income from financial wealth and
income from labor, as expected. The rate of return on financial wealth is given
from the world capital market, and the pay of labor is the market clearing real
wage in the SOE.
Using (15.20) and (15.37), our differential equation for financial wealth can

be written
Ȧt = (r − ρ− µ)At + w(Kt, pM)L̄− (ρ+ µ)Ht. (15.42)

Since initial national wealth, A0, is historically given, and the paths of Kt and
Ht have already been determined, this differential equation determines uniquely
the path of national wealth, At.
Suppose

ρ+ µ > r, (15.43)

that is, we are not in the case of “very low impatience”.8 Then (15.42) implies
stability of At so that, for t→∞,

At →
w(K∗, pM)L̄− (ρ+ µ)H∗

ρ+ µ− r =
(r − ρ)H∗

ρ+ µ− r =
(r − ρ)w(K∗, pM)L̄

(ρ+ µ− r)(r + µ)
≡ A∗,

(15.44)
where we have used (15.39).
Finally, given the solution for Ht and At, (15.37) shows the solution for Ct.

When the stability condition (15.43) holds, we have, for t→∞,

Ct → (ρ+ µ)(A∗ +H∗) = (ρ+ µ)
µw(K∗, pM)L̄

(ρ+ µ− r)(r + µ)
≡ C∗. (15.45)

Given the stability condition (15.43), the steady-state value of national wealth
in (15.44) is positive, if and only if r − µ < ρ < r. This is the case of “medium

8Otherwise, i.e., if ρ ≤ r − p, no steady state would exist (see (15.45) below)) and the SOE
would grow large in the long run. Then the world market interest rate r could no longer be
considered independent of what happens in this economy.
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impatience” where our SOE has a degree of impatience, ρ, that is not vastly
different from that of the “average country”in the world economy.9

If on the other hand our SOE is very impatient (ρ > r), then, even supposing
that initial national wealth is positive, so that interest income is positive, the
economy consumes more than it earns so that net saving is negative and national
wealth decreases over time. Indeed, we know from the Blanchard model that the
change in aggregate consumption per time unit is given by

Ċt = (r − ρ)Ct − µ(ρ+ µ)At,

so that, with ρ > r, we get Ċt < 0, at least as long as At ≥ 0. The economy
ends up with negative national wealth in the long run, as shown by (15.44). This
entails a net foreign debt over and above the market value, q∗K∗, of the firms:

−A∗f = q∗K∗ − A∗ = q∗K∗ − (r − ρ)H∗

ρ+ µ− r > q∗K∗. (15.46)

This is theoretically possible in view of the fact that the economy still has its
human wealth, H, as a source of income. Indeed, as long as (15.43) holds, a
steady state with A∗ +H∗ > 0 exists, as indicated by (15.45).
What (15.46) shows is that a very impatient country asymptotically mortgages

all of its physical capital and part of its human capital. This is a counterfactual
prediction, and below we return to the question why such an outcome is not likely
to occur in practice.

Intertemporal interpretation of current account movements

Finally, the level of net exports is

NX = Ỹ − pMM − J − I − C (by (15.28) and (15.5))

= FK(K, L̄,M)K + wL̄− J − I − C (by (15.41))

= Ȧ− In − rAf . (by the third row in the derivation of Ȧ above)

In steady state, Ȧ = 0 = In, hence,

NX∗ = −rA∗f (15.47)

= −r
[
q∗K∗ − (r − ρ)w(K∗, pM)L̄

(ρ+ µ− r)(r + µ)

]
. (from (15.46))

9If all countries can be described by the simple Blanchard model, then the interest rate r
in the world market is somewhat larger than the pure rate of time preference of the “average
country”, cf. Chapter 12.
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This determines the long-run level of net exports as being equal to the interest
payments on net foreign debt, D ≡ −Af , so that in the steady state, the current
account deficit, rD−NX, is zero. As expected, the economy remains solvent. In
fact, the consumption function (15.37) of the Blanchard model is derived under
the constraint that solvency, through a NPG condition on the long-run path of
financial wealth (or debt), is satisfied.
Whatever the size relation between ρ and r, it is not necessary for equilibrium

that net foreign debt is zero in the long run. Necessary in this model, which is
without economic growth, is that in the long run net foreign debt is constant,
i.e., the current account is ultimately zero.
With economic growth, the SOE can have a permanent current account deficit

and thus permanently increasing NFD and yet remain solvent forever. What is
in the long run needed for equilibrium, however, is that the foreign debt does not
grow faster than GDP. As we saw in Chapter 13, this condition will be satisfied
if net exports as a fraction of GDP are suffi cient to cover the growth-corrected
interest payments on the debt. (This analysis ignores that the scope for writing
enforceable international credit contracts is somewhat limited and so, in practice,
there is likely to be an upper bound on the debt-income ratio acceptable to the
lenders. Such a bound is in fact apt to be operative well before the foreign debt
moves beyond the value of the capital stock in the economy.)

Overall effect of an oil price shock

Returning to the model, without economic growth, analyzed in detail above, let
us summarize. An oil price shock such that pM shifts to a higher (constant) level
implies a lower equilibrium real wage, wt = w(Kt, pM), both on impact and in
the longer run. The impact effect comes from lower input of oil, hence a lower
marginal productivity of labor, cf. (15.20). This implies, on impact, a fall in Ht,
see (15.38), and therefore also in Ct, see (15.37). In addition, as was shown in
Section 15.1.2, Kt is gradually reduced over time and this decreases output and
the marginal productivity of labor further. As a result the long-run values of H
and A become lower than before, and so does the long-run value of C. Whether
in the long run net foreign assets, A∗f , and net exports, NX

∗, become lower or
not we cannot know, because the fall in national wealth, A∗, may, but need not,
be larger than the fall in the capital stock, K∗.
To summarize: The overall effect of an adverse oil price shock is an economic

contraction. If the model were extended by including short-term Keynesian de-
mand effects, arising from the purchasing power of consumers being undermined
by a sudden increase in the general price level, then the economic contraction
may become more severe, leading to a pronounced recession.
Going further outside the model we could imagine that trade unions, by de-
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manding compensation for price increases, resist the real wage decrease required
for unchanged employment, when the oil price rises. As a result unemployment
tends to go up. If in addition the wage-price spiral is accommodated by mone-
tary policy, as after the first oil price shock in 1973-74, then simultaneous high
inflation and low output may arise. This is exactly the phenomenon of stagflation
that we saw in the aftermath of the first oil price shock.

15.1.5 General aspects of modeling a small open economy

Let us return to the case of a very impatient society (ρ > r) and focus on (15.44)
and (15.46). If the mortality rate µ is very small, the model predicts that the
country asymptotically mortgages, in addition to its physical capital, all its hu-
man capital. The long-run prospect could be a very low consumption level. The
Ramsey model as well as the Barro model with an operative bequest motive, are
examples of models with a very low µ since, effectively, they have µ = 0. Hence,
a Ramsey-style model for a small open economy (ignoring technical progress)
with ρ > r will satisfy the condition (15.43) and entail At → −H∗, implying
de-cumulation forever, that is, Ct → 0, by (15.45. The fact that Ramsey-style
models can predict such outcomes, is a warning that such models are in some
contexts of limited value.
If, on the other hand, ρ < r, then the Ramsey model implies low consumption

and high saving. Indeed, the country will forever accumulate financial claims
on the rest of the world. This is because, in the Ramsey model the Keynes-
Ramsey rule holds not only at the individual level, but also at the aggregate
level. Eventually, the country becomes a large economy and begins to affect the
world interest rate, contradicting the assumption that it is a small open economy.
To avoid these extreme outcomes, when applying the Ramsey model for study-

ing a small open economy, one has to assume ρ = r. But this is an unwelcome
knife-edge condition. Recall that a model is said to build on a knife-edge condi-
tion if the model imposes a particular value on a parameter within a continuum of
possible values such that an actual deviation from this value alters the dynamics
qualitatively. In that case the dynamics associated with the knife-edge value are
not a likely outcome and not representative.
It is otherwise with the Blanchard OLG model, where the generation replace-

ment effect implies that the Keynes-Ramsey rule does not hold at the aggregate
level. Therefore, the OLG model for a small open economy needs no knife-edge
condition on parameters. The model works well whatever the size relation be-
tween ρ and r, as long as the stability condition (15.43) is satisfied. Or, to be
more precise: the Blanchard model works well in the case ρ < r; in the oppo-
site case, where ρ > r, the model works at least better than the Ramsey model,
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because it never implies that Ct → 0 in the long run.
It should be admitted, however, that in the case of a very impatient coun-

try (ρ > r), even the OLG model implies a counterfactual prediction. What
(15.46) tells us is that the impatient small open economy in a sense asymptot-
ically mortgages all of its physical capital and part of its human capital. The
OLG model predicts this will happen, if financial markets are perfect, and if the
political sphere does not intervene. It certainly seems unlikely that an economic
development, ending up with negative national wealth, is going to be observed in
practice. There are two - complementary - explanations of this.
First, the international credit market is far from perfect. Because a full-scale

supranational legal authority comparable with domestic courts is lacking, credit
default risk in international lending is generally a more serious problem than in
domestic lending. Physical capital can to some extent be used as a collateral
on foreign loans, while human wealth is not suitable. Human wealth cannot be
repossessed. This implies a constraint on the ability to borrow.10 And lenders’
risk perceptions depend on the level of debt.
Second, long before all the physical capital of an impatient country is mort-

gaged or have directly become owned by foreigners, the government presumably
would intervene. In fear of losing national independence, it would use its political
power to end the pawning of economic resources to foreigners.
This is a reminder, that we should not forget that the economic sphere of a

society is just one side of the society. Politics as well as culture and religion are
other sides. The economic outcome may be conditioned on these social factors,
and the interaction of all these spheres determines the final outcome.

15.2 Housing market dynamics

(figures not yet updated to comply with α = 1 and other recent changes).
The housing market is from a macroeconomic point of view important for sev-

eral reasons: a) residential investment is typically of magnitude about 5 percent of
GDP and roughly a half of total fixed investment; b) housing makes up a weighty
part of the consumption budget; c) housing wealth makes up a substantial part
of private wealth of a major fraction of the population; d) mortgage debt make
up a large part of households’ liabilities; and e) house prices and construction

10We have been speaking as if domestic residents own the physical capital stock in the country,
but have obtained part or all the financing of the stock by issuing bonds to foreigners. The
results would not change if we allowed for foreign direct investment. Then foreigners would
themselves own part of the physical capital rather than bonds. In such a context a similar
constraint on foreign investment is likely to arise, since a foreigner can buy a factory or the
shares issued by a firm, but it is diffi cult to buy someone else’s stream of future labour income.
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activity fluctuate considerably and are strongly positively correlated with each
other and with aggregate output.
The analysis will be based on a simple partial equilibrium model with rising

marginal construction costs. The aim is to throw light on short-to-medium-run
dynamics.
Let time be continuous. Let Ht denote the aggregate housing stock at time t

and St the aggregate flow of housing services at time t. Ignoring heterogeneity, the
housing stock can be measured in terms of m2 floor area available for accommo-
dation at a given point in time. For convenience we will talk about the stock as a
certain number of houses of a standardized size. The supply of housing services
at time t constitutes a flow, thereby being measured per time unit, say per year.
The two concepts are related through St = u ·Ht, where u is the service flow per
year per house. If the service flow is measured in square meter-months, u equals
the number of square meters of a “normal-sized”house times 12. Let us define
one unit of housing service per year to mean disposal of a house of standard size
one year. So, u = 1, and we have

St = 1 ·Ht. (15.48)

15.2.1 The housing service market and the house market

There are two goods, houses and housing services, and therefore also two markets
and two prices:

pt = the (real) price of a “normal-sized‘”house at time t,

Rt = the rental rate ≡ the (real) price of housing services at time t.

The price Rt of housing services is known as the rental rate at the housing market.
Buying a housing service means renting the apartment or the house for a certain
period. Or, if we consider an owner-occupied house (or apartment), Rt is the
imputed rental rate, that is, the owner’s opportunity cost of occupying the house.
The prices Rt and pt are measured in real terms, or more precisely, they are
deflated by the consumer price index. We assume perfect competition in both
markets.

The market for housing services

In the short run the housing stock is historically given. Construction is time-
consuming and houses cannot be imported. Owing to the long life of houses,
investment in new houses per year tends to be a small proportion of the available
housing stock (in advanced economies about 3 percent, say). So also the supply,
St, of housing services is given in the short run.
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Figure 15.6: Supply and demand in the market for housing services at time t.

Suppose the aggregate demand for housing services at time t is

Sdt = D(Rt)Xt, , D′ < 0, (15.49)

where Xt is a composite of factors other than Rt affecting demand. That demand
depends negatively on the rental rate reflects that both the substitution effect and
the income effect of a higher rental rate are negative. The wealth effect on housing
demand of a higher rental rate is likely to be positive for owners and negative
for tenants.11 In our partial equilibrium analysis we take Xt as exogenous. In
Section 15.2.3 we need to be more specific concerning Xt and shall identify it
with aggregate wealth (financial plus human) in the economy.
The market for housing services at time t is depicted in Fig. 15.6. The supply

of housing services is given by Ht. The position of the downward-sloping demand
curve, D(Rt), depends on the background factor, Xt. The market clearing rental
rate, Rt, is determined by the equilibrium condition

D(Rt)Xt = 1 ·Ht. (15.50)

Because the supply of housing services is inelastic in the short run, Rt immediately
moves up or down as the demand curve shifts rightward or leftward, respectively,
i.e., as a positive or negative shock to Xt occurs.

11A simple microeconomic “rationale”behind the aggregate demand function (15.49) is ob-
tained by assuming an instantaneous utility function u(ht, ct) = ln(hγt c

1−γ
t ), where 0 < γ < 1,

and ht is consumption of housing services at time t, whereas ct is non-housing consumption.
Then the share of housing expenditures in the total instantaneous consumption budget will
equal the constant γ. This is broadly in line with empirical evidence for the US (Davis and
Heathcote, 2005). In turn, according to standard neoclassical theory, the total consumption
budget will be an increasing function of total wealth of the household, cf. Chapter 9. Separa-
tion between the two components of wealth, A and PV (wl), is relevant when credit markets
are imperfect.
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The equilibrium condition (15.50) determines Rt as an implicit function of
Ht/Xt :

Rt = R(Ht/Xt), R′ =
1

D′(R(Ht/Xt))
< 0. (15.51)

The market for existing houses

Because a house is a durable good with market value, it is an asset. This asset
typically constitutes a substantial share of the wealth of a large fraction of the
population, the house-owners. At the same time the supply of the asset can
change only slowly.
Assume there is an exogenous and constant risk-free real interest rate r > 0.

This is a standard assumption in partial equilibrium analysis. If the economy is
a small open economy with perfect capital mobility, the exogeneity of r (if not
constancy) is warranted even in general equilibrium analysis.
Considering the asset motive associated with housing, a series of aspects are

central. We let houses depreciate physically at a constant rate δ > 0. Suppose
there is a constant tax rate τR ∈ [0, 1) applied to rental income (possibly imputed)
after allowance for depreciation. In case of an owner-occupied house the owner
must pay the tax τR(Rt − δpt) out of the imputed income (Rt − δpt) per house
per year. Assume further there is a constant property tax (real estate tax) τ p ≥ 0
applied to the market value of houses. Finally, suppose that a constant tax rate
τ r ∈ [0, 1) applies to interest income. There is symmetry in the sense that if you
are a debtor and have negative interest income, then the tax acts as a rebate. We
assume capital gains are not taxed and we ignore all complications arising from
the fact that most countries have tax systems based on nominal income rather
than real income. In a low-inflation world this limitation may not be serious.12

Suppose there are no credit market imperfections, no transaction costs, and no
uncertainty. Assume further that the user of housing services value these services
independently of whether he/she owns or rent. Under these circumstances the
price of houses, pt, will adjust so that the expected after-tax rate of return on
owning a house equals the after-tax rate of return on a safe bond. We thus have
the no-arbitrage condition

(1− τR)(R(Ht/Xt)− δpt)− τ ppt + ṗet
pt

= (1− τ r)r, (15.52)

where ṗet denotes the expected capital gain per time unit (so far ṗ
e
t is just a

commonly held subjective expectation).

12Note, however, that if all capital income should be taxed at the same rate, capital gains
should also be taxed at the rate τ r, and τR should equal τ r.
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For given ṗet we find the equilibrium price

pt =
(1− τR)R(Ht/Xt) + ṗet

(1− τ r)r + (1− τR)δ + τ p
.

Thus pt depends on Ht, ṗ
e
t , r, and tax rates in the following way:

∂pt
∂Ht

=
(1− τR)R′(Ht/Xt)

(1− τ r)r + (1− τR)δ + τ p
< 0,

∂pt
∂ṗet

=
1

(1− τ r)r + (1− τR)δ + τ p
> 0,

∂pt
∂τR

=
− [(1− τ r)r + τ p]R(Ht/Xt) + δṗet

[(1− τ r)r + (1− τR)δ + τ p]
2 S 0 for ṗet S

[(1− τ r)r + τ p]R(Ht/Xt)

δ
,

∂pt
∂τ p

= − (1− τR)R(Ht/Xt) + ṗet
[(1− τ r)r + (1− τR)δ + τ p]

2 < 0,

∂pt
∂τ r

=
[(1− τR)R(Ht/Xt) + ṗet ] r

[(1− τ r)r + (1− τR)δ + τ p]
2 > 0,

∂pt
∂r

= − [(1− τR)R(Ht/Xt) + ṗet ] (1− τ r)
[(1− τ r)r + (1− τR)δ + τ p]

2 < 0,

where the sign of the last three derivatives are conditional on ṗet being nonnegative
or at least not “too negative”.
Note that a higher expected increase in pt, ṗet , implies a higher house price

pt. Over time this feeds back and may confirm and sustain the expectation, thus
generating a further rise in pt. Like other assets, a house is thus a good with the
property that the expectation of price increases makes buying more attractive
from an investment point of view and may become self-fulfilling if the expectation
is generally held.

15.2.2 Residential construction

It takes time for the stock Ht to change. While manufacturing typically involves
mass production of similar items, construction is generally done on location for
a known client and within intricate legal requirements. It is time-consuming to
design, contract, and execute the sequential steps involved in residential construc-
tion. Congestion and bottlenecks may easily arise. Careful guidance, supervision,
and monitoring is needed. These features give rise to fixed costs (to management,
architects etc.) and thereby rising marginal costs in the short run.
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The construction process

Assume the construction industry is competitive. At time t the representative
construction firm produces Bt units of housing per time unit (B for “building”),
thereby increasing the aggregate housing stock according to

Ḣt = Bt − δHt, δ > 0. (15.53)

The construction technology is described the following way:

Bt = F̃ (Kt, AtLt, EtM̄) ≡ F̄ (F (Kt, AtLt︸ ︷︷ ︸
CRS

), EtM̄) = F̄ ( It
DRS

, EtM̄) ≡ T ( It
DRS

, Et),

(15.54)

where the function F̃ is increasing in its three arguments, Kt is input of capital,
AtLt is blue-collar labor in effi ciency units, Lt being blue-collar labor in hours,
EtM̄ is management labor in effi ciency units, M̄ being management in hours. The
latter includes hours of scarce specialists like architects, engineers, and lawyers.
Capital and blue-collar labor are considered variable production factors even in
the short run. In contrast, it is costly and takes time and effort to change man-
agerial capacity. Hence, we treat M̄ as a fixed production factor in the short run
and as only changing slowly over time. In a short-to-medium run perspective, M̄
is thus close to being time-independent which we, to help intuition, indicate by
omitting the subscript t.
Capital and blue-collar labor produces components for residential construc-

tion − intermediate goods − in the amount It = F (Kt, AtLt) per time unit; F is
a CRS production function and is “nested”in the “global”production function,
F̄ . Construction is thus modeled as if it makes up a two-stage process. First,
capital and blue-collar labor produce intermediate goods for construction. Next,
management accomplishes quality checks and “assembling”of these intermediate
goods into new houses or at least into final new components built into existing
houses. The final housing output is measured in units corresponding to a “stan-
dard house”. This does not rule out that a considerable part of the output is
really in the form of renovations, additions of a room etc.
In view of F featuring CRS and Kt and L being variable production factors

even in the short run, intermediate goods are produced on a routine basis at
constant unit costs. We let this cost per unit of It be denoted c in real terms.
In our short-to-medium run perspective we treat c as time-independent. The
effi ciency factor At mirrors the “economy-wide”technology level, growing at the
general rate of technical progress in the economy, g. In contrast, Et measures
sector-specific effi ciency which may reflect accumulated learning in the construc-
tion industry.
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Figure 15.7: The number of new houses as a function of residential investment (for
given E = H̄).

Finally, at the end of the chain in (15.54), to simplify notation, we sup-
press the “almost constant”M̄ and introduce the “transformation function”Bt

= T (It, Et). This function has decreasing returns with respect to It : the larger is
It, the smaller is the rate at which a unit increase in It is transformed into new
houses, as illustrated in Fig. 15.7. The interpretation is that more construction
activity per time unit means that a larger fraction of I is “wasted”because of
control, coordination, and communication diffi culties due to scarce managerial
capacity. An alternative or supplementary cause behind the decreasing marginal
productivity of It is that negative externalities may arise due to congestion at
building sites in a construction boom.
The second argument in the transformation function is the construction ef-

ficiency level Et. Higher effi ciency means that the intermediate goods can be
designed in a better way and be “assembled”in a more effi cient way. This results
in higher productivity of a given I than otherwise, hence TE > 0.
The following list summarizes the implied properties of the transformation

function:

T (0, E) = 0, TI(0, E) = 1, TI > 0, TII < 0, TE > 0. (15.55)

The properties TI(0, E) = 1 and TII < 0 imply TI(I, E) < 1 for I > 0, as
visualized in Fig. 15.7.
Note that until Section 15.2.3, we do not require the “global” production

function, whether in the form of F̃ , F̄ , or T, to have CRS rather than DRS
within the relevant range of output. An example satisfying all the conditions in
(15.55) and also the condition of CRS of the “global”production function is a
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CES function with elasticity of substitution < 1:13

T (I, E) = α−1/β(aIβ + (1− a)Eβ)1/β, with 0 < α < 1, and β < 0.

Remark. From the perspective of Tobin’s q-theory of investment, we might let
the “waste”be represented by a kind of adjustment cost function G(I, E) akin to
that considered in Chapter 14. Then T (I, E) ≡ I−G(I, E). In Chapter 14 convex
adjustment costs were associated with the installation of firms’fixed capital. Our
main focus was on the case where the adjustment costs acts as a reduction in the
firms’ output available for sale. In construction we may speak of comparable
costs acting as a reduction in the productivity of the intermediate goods in the
construction process. It is easily seen that, on the one hand, all the properties
of G required in Chapter 14.1.1 when I ≥ 0 are maintained. On the other hand,
not all properties required of T in (15.55) need be satisfied in Tobin’s q-theory
(see Appendix B). �

Profit maximization

Here we temporarily skip the explicit dating of time-dependent variables. The
representative construction firm takes the current effi ciency level, E, as given.
The gross revenue of the firm is pB and variable costs are cI. At any instant,
given the market price p, the firm maximizes profit (in the sense of revenue
minus variable costs):

max
I

Π = pB − cI s.t. B = T (I, E) and

I ≥ 0.

Inserting B = T (I, E), we find that an interior solution satisfies

dΠ

dI
= pTI(I, E)− c = 0, i.e.,

p

c
TI(I, E) = 1. (15.56)

In view of TI(I, E) < 1 for I > 0, the latter equation has a solution I > 0 only
if p > c. For p ≤ c, we get the corner solution I = 0. Naturally, when the
current market price of houses is below marginal construction cost (which equals
c/(TI(I, E) ≥ c), no new houses will be built.14 This is a desired property of
the model since sometimes in the real world, residential construction comes to a

13As shown in the appendix to Chapter 4, by defining T (I, E) = 0 when I = 0 or E = 0,
the domain of the CES function can be extended to include all (I, E) ∈ R2++ also when β < 0,
while maintaining continuity.
14How to come from the transformation function T (I, E) to the marginal cost schedule is

detailed in Appendix C.
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standstill. On the other hand, when p > c, the construction firm will supply new
houses up to the point where the rising marginal cost equals the current house
price, p.
A characterization of the optimal flow of intermediates, I, is obtained the

following way. Since TII , the first-order condition (15.56) defines, for p > c,
construction activity, I, as an implicit function of p/c and E :

I = Φ (p/c, E) , where Φ(1, E) = 0. (15.57)

After substituting (15.57) into (15.56), by implicit differentiation with respect to
p/c in (15.56) and rearranging, we find the partial derivative

Φp/c =
∂I

∂(p/c)
=

−1

(p/c)2TII(I, E)
> 0,

where the argument I can be written as in (15.57).

The CRS case

If the global production function F̄ is homogeneous of degree one, so is the trans-
formation function T . In that case we haveB = T (I/E, 1)E.Moreover, by Euler’s
theorem, TI(I, E) is homogeneous of degree 0. So, the first-order condition (15.56)
can be written

p

c
TI

(
I

E
, 1

)
= 1. (15.58)

This equation defines input of effi ciency-corrected intermediates, I/E, as an im-
plicit function of pt/c :

I

E
= ϕ

(p
c

)
, where ϕ(1) = 0. (15.59)

By implicit differentiation with respect to p/c in the first-order condition (15.58)
and rearranging, we find

ϕ′ =
−1

(p/c)2TII (I/E, 1)
> 0,

where I/E from (15.59) can be inserted. A construction activity function ϕ with
this property is shown in Fig. 15.8, where c = 1. (NB: the figure not yet adjusted
to recent changes in model).

Remark. Like Tobin’s q, the house price p is the market value of a produced asset
whose supply changes only slowly. As is the case for firms’fixed capital, there are
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Figure 15.8: Construction activity (relative to the housing stock) as a function of the
market price of houses (c = 1).

strictly convex stock adjustment costs, represented by the rising marginal con-
struction costs. As a result the stock of houses does not change instantaneously
if for instance p changes. But as shown by the above analysis, the flow variable,
residential construction, responds to p in a way similar to the way firm’s fixed-
capital investment responds to Tobin’s q according to the q theory. Tobin’s q is
defined as the economy-wide ratio V/(pIK), where V is the market value of the
firms, pI is a price index for investment goods, and K is the stock of physical
capital. The analogue ratio in the housing sector is V (H)/(pI ·H) ≡ p ·H/(pI ·H)
= p/c, in view of pI = c. A higher p/c results in more construction activity. �

15.2.3 Dynamics under perfect foresight

In our dynamic analysis, we concentrate on the case where F̄ is homogeneous
of degree one. Since the focus is on the evolution over time, we allow for slow
growth in management labor,Mt, namely at the rate of population growth n ≥ 0.
So (15.54) is replaced by

Bt = F̃ (Kt, AtLt, EtMt︸ ︷︷ ︸
CRS

) ≡ F̄ (F (Kt, AtLt︸ ︷︷ ︸
CRS

), EtMt) = F̄ ( It
DRS

, EtMt),

where Mt = M0e
nt. Let bt denote the flow of new houses relative to management

measured in effi ciency units. So

bt ≡
Bt

EtMt

=
F̄ (It, EtMt)

EtMt

= F̄

(
It

EtMt

, 1

)
= F̄

(
ϕ
(pt
c

)
, 1
)
≡ b

(pt
c

)
, (15.60)

where b(1) = F̄ (ϕ (1) , 1) = F̄ (0, 1) = 0, b′ = F̄Iϕ
′ > 0.

In view of (15.60), we have from (15.53) that

Ḣt = Bt − δHt = b
(pt
c

)
EtMt − δHt. (15.61)
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Assuming rational expectations in our model without stochastic elements is equiv-
alent to assuming perfect foresight, that is, ṗet = ṗt for all t. Then we can write
the no-arbitrage condition (15.52) as an ordinary first-order differential equation:

ṗt = [(1− τ r)r + (1− τR)δ + τ p] pt − (1− τR)R(Ht/Xt), (15.62)

where R′ < 0.
The two coupled differential equations, (15.61) and (15.62), make up a dy-

namic system in Ht and pt. The system is not autonomous, however, because it
contains time-dependent exogenous variables, Xt and EtMt.
As already mentioned, we assume that Mt grows at the rate of population

growth n ≥ 0. The construction effi ciency, E, is likely to rise smoothly over time.
We will simply assume its growth rate, gE, is a positive constant. So EtMt grows
at the rate gE + n > 0.
Even regarding the demand factor Xt we will, in our partial equilibrium per-

spective, ignore business cycle fluctuations and simply assume that it for all t
equals the trend level of aggregate total wealth (financial plus human). In turn,
this wealth is naturally assumed to grow at the rate g+n > 0, i.e., the sum of the
general rate of technical progress in the economy, g, and the rate of population
growth, n.
There are now three cases to consider, depending on whether gE = g, gE < g,

or gE > g.
Case 1 : gE = g. Here both Xt and EtMt grow at the rate g + n. By a

proper choice of measurement units we can then obtain EtMt = Xt for all t. Let

the “trend-corrected housing stock” be defined as H̃t ≡ Ht/Xt. Then
·
H̃t/H̃t

= Ḣt/Ht− Ẋt/Xt and thereby
·
H̃ t = (Ḣt/Ht− (g+n))H̃t. Into this we substitute

(15.61) and get
·
H̃ t = b

(pt
c

)
− (δ + g + n)H̃t. (15.63)

In combination with

ṗt = [(1− τ r)r + (1− τR)δ + τ p] pt − (1− τR)R(H̃t), (15.64)

this makes up an autonomous dynamic system in H̃ and p.
The corresponding phase diagram is shown in Fig. 15.9. (NB: the figure not

yet adjusted to recent changes in model).We have
·
H̃ = 0 for b(p/c) = (δ+g+n)H̃.

In view of b′ > 0, this
·
H̃ = 0 locus is an upward-sloping curve in the diagram.

In view of b(1) = 0, the curve intersects the ordinate axis at the ordinate c. The
direction of movement of H is positive above the curve and negative below.
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Figure 15.9: Phase diagram for the dynamics of construction and house prices (c = 1,
T (I, E) homogeneous of degree 1, gE = g).

We have ṗ = 0 for p = (1 − τR)R(H̃)/ [(1− τ r)r + (1− τR)δ + τ p] . Since
R′(H̃) < 0, the ṗ = 0 locus in the diagram has negative slope. There is a unique
steady state, the point E with coordinates H̃∗ and p∗. To the right of the ṗ = 0
locus, p is rising, and to the left p is falling. The directions of movement of H̃
and p in the different regions of the phase plane are indicated by the arrows in
the figure. The arrows show that the steady state is a saddle point. The initial
housing stock, H̃0, is predetermined. Hence, at time t = 0, the economic system
must be somewhere on the vertical line H̃ = H̃0.
The question now is whether there can be asset price bubbles in the system.

An asset price bubble is present if the market value of the asset for some time
systematically exceeds its fundamental value, which we may call p̂t. This is the
present discounted value of the expected future services or dividends from the
asset.15 The divergent trajectories ultimately moving North-East in the phase
diagram are, by construction, bubbly price paths consistent with the re-written
no-arbitrage condition (15.64). They are thus candidates for asset price bubbles
generated by self-fulfilling expectations. Such explosive price paths can hardly
be realized, however, given the assumption of rational expectations, here perfect
foresight. The argument is given in Section 15.2.4 below.
As also a negative bubble is implausible (corresponding to the divergent tra-

jectories ultimately moving South-West in the phase diagram), we are left with
the converging path as the unique solution to the model. At time 0 the residential

15For details, see Appendix D.
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Figure 15.10: Response to a fall in the property tax (c = 1, T (I, E) homogeneous of
degree 1, gE = g).

construction sector will be at the point A in the diagram and then it will move
along the saddle path. After some time the housing stock and the house price
settle down at the steady state, E.
Case 2 : gE < g. This case seems to characterize the US in recent decades

(Iacoviello and Neri, 2010) as well as Denmark (DØR ).

(NB: the remainder of the chapter not adjusted to recent changes in model)

Effect of a fall in the property tax

In Denmark, in the early 2000s, the government replaced the rental value tax,
τR, on owner-occupied houses by a lift in the property tax, τ p, combined with
a nominal “tax freeze”, implying that τ p has been gradually decreasing in real
terms in view of inflation. Indeed, if T is the property tax in real terms, we have
T = τ pp, and in nominal terms TP = τ ppP ≡ τ pPH , where P is the nominal
price level in the economy and PH is the nominal price of a “standard house”.
We see that constancy of TP requires τ p decreasing if PH is increasing. Hence,
let us study the effect on the housing market of a fall in τ p.
Suppose the residential construction sector has been in the steady state E in

Fig. 15.10 until time t1. (NB: the figure not yet adjusted to recent changes in
model). Then there is an unanticipated downward shift in the property tax τ p
to a new constant level τ ′p rightly expected to last forever in the future. The
resulting evolution of the system is shown in the figure. The new steady state is
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called E’. The new medium-run level of H is H∗′ > H∗, because R′(H) < 0. On
impact, house owners benefit from a capital gain in that p jumps up to the point
where the vertical line H = H

∗
crosses the new (downward-sloping) saddle path.

The intuition is that the after-tax return on owning a house has been increased.
Hence, by arbitrage the market price p rises to a level such that the after-tax rate
of return on houses is as before, namely equal to (1− τ r)r. After t1, owing to the
high p relative to the unchanged building cost schedule, H increases gradually
and p falls gradually (due to R falling in response to the rising H). This continues
until the new steady state is reached with unchanged p∗, but higher H.

The dichotomy between the short and the medium run

There is a dichotomy between the price and quantity adjustment in the short and
medium run:

1. In the short run, H, hence also the supply of housing services, is given. The
rental rate R as well as the house price p immediately shifts up (down) if
the demand for housing services shifts up (down).

2. In themedium run (i.e., without new disturbances), it isH that adjusts and
does so gradually. The adjustment of H is in a direction indicated by the
sign of the initial price difference, p − p∗, which in turn reflects the initial
position of the demand curve in Fig. 15.6. On the other hand, the house
price, p, converges toward the cost-determined level, p∗. This price level
is constant as long as technical progress in the production of intermediate
goods for construction follows the general trend in the economy.

15.2.4 Discussion

In many countries a part of the housing market is under some kind of rent control.
Then there is, of course, rationing on the demand side of the housing market. It
may still be possible to use the model in a modified version since the part of
the housing market, which is not under regulation and therefore has a market
determined price, p, usually includes the new building activity.
We have carried out partial equilibrium analysis in a simplified framework.

Possible refinements of the analysis include considering household optimization
with an explicit distinction between durable consumption (housing demand) and
non-durable consumption and allowing uncertainty and credit market imperfec-
tions. Allowing for convex capital adjustment costs in the production of the
intermediate construction goods would reinforce the tendency to rising marginal
costs, but also noticeably complicate the model by adding an extra state variable
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with associated shadow price. A more complete analysis would also include land
prices and ground rent.
Finally, a general equilibrium approach would take into account the feedbacks

on aggregate employment and perceived aggregate wealth from changes in con-
struction activity and p. Feedbacks on aggregate financial wealth from changes
in p are more intricate than one might imagine at first glance. At least in a
representative agent model everybody is an average citizen and owns the house
she lives in. Nobody is better off by a rise in house prices. In a model with
heterogeneous agents, those who own more houses than they use themselves gain
by a rise in house prices. And those in the opposite situation lose. Whether and
how aggregate consumption is affected depends on differences in the marginal
propensity to consume and on institutional circumstances concerning collateral
in credit markets. In two papers by Case, Quigley, and Shiller (2005, 2011) empir-
ical evidence of a positive relationship between consumption and housing wealth
in the US is furnished.

The issue of housing bubbles After a decade of sharply rising house prices,
the US experienced between 2006 and 2009 a fall in house prices of about 30%
(Shiller, ), in Denmark about 20% (Economic Council, Fall 2011). In Section
15.2.3 we argued briefly that in the present model with rational (model consistent)
expectations, housing bubbles can be ruled out. Let us here go a little more into
detail about the concepts involved.
The question is whether the large empirical volatility in house prices should

be seen as reflecting the rise and burst of housing bubbles or just volatility of
fundamentals. An asset price bubble is present if the market price, pt, of the asset
exceeds the fundamental value p̂t. The latter is the present value of the expected
future services or dividends from the asset (for instance a house) and can be
found as the solution to the differential equation (15.64), assuming absence of
asset price bubbles (see Appendix D).
A rational asset price bubble is an asset price bubble that is consistent with

the no-arbitrage condition for the asset, here (15.52), when agents have rational
expectations. In the absence of stochastic elements in our model, rational expec-
tations amounts to perfect foresight. In Section 15.2.3 we claimed that rational
bubbles are inconsistent with the present model. Let us briefly see why.
Relative to a hypothetical market price pt > p̂t, the demand side in the

housing market is likely to have a cheaper way of acquiring a house or at least the
services of a house. An owner occupying her own house because of its “use value”
would prefer to sell it and then rent, paying the rental rate per time unit. The
present value of the rent payment stream is p̂t, which is less than the hypothetical
market price pt. And speculators that buy houses with a view to sell later at a
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substantial capital gain due to a bubbly price path might find it diffi cult to find
buyers. For instance, in a general equilibrium framework it is likely that the large
profits obtained due to the bubble would attract entrants to the construction
industry and expand capacity so as to reduce not only the rental rate but also
production costs, thereby being able to undercut house owners trying to sell at
pt. By backward induction we conclude that under these circumstances, a bubbly
price path will not arise in the first place.
Could there be a negative bubble, that is, a market price pt < p̂t? No, in case

pt < p̂t, there will be market participants around eager to buy at a higher price
p′t ∈ (pt, p̂t). The buyer could then either let the house to somebody else, thereby
receiving a stream of rental payments of present value equal to p̂t, or the buyer
could use the house as home for herself, thereby avoiding to pay the market rents
with present value equal to p̂t.
The situation is not essentially different if we add calculable uncertainty to

the model. Then we might think of stochastic housing bubbles, but can rule them
out by similar arguments, now in terms of expected values, as in the deterministic
case.16

But many economic situations are marked by fundamental uncertainty. Then
objective expected values do not exist, and fundamental values, bubbles, and
rational expectations are not well-defined. This is where the behavioral finance
literature enters the scene. In that literature speculative bubbles are linked to
market psychology (herding, fads, etc.). We postpone further discussion of asset
price bubbles to Part VI.

15.3 Literature notes

(incomplete)
Poterba (1984).
Attanasio et al., 2009.
Buiter, Housing wealth isn’t wealth, WP, London School of Economics, 20-

07-2008.
The question of systematic bias in homebuyer’s expectations in four U.S.

metropolitan areas over the period 2003-2012 is studied in Case, Shiller, and
Thompson (2012), based on questionnaire surveys. See also Cheng, Raina, and
Xiong (2012).
Shiller (2003) gives an introduction behavioral finance theory.
Campbell and Cocco, 2007.

16Including land and unique building sites with specific amenity values into the model will
make the argument against rational bubbles less compelling, however (see, e.g., Kocherlakota,
2011).
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Himmelberg et al. (2005) survey issues arising when trying to empirically
assess the state of house prices: can fundamentals explain the high demand or is
existence of a bubble more likely?
K iyotaki et al. (2011) study the issue of winners and losers in housing markets

on the basis of a quantitatively oriented life-cycle model.
Mayer (2011) surveys theory and empirics about bubbles and the cyclical

movement of house prices.
Iacoviello and Neri (2010) find .
The phenomenon that fast expansion may reduce effi ciency when managerial

capability is a fixed production factor is known as a Penrose effect, so named
after a book from 1959 on management by the American economist Edith Pen-
rose (1914-1996). Uzawa (1969) explores Penrose’s ideas in different economic
contexts. The construction process is sensitive to managerial capability which is
a scarce resource in a construction boom.

15.4 Appendix

A. Complementary inputs (Section 15.1)

In Section 15.1.2 we claimed, without proof, certain properties of the oil demand
function and the marginal productivities of capital and labor, respectively, in
general equilibrium, given firms’profit maximization subject to a three-factor
production function with inputs that exhibit direct complementarity. Here, we
use the attributes of the production function F , including (15.2), and the first-
order conditions of the representative firm, to derive the claimed signs of the
partial derivatives of the functions M(K, pM), w(K, pM), and MPK(K, pM).
First, taking differentials with respect to K and M on both sides of (15.13)

gives
FMKdK + FMMdM = dpM .

Hence, ∂M/∂K = −FMK/FMM > 0, and ∂M/∂pM = 1/FMM < 0.
Second, taking differentials with respect to K and pM on both sides of (15.12)

yields
dw = FLKdK + FLM(MKdK +MpMdpM).

Hence, ∂w/∂K = FLK + FLMMK > 0, and ∂w/∂pM = FLMMpM < 0.
Third, ∂MPK/∂pM = FKMMpM < 0, since FKM > 0 and MpM < 0. As to

the sign of ∂MPK/∂K, observe that

∂MPK/∂K = FKK + FKMMK = FKK + FKM(−FMK/FMM)

=
1

FMM

(FKKFMM − FKM 2) < 0,
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where the inequality follows from FMM < 0, if FKKFMM − FKM 2 > 0. And the
latter inequality does indeed hold. This follows from (15.65) in the lemma below.

Lemma. Let f(x1, x2,x3) be some arbitrary concave C2-function defined on R3
+.

Assume fii < 0 for i = 1, 2, 3, and fij > 0, i 6= j. Then, concavity of f implies
that

fiifjj − fij2 > 0 for i 6= j. (15.65)

Proof. By the general theorem on concave C2-functions (see Math Tools), f
satisfies

f11 ≤ 0, f11f22 − f12
2 ≥ 0 and

f11(f22f33 − f23
2)− f12(f21f33 − f23f31) + f13(f21f32 − f22f31) ≤ 0 (15.66)

in the interior of R3
+. Combined with the stated assumptions on f , (15.66) implies

(15.65) with i = 2, j = 3. In view of symmetry, the numbering of the arguments
of f is arbitrary. So (15.65) also holds with i = 1, j = 3 as well as i = 1, j = 2. �

The lemma applies because F satisfies all the conditions imposed on f in the
lemma. First, the direct complementarity condition fij > 0, i 6= j, is directly
assumed in (15.2). Second, the condition fii < 0 for i = 1, 2, 3 is satisfied by
F since, in view of F being neoclassical, the marginal productivities of F are
diminishing. Finally, as F in addition to being neoclassical has non-increasing
returns to scale, F is concave.

B. The transformation function and the adjustment cost function in
Tobin’s q-theory (Section 15.2.2)

As mentioned in Section 15.2.2 we may formulate the strictly concave transfor-
mation function T (I, E) as being equal to I − G(I, E), where the “waste” is
represented by an adjustment cost function G(I, E) familiar from Chapter 14.
Then, on the one hand, all the properties of G required in Chapter 14.1 when
I ≥ 0 are maintained. On the other hand, not all properties required of T in
(15.55) need be satisfied in Tobin’s q-theory.
As to the first claim, note that when the function T (I,H) ≡ I −G(I,H) has

all the properties stated in (15.55), then the function G must, for (I, E) ∈ R2
++,
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satisfy:

G(I, E) ≡ I − T (I, E),

G(0, E) = 0− T (0, E) = 0,

GI(I, E) = 1− TI(I, E) ≥ 0, with GI ≥ 0 for I ≥ 0, respectively,

GII(I, E) = −TII(I, E) > 0 for all I ≥ 0,

GE(I, E) = −TE(I, E) ≤ 0,

where the second line is implied by TI(0, E) = 1 and TII < 0. These conditions
on G are exactly those required in Chapter 14.1.
As to the second claim, a requirement on the function T in (15.55) is that

TI(0, E) = 1 and TI(I, E) > 0 for all I ≥ 0 at the same time as TII < 0.
This requires that 0 < TI(I, E) < 1 for all I > 0. For G(I, E) = I − T (I, E)
to be consistent with this, we need that 0 < GI < 1 for all I > 0. So the G
function should not be “too convex”in I. We would have to impose the condition
that limI→∞GII = 0 holds with “suffi cient speed of convergence”. Whereas for
instance

G(I, E) = I − α−1/β(αIβ + (1− α)Eβ)1/β, with 0 < α < 1, and β < 0,

will do, a function like G(I/E) = (α/2)I2/E, α > 0, will not do for large I.
Nevertheless, the latter function satisfies all conditions required in Tobin’s q-
theory as described in Chapter 14. If one would like to use such a quadratic
function to represent waste in construction, one could relax the in (15.55) required
condition TI(I, E) > 0 to hold only for I below some upper bound.
Finally, we observe that when T (I, E) ≡ I −G(I, E), then, if the function G

is homogeneous of degree k, so is the function T, and vice versa.

C. Marginal costs in construction (Section 15.2.2)

We may look at the construction activity of the representative construction firm
from the point of view of increasing marginal costs. First, let TC denote the
total costs per time unit of the representative construction firm. We have TC
= f̄ + TV C, where f̄ is the fixed cost to management and TV C is the total
variable cost associated with the construction of B (= T (I,H)) new houses per
time unit, given the economy-wide stock H. All these costs are measured in real
terms. We have TV C = cI. The input of intermediates, I, required for building
B new houses per time unit is an increasing function of B. Indeed, the equation

B = T (I, E), (*)
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Figure 15.11: Marginal costs in house construction (housing stock given).

where TI > 0, defines I as an implicit function of B and E, say I = ψ(B,E). By
implicit differentiation in (*), we find

ψB = ∂I/∂B = 1/TI(ψ(B,E), E) > 1, when I > 0.

So TV C = cI = cψ(B,E), and short-run marginal cost is

MC(c, B,E) =
∂TV C

∂B
= cψB =

c

TI(ψ(B,E), E)
> c, when I > 0. (**)

CLAIM
(i) The short-run marginal cost, MC, of the representative construction firm is
increasing in B.

(ii) The construction sector produces new houses up the point where MC = p.
(iii) The cost of building one new house per time unit is approximately c.

Proof. (i) By (**) and (*),

∂MC

∂B
=
−cTII(ψ(B,E), E)ψB
TI(ψ(B,E), E)2

=
−cTII(ψ(B,E), E)

TI(ψ(B,E), E)3
> 0,

since TI > 0 and TII < 0. (ii) Follows from (**) and the first-order condi-
tion (15.56) found in the text. (iii) The cost of building ∆B, when B = 0,
is MC(c,∆B,E) ≈ [c/TI(0, E)] ·∆B = c∆B = c when ∆B = 1, where we have
used (**). �
That it is profitable to produce new houses up the point where MC = p is

illustrated in Fig. 15.11.
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The text assumes that TI > 0 for all I ≥ 0, hence that the MC curve never
becomes vertical. Alternatively, one could assume that at some large level of
the flow B, it is impossible to increase B further. This corresponds to the upper
section of the MC curve being vertical. In this situation an absolute capacity limit
is reached, which in Fig. 15.7 would reflect that for large I, the T (I, E) curve
is horizontal. This situation could be the result of the market price p containing
an asset price bubble driven by self-reinforcing expectations, thereby spurring a
roaring construction boom.

D. Solving the no-arbitrage equation for pt (Section 15.2.4)

By definition, if there are no house price bubbles, the market price of a house
equals its fundamental value, i.e., the present value of expected (possibly imputed)
after-tax rental income from owning the house. Denoting the fundamental value
p̂t, we thus have

p̂t = (1− τR)

∫ ∞
t

R(H̃s)e
−(τp+δ)(s−t)eτRδ(s−t)e−(1−τr)r(s−t)ds, (15.67)

= (1− τR)

∫ ∞
t

R(H̃s)e
−[(1−τr)r+(1−τR)δ+τp](s−t)ds,

where the three discount rates appearing in the first line are, first, τ p + δ, which
reflects the rate of “leakage”from the investment in the house due to the property
tax and wear and tear, second, τRδ, which reflects the tax allowance due to wear
and tear, and, finally, (1− τ r)r, which is the usual opportunity cost discount. In
the second row we have done an addition of the three discount rates so as to have
just one discount factor easily comparable to a key coeffi cient appearing in the
linear differential equation (15.68) below.
In Section 15.2.4 we claimed that in the absence of housing bubbles, the linear

differential equation, (15.64), implied by the no-arbitrage equation (15.52) under
perfect foresight, has a solution pt equal to the fundamental value of the house,
i.e., pt = p̂t. To prove this, we write (15.64) on the standard form for a linear
differential equation,

ṗt + apt = −(1− τR)R(H̃t), (15.68)

where
a ≡ − [(1− τ r)r + (1− τR)δ + τ p] < 0. (15.69)

The general solution to (15.68) is

pt =

(
pt0 − (1− τR)

∫ t

t0

R(H̃s)e
a(s−t0)ds

)
e−a(t−t0).
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Multiplying through by ea(t−t0) gives

pte
a(t−t0) = pt0 − (1− τR)

∫ t

t0

R(H̃s)e
a(s−t0)ds.

Rearranging and letting t→∞, we get

pt0 = (1− τR)

∫ ∞
t0

R(H̃s)e
a(s−t0)ds+ lim

t→∞
pte

a(t−t0).

Inserting (15.69), replacing t by T and t0 by t, and comparing with (15.67), we
see that

pt = p̂t + lim
T→∞

pT e
−[(1−τr)r+(1−τR)δ+τp](T−t). (15.70)

The first term on the right-hand side is the fundamental value of the house at
time t. The second term on the right-hand side thus amounts to a bubble, driven
by self-fulfilling expectations. In the absence of the bubble, the market price, pt,
coincides with the fundamental value.

Are rational price bubbles possible? We see from (15.70) that a positive
rational bubble being present requires that

lim
T→∞

pT e
−[(1−τr)r+(1−τR)δ+τp](T−t) > 0.

In turn, this requires that the house price is explosive in the sense of ultimately
growing at a rate not less than (1 − τ r)r + (1 − τR)δ + τ p. Our candidate for a
bubbly path ultimately moving North-East in Fig. 15.9 in fact has this property.
Indeed, by (15.64), for such a path we have

ṗt/pt = [(1− τ r)r + (1− τR)δ + τ p]−(1−τR)R(H̃t)/pt → (1−τ r)r+(1−τR)δ+τ p

for t → ∞, since pt → ∞ and R′(H̃t) < 0. But such an explosive price path can
hardly be realized under rational expectations, as explained in the text of Section
15.2.4.

15.5 Exercises

(15.64)
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