
Chapter 17

Inflation and capital
accumulation: The Sidrauski
model

In this chapter we consider a competitive economy from the perspective of key
questions in monetary macroeconomics. The questions studied are: (a) How do
the size and the growth rate of the money supply affect resource allocation, price
level, inflation rate, and welfare in the economy? (b) Given the preferences of a
representative household, what rule should govern the quantity of money? (c) Is
hyperinflation always a consequence of excessive growth in the money supply or
can it be generated by self-fulfilling expectations? (d) Can deflation be generated
by self-fulfilling expectations?
One approach to these questions is exemplified by a contribution by the Ar-

gentine economist Miguel Sidrauski (1939-1968), graduated from University of
Chicago. Shortly before his tragic death at the age of twenty eight he published a
famous paper based on a monetary Ramsey model (Sidrauski 1967a). Prices and
wages are assumed fully flexible and markets are competitive. The model is thus
an example of a neoclassical monetary model. Whatever its worth as a theory of
the actual macroeconomic functioning of money, the model exposes how changes
in the money supply would operate in a world of full capacity utilization and fully
flexible prices of goods and labor.
Among other things, the Sidrauski model leads to Milton Friedman’s famous

and controversial zero interest rate rule (Friedman 1969). This rule recommends
a deflationary monetary policy such that the opportunity cost of holding cash,
the nominal interest rate, becomes zero.1

1Milton Friedman (1912-2006), who spent most of his academic life at the University of
Chicago, was the leading figure in the school of thought called monetarism.
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17.1 The agents

There are three types of agents in the model, households, firms, and a consolidated
government-central bank. The model ignores the private banking sector. So
“money”in the model means base money. For simplicity, technology is constant
and there are no capital adjustment costs. Time is continuous.

The households

Following the Ramsey setup we consider a fixed number of households − or rather
dynastic families − with infinite time horizon. The families are identical. Every
family has Lt members at time t, and Lt grows at the constant rate n ≥ 0.
Every family member inelastically supplies one unit of labor per time unit. We
normalize the number of households to 1 such that Lt also measures the aggregate
labor supply. The family is fortunate to be equipped with perfect foresight.
Let the family’s total consumption be denoted by Ct and its total desired

nominal money holdings by Mt. The corresponding per capita quantities are

ct ≡
Ct
Lt
, and mt ≡

Mt

PtLt
,

where Pt is the general price level measured in current money, i.e., the GDP
deflator. The instantaneous utility is given by the utility function

u(ct,mt), uc > 0, um > 0, ucc < 0, umm < 0. (17.1)

That is, current utility at time t depends positively on current consumption
per head, ct, and real money holdings per head, mt.2 People wish to possess a
certain liquidity to lessen transaction efforts (these efforts or “transaction costs”
are not explicit in the model, but should be understood in some non-pecuniary
sense). Notice that the liquidity service of money depends on the purchasing
power of money, that is, the argument in the utility function is (Mt/Lt)/Pt,
notMt/Lt. Postulating that the liquidity service of money contributes directly to
utility instead of merely being a means to reduce transaction effort, is not entirely
satisfactory, of course. It is a short-cut which is analytically convenient.
The family wants to maximize discounted utility,

∫∞
0
u(ct,mt)Lte

−ρtdt, where
ρ is the rate of time preference. For simplicity, we concentrate on a special case
of the instantaneous utility function, namely

u(ct,mt) =
c1−θ
t − 1

1− θ + α
m1−ε
t − 1

1− ε ,

2Other than the stated properties of u, one might, for the general case of non-separability of
u, want to add a requirement that u is concave (and thereby uccumm − u2cm ≥ 0). We shall be
concerned with the case where u is additively separable and then concavity of u is automatically
satisfied.
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17.1. The agents 663

where θ, ε, and α are given positive parameters. That is, the utility contributions
from consumption and money holdings, respectively, enter in an additive separa-
ble way in the form of two CRRA functions with elasticity of marginal utility of
θ and ε, respectively.3 The greater θ and ε, respectively, the greater the desire to
smooth consumption and money holdings, respectively, over time. The parame-
ter α expresses the weight attached to money holdings relative to consumption.
Hence, the objective function of the family, as seen from time 0, can be written

U0 =

∫ ∞
0

(
c1−θ
t − 1

1− θ + α
m1−ε
t − 1

1− ε

)
e−(ρ−n)tdt, (17.2)

where an unimportant positive factor, L0, has been eliminated. To ease conver-
gence of the utility integral for t → ∞, we presume that the effective discount
rate ρ̄ ≡ ρ− n is positive.
Let

At ≡ real financial wealth,

Vt ≡ At −
Mt

Pt
≡ real non-monetary financial wealth. (17.3)

The non-monetary financial wealth, sometimes called interest-bearing wealth,
may consist of capital goods, bonds, and shares of stock. The increase per time
unit in the family’s financial wealth is

Ȧt = rt(At −Mt/Pt)− πtMt/Pt + wtLt +Xt − Ltct, A0 given. (17.4)

Here, rt is the real interest rate, πt ≡ Ṗt/Pt is the rate of inflation, wt is the
real wage, and Xt is lump-sum transfers from the government. The transfers are
financed by money issue (see below), and there is no taxation. Considering (17.4)
as an ex post accounting relationship, rt will be interpreted as the ex post realized
real interest rate it−πt, where it is the short-term nominal interest rate. From an
ex ante point of view the economically relevant interest rate is the expected real
interest rate which is the observable nominal interest rate, it, minus the expected
inflation rate, πet . But as uncertainty is ignored, expectations are assumed always
to be validated ex post so that πet = πt and we simply have rt = it − πt ex ante
as well as ex post.
The absence of uncertainty implies that all interest-bearing assets earn the

same rate of return. Otherwise nobody will hold the asset with the lower return.

3To ease graphical illustration, cf. Fig. 17.2, we have written the two CRRA functions
in “normalized form”by subtracting the constants 1/(1 − θ) and 1/(1 − ε), respectively. As
usual, the CRRA formulas should be interpreted as ln ct and/or lnmt, if θ = 1 and/or ε = 1,
respectively.
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Money, however, is a different kind of asset. Owing to the liquidity services
it provides, it will generally bear a lower rate of return than other financial
assets. Indeed, the rate of return on holding (base) money is, by definition,
[d(1/Pt)/dt]/(1/Pt) = −P−2

t Ṗt/(1/Pt) = −Ṗt/Pt ≡ −πt, which is negative, when
inflation is positive.
Now, the dynamic budget identity (17.4) says that saving (i.e., the increase

per time unit in financial wealth) equals income minus consumption. The income
is composed of capital income, labor income, wtLt, and transfers, Xt. Capital
income is the return on financial wealth and this return consists of two terms,
first, the return on interest-bearing financial wealth, rt(At − Mt/Pt), second,
the “return”on the liquid part of financial wealth, −πtMt/Pt, which is usually
negative. Stated differently, πtMt/Pt is the “capital loss”by holding part of the
wealth in liquids and thereby being exposed to depreciation in the real value of
this part of wealth.4

By inserting Mt/Pt ≡ Ltmt, (17.4) takes the form

Ȧt = rt(At − Ltmt)− πtLtmt + wtLt +Xt − Ltct, A0 given. (17.5)

It is not until this dynamic book-keeping is supplemented by a requirement of
solvency, that we have a budget constraint restricting the intertemporal consump-
tion path. The solvency requirement is the No-Ponzi-Game condition

lim
t→∞

Ate
−
∫ t
0 rsds ≥ 0. (NPG)

This condition implies that far out in the future, the household (or “family”) can
still have a negative net financial position (A < 0), the absolute value of which is
even growing over time although, at most, at a rate less than the interest rate.
Note that in contrast to previous chapters, we here have two assets, an

interest-bearing asset and money. This might raise the question why the rele-
vant solvency requirement takes exactly this form in the present model where we
have two assets, money and a non-monetary asset, so that At ≡Mt/Pt +Vt. The
answer is given in Appendix A.
The optimization problem of the household is: choose a plan (ct,mt)

∞
t=0
such

that a maximum of U0 is achieved subject to the constraints (17.5) and (NPG).
One could proceed by using the Maximum Principle directly on this problem
with two control variables, ct and mt, and one state variable, At. We will use
the alternative procedure where the problem is first transformed into per capita
terms.

4Another way of understanding (17.4) is as follows: by differentiating w.r.t. t in (17.3) we
get Ȧt = V̇t+ Ṁd

t /Pt −(Ṗt/Pt)M
d
t /Pt. Since V̇t+ Ṁd

t /Pt must be exactly the same as the non-
consumed part of direct income, i.e., the same as rtVt +wtLt +Xt −Ltct = rt(At −Md

t /Pt) +
wtLt +Xt − Ltct, we then get (17.4).
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Per capita accounting We convert the constraints into per capita entities in
the following way. We define at ≡ At/Lt, implying

ȧt =
LtȦt − AtL̇t

L2
t

=
Ȧt
Lt
− atn.

Inserting (17.5) and the definition xt ≡ Xt/Lt, we get

ȧt = (rt − n)at − (rt + πt)mt + wt + xt − ct, a0 given. (17.6)

Here, the term (rt + πt)mt therefore represents the opportunity cost of placing
part of the financial wealth in money rather than in interest-bearing assets. The
No-Ponzi-Game condition (NPG) takes the form

lim
t→∞

ate
−
∫ t
0 (rs−n)ds ≥ 0, (NPG’)

where L0 has been eliminated. Notice that in both (17.6) and (NPG’) the growth-
corrected real interest rate, rt−n, appears. On the one hand, deferring consump-
tion gives a return through the real interest rate. But on the other hand, there
will be more family members to share the return.
The problem of the household can now be formulated as follows: choose a

plan (ct,mt)
∞
t=∞, where ct, mt ≥ 0, to maximize U0 subject to the constraints

(17.6) and (NPG).

Solving the problem

The control variables are consumption c and money holding m, whereas financial
wealth, a, is a state variable. The reason that m is a control variable and not
a state variable is that m merely reflects a portfolio choice, given a. A discrete
change in the portfolio composition, due to changed expectations, can immedi-
ately be executed.
The current-value Hamiltonian is

H(a, c,m, λ, t) =
c1−θ − 1

1− θ +α
m1−ε − 1

1− ε +λ[(r−n)a−(r+π)m+w+x−c], (17.7)

where λt is the adjoint variable associated with financial wealth per head. By
the Maximum Principle an interior optimal solution will satisfy the following
first-order conditions

∂H

∂c
= c−θ − λ = 0 ⇒ c−θ = λ, (17.8)

∂H

∂m
= αm−ε − λ(r + π) = 0 ⇒ αm−ε = λ(r + π), (17.9)

∂H

∂a
= λ(r − n) = (ρ− n)λ− λ̇ ⇒ −λ̇/λ = r − ρ. (17.10)
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In addition, the transversality condition,

lim
t→∞

atλte
−(ρ−n)t = 0, (TVC)

is necessary for optimality. And together with the first-order conditions, (TVC)
is also suffi cient for optimality, as shown in Appendix A. The adjoint variable λt
can be interpreted as the shadow price (measured in current utility) of financial
wealth per capita along the optimal path.
The marginal rate of substitution of consumption for holding money is, ac-

cording to (17.8) and (17.9),

MRSc,m ≡ −
dc

dm
|u=ū =

um (c,m)

uc (c,m)
=
αm−ε

c−θ
= r + π = i =

iP

P
, (17.11)

where ū is the instantaneous utility level obtained at (c,m). On the right-hand
side of the last equality we have the price ratio of the two “goods”. The nominal
interest rate multiplied by P is the opportunity cost per time unit of holding P
units of (nominal) money. Thus iP makes up the price of the liquidity service
provided by holding cash in the amount P in one time unit. If, over the time
interval (t, t + ∆t), we have m decreased by a small number, |∆m| , and bond
holdings correspondingly increased, then moving along the “budget line” in the
(m∆t, c∆t) plane implies an increase in current consumption equal to ∆c∆t =
−i∆t∆m = −i∆t∆M/(PL), where ∆M = PL∆m. So P∆c∆t = −i∆t∆M/L.
That is, the consumption spending per capita is increased by the obtained extra
nominal interest income per capita, which is |i∆t∆M/L| . At the optimum, where
the indifference curve is tangent to the budget line, the household would not be
better off by such a small change in the portfolio composition.
From (17.11) we find the money demand function (conditional on the level of

consumption, c) :

mt = α1/εc
θ/ε
t i
−1/ε
t ≡ md(ct, it). (17.12)

Two features should be emphasized. First, the real money demand per head at
time t is seen to be an increasing function of ct. Indeed, ct can be understood as
an indicator of the volume of transactions; ct enters with elasticity equal to θ/ε.
Second, the money demand at time t is a decreasing function of the nominal in-
terest rate, it, with absolute elasticity equal to 1/ε.5 Empirically, both elasticities
are usually estimated to be below one, and the latter elasticity a great deal lower
than the former. Goldfeld (1973) finds 1/ε ≈ 0.1. We may therefore assume ε
greater than 1, which will be of importance in sections 17.3 and 17.4 below.

5Since ct is endogenous for the household, we are not dealing with a “true” Walrasian
demand function but a function which gives the demand for money conditional on the demand
for consumption.
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By differentiating w.r.t. t in (17.8) and inserting (17.10) we get

ċt
ct

=
1

θ
(rt − ρ) , (17.13)

which is the traditional Keynes-Ramsey rule. If instead of c andm being separable
in the instantaneous utility function u(c,m) we had ucm 6= 0, then we would not
obtain the simple Keynes-Ramsey rule but a generalized version:

ċt
ct

=
1

θ (ct,mt)
[rt − ρ+ η(ct,mt)

ṁt

mt

], (17.14)

where θ(c,m) ≡ −cucc/uc > 0 and η(c,m) ≡ mucm/uc ≷ 0 for ucm ≷ 0, respec-
tively.

The firms

The model abstracts from firms’need of cash to perform their transactions. Thus
the description of the firms is as in the simple Ramsey model. The representa-
tive firm has a neoclassical production function, Yt = F (Kd

t , L
d
t ), with constant

returns to scale. Here, Yt, Kd
t , and L

d
t are output, capital input, and labor input,

respectively. For simplicity, technological progress is ignored and so are capital
adjustment costs. We assume F satisfies the Inada conditions. Because of con-
stant returns to scale we have Y = F (Kd, Ld) = LdF (kd, 1) ≡ Ldf(kd), where kd

≡ Kd/Ld, and f ′ > 0, f ′′ < 0. Profit maximization under perfect competition
implies

FK(Kd, Ld) = f ′(kd) = r + δ, (17.15)

where δ > 0 is the capital depreciation rate, and

FL(Kd, Ld) = f(kd)− kdf ′(kd) = w. (17.16)

Government/central bank

There is a consolidated government/central bank. It provides lump-sum income
transfers to every household. The real transfer per household is Xt per time unit.
Since the number of households (families) is normalized to 1, the government’s
total nominal expenditure on transfers is PtXt per time unit. No taxes are col-
lected and there is no issue of public debt. Hence there is a budget deficit equal
to the government expenditure PtXt. This budget deficit is entirely financed by
the central bank “printing money”, that is, by an expansion of the money supply.
We shall generally assume continuous equilibrium in the money market. Hence,

we will use Mt to denote not only the households’money demand but also the
money supply. The financing of the budget deficit can thus be written

Ṁt = PtXt. (17.17)

c© Groth, Lecture notes in macroeconomics, (mimeo) 2016.



668
CHAPTER 17. INFLATION AND CAPITAL ACCUMULATION: THE

SIDRAUSKI MODEL

where Ṁt is the increase per time unit of the money supply. The latter equals the
monetary base since there is no private banking sector. The reader may think
of M as currency or liquid electronic deposits in the central bank held by the
citizens. Then “printing money”means crediting citizens’accounts in the central
bank.
The transfers, Xt, are thus fully financed by seigniorage Ṁt/Pt, which is the

revenue the public sector obtains by “printing money”(the production costs by
doing so are small and can be ignored). So, in the Sidrauski model monetary
policy is at the same time fiscal policy. Formally, the balance sheet of the central
bank may show an accumulating outstanding account against the government.
But this has no practical consequences. Or we could imagine that the government
deficit is in the first instance financed by government debt issue vis-a-vis the
private sector. In the next instant, the central bank buys the same amount
of financial assets from the private sector. This is known as the central bank
monetizing the government debt.
We assume that the government/central bank maintains a constant growth

rate, µ, of the money supply, that is Ṁt/Mt = µ. This implies

Mt = M0e
µt,

where M0 is given. The transfer per person, xt ≡ Xt/Lt, is thus endogenous and
determined by

xt =
Ṁt/Pt
Lt

=
Ṁt

Mt

Mt

PtLt
= µmt. (17.18)

17.2 Equilibrium and evolution over time

General equilibrium

Clearing in the factor markets entailsKd = K (i.e., the supply of real capital) and
Ld = L (supply of labor), in that we have normalized both the number of firms
and the number of households to 1. Thus, at any time t, kdt = kt. By substitution
into the two profit-maximizing conditions above we find the equilibrium interest
rate and real wage at time t as

rt = f ′(kt)− δ, (17.19)

wt = f(kt)− ktf ′(kt), (17.20)

where kt is predetermined.
Since there is no government debt and the economy is closed, the debts

which households might have to each other in equilibrium balance out. Thus,
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at = kt+mt. That both k and m are by definition non-negative has two notewor-
thy implications. First, the representative household satisfies automatically the
NPG constraint. Second, (TVC) implies two separate aggregate transversality
conditions,

lim
t→∞

ktc
−θ
t e−(ρ−n)t = 0, and (17.21)

lim
t→∞

mtc
−θ
t e−(ρ−n)t = 0. (17.22)

The dynamic system

To characterize the evolution over time, we derive the fundamental differential
equations of the model. From mt ≡ Mt/(PtLt) we get ṁt/mt = Ṁt/Mt −Ṗt/Pt
−L̇t/Lt, that is,

ṁt = (µ− πt − n)mt. (17.23)

From kt ≡ Kt/Lt, it follows that k̇t = (LtK̇t − KtL̇t)/L
2
t . Inserting K̇t = Yt −

ctLt − δKt, we obtain
k̇t = f(kt)− ct − (δ + n)kt. (17.24)

Inserting (17.19) into (17.13) gives

ċt =
1

θ
[f ′(kt)− δ − ρ]ct. (17.25)

According to (17.11) and (17.19), we have

π = αm−εcθ − r = αm−εcθ − f ′(k) + δ, (17.26)

from (17.19). Thus, πt is a function of mt, ct, and kt. Consequently, with (17.26)
substituted into (17.23), we have that (17.23), (17.24), and (17.25) make up three
coupled differential equations in m, k, and c.
The evolution over time is determined as a solution (mt, kt, ct)

∞
t=0 of the cou-

pled differential equations which satisfies: 1) k0 equals some predetermined initial
value given by history, and 2) the transversality conditions (17.21) and (17.22)
hold. Whereas M0 is predetermined, real per capita money holding, m0, is, like
c0, in this model a jump variable. Indeed, m0 ≡ M0/(P0L0), where P0 is fully
flexible and adjusts instantaneously such that m0 becomes equal to the initial
real money demand, md(c0, i0), given in (17.12).
That the price level is a jump variable is a crucial feature of classical and

neoclassical models where prices are fully flexible even in the short run. Most
economists consider this unrealistic when speaking of prices of industrial goods
and services rather than prices of financial assets and some raw materials put
into storage. Whether prices are fully flexible or sticky is of key importance for
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the short-run mechanisms of the economy. The Keynesian approach is based on
the view that not the price level but the nominal interest rate is the equilibrating
variable in the money market.
But suppose one accepts the classical conception of the equilibrating mecha-

nism. Then there is the additional issue of how to rule out inflation or deflation
bubbles generated by self-fulfilling expectations. An inflation bubble is present if
sustained inflation arises due to self-fulfilling expectations. Similarly, a deflation
bubble is present if sustained deflation arises due to self-fulfilling expectations.
As we will see in Section 17.4, under certain conditions such bubbles are possible
within the model, thus generating multiple equilibrium paths.
For now we set this problem aside and simply assume that neither inflation

nor deflation bubbles occur. It can then be shown that the three-dimensional
dynamic system, (17.23), (17.24), and (17.25), where m and c are jump variables,
and k is a predetermined variable, is saddle-point stable. So there is a unique
solution converging to a steady state for t→∞. The formal details are given in
Appendix B. The saddle-point stability holds whether or not there is separability
between c and m in the instantaneous utility function.
The model version presented here assumes this separability only to simplify.

Indeed, the separability between c andmmakes the dynamic system decomposable
in the sense that the last two differential equations constitute an autonomous
subsystem in k and c. This subsystem can be solved independently of (17.23).
Moreover, this subsystem is identical to that of the standard Ramsey model
without money, which we analyzed in Chapter 10. We know from that chapter
that its solution (kt, ct) converges toward a steady state (k∗, c∗).

The resulting dynamics of the real money supply, m, are given by (17.23)
after substitution of (17.26). And absent inflation and deflation bubbles, also m
converges to a steady-state value, m∗. As mentioned, this holds also when c and
m are not separable in the instantaneous utility function, so that (17.14), with
rt = f ′(kt)− δ, replaces (17.25).

The steady state

In steady state we have ṁ = k̇ = ċ = 0. By substitution into (17.23), (17.24) and
(17.25) we get the steady-state values

π∗ = µ− n, (17.27)

r∗ = f ′(k∗)− δ = ρ, (17.28)

k∗ = f ′−1(δ + ρ), (17.29)

c∗ = f(k∗)− (δ + n)k∗. (17.30)
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These steady-state results also hold in the general case without separability in
the instantaneous utility function. The long-run inflation rate is determined by
the excess of the growth rate of the money supply over the growth rate, n, of
the population which is also the output growth rate in steady state. This is as
expected. The volume of transactions grow at the rate n, and to the extend money
supply grows at a higher rate the outcome is inflation. The capital intensity and
consumption per head in the long run are seen to depend on the rate of time
preference, ρ, but not on the parameters θ, ε, and α. More impatience (higher ρ)
naturally implies less capital accumulation and thereby a higher r∗ and a lower k∗

(in that ∂k∗/∂ρ = 1/f ′′(k∗) < 0). The consequence is a lower c∗ (since ∂c∗/∂k∗

= f ′(k∗)− (δ + n) = ρ− n > 0).

The steady-state value of m is obtained by inserting c∗ and i∗ = r∗ + π∗

= ρ+ µ− n into (17.12),

m∗ = α1/εc∗θ/ε(ρ+ µ− n)−1/ε. (17.31)

Firstly, we see that a higher ρ leads to a lowerm∗, partly because the interest rate
is increased and partly because c∗, as just observed, becomes lower. Secondly,
we observe the important result that a higher monetary growth rate, µ, leads to
a lower m∗. This is because the higher nominal interest rate (hence the higher
opportunity costs of holding money) associated with higher inflation, i∗ = r∗ +
π∗ = ρ + µ − n, leads to lower real money demand. On the supply side this is
matched by inflation eroding the purchasing power of the money stock.

The parameters θ, ε, and α do not have any significance for the capital inten-
sity and consumption in steady state but are seen to be concomitant determinants
of m∗. Higher α implies, as expected, a higher real money demand. If we imagine
a model with an explicit transaction technology, this could be interpreted as an
indication of lower effi ciency in the payments system and therefore a higher cash
requirement. One cannot unambiguously determine the sign of the effect on m∗

of a higher θ and ε.

If the model had included Harrod-neutral technological progress at the rate g,
the long-run growth rate of output and consumption would be n+ g, and (17.27)
would be replaced by π∗ = µ − n = µ − n − θg/ε (see Exercise 17.1). Both θ
and ε are generally estimated to be above 1. If they are close to each other, we
have π∗ ≈ µ− n− g, that is, long-run inflation approximately equals the excess
of money growth over output growth.
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Figure 17.1: A rise in the level of the money supply versus a rise in the growth rate of
the money supply.

17.3 Theoretical implications

17.3.1 Money neutrality and superneutrality

When discussing the issue of money neutrality, it is important to distinguish
between two kinds of changes in monetary policy. We may think of a shift in
the level of the money supply at a given point in time, after which the monetary
growth rate remains as it was before that point in time, see Fig. 17.1. Or we
may think of a shift in the monetary growth rate at a given point in time, after
which there is a new constant growth rate, µ′.
Money is said to be neutral if the level and evolution of the real variables k

and c are independent of the level of money supply. Or more precisely: let
the path (k̄t, c̄t)

∞
t=0 be the model’s solution for the real variables k and c, given

M0 = M̄0 > 0. Then consider an alternative M0, namely M ′
0 = ξM̄0 for some

arbitrary ξ > 1, so that Mt = ξM̄0e
µt. If the path (k̄t, c̄t)

∞
t=0 is also the solution

for k and c when M0 = M ′
0, then money is neutral. And this is evidently the

case since k and c are determined solely by (17.24) and (17.25) together with
the initial k and the transversality condition (17.21). Simply, a new price path
P ′t = ξPt is generated such that mt and πt are unaltered. Indeed, this holds not
only for ξ > 1, but for any ξ > 0.

It is important that what we consider here is not a shift in the money supply
brought about by an open-market operation where the central bank buys (or
sells) interest-bearing securities from (to) the private sector. That would not
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only change the money supply but also the liabilities of the private sector vis-a-
vis the public sector. This would imply a more complicated story.
How then can we think about the shift in the money supply? One possibility is

of course to see the analysis as merely a comparison between two closed economies
that are completely similar in all respects except the initial money supply. But
we can also interpret the analysis in a more interesting way, namely as dealing
with the effect of an event in historical time. If ξ > 1, the event is a one-off
nominal income transfer from the government to the households at time t =
0, financed by a discrete amount of “money printing” and accompanied by a
credible announcement that the monetary growth rate, µ, will be maintained in
the future. Milton Friedman (1969) called this combined fiscal and monetary
policy a “helicopter drop of money”since it is much like having a central-bank
helicopter fly over the countryside spewing out money. Owing to the complete
flexibility of prices in the model, the only effect is an immediate proportionate
rise in the price level so as to keep the real money supply unchanged.
Now, consider an alternative kind of change in monetary policy, namely a

shift in the growth rate of the money supply to a new constant level, cf. µ′ in Fig.
17.1. Money is said to be superneutral if the real variables k and c in steady state
are unaffected by such a policy shift. We see from (17.29) and (17.30) that this
is in fact the case. The only steady-state effects are that the inflation rate moves
one-to-one with µ and per capita real liquidity moves in the opposite direction of
µ, cf. (17.31).
The mechanism behind superneutrality can be illustrated in the following way.

On the one hand we have

µ ↑⇒ π ↑⇒ k ↑ (as a tendency),

because the opportunity cost of holding money is greater when the inflation rate,
and thereby the nominal interest rate, is greater. Thereby households are induced
to let capital take a greater place in the portfolio. This effect is called the Tobin
effect (after Tobin 1965).
On the other hand, we have

k ↑⇒ r ↓⇒ c ↑⇒ k ↓ (as a tendency),

because greater capital intensity results in a lower marginal productivity of cap-
ital and therefore a lower real interest rate. The positive present-value effect of
this (a wealth effect) stimulates consumption, while saving, and therefore capital
formation, is reduced. In this way the tendency for rising capital intensity cancels
itself. The result is due to the representative agent description of the household
sector. This implies that the Keynes-Ramsey rule holds not only for the indi-
vidual households but also at the aggregate level. This restricts the real interest
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rate in the long run to equal the rate of impatience, ρ, and this pins down the
long-run capital intensity.
Money is said to be super-superneutral, if the solution path for (kt, ct) also

outside the steady state is independent of the money growth rate µ. This is
satisfied in this version of the Sidrauski model where consumption and money
holdings are separable in the instantaneous utility function. Indeed, as noticed
above, the differential equations (17.24) and (17.25) make up an independent
system identical to the Ramsey model without money. But while the properties
of neutrality and superneutrality of money hold whether ucm = 0 (as here) or
ucm 6= 0 (as in (17.14)),6 super-superneutrality holds only when ucm = 0. Hence,
the conclusion is that outside the steady state, the growth rate of the money
supply will, in general, have an impact on capital accumulation. Simulation of
the model with “realistic”parameter values indicates, however, that these effects
are modest (cf. Blanchard and Fischer, 1989, p. 193).
Apart from the super-superneutrality, the neutrality results hinge neither on

the imposed CRRA utility functions nor on the assumed additive separability of
consumption and money holding. The superneutrality hinges on the representa-
tive agent approach and need not go through in overlapping generations models,
an issue to which we return in the next chapter.
A more fundamental non-robustness problem is associated with the first men-

tioned money neutrality result according to which resource allocation is unaf-
fected by a shift in the level of the money supply. Let us consider the supposed
underlying adjustment mechanism.

Questioning the short-run adjustment mechanism

Equilibrium in financial markets requires that money demand equals money sup-
ply:

(
M

P
)d =

M

P
, that is,

md(c, r + πe)L =
M

P
, (17.32)

where we have inserted the general form of the per-capita money-demand func-
tion from (17.12), but with i written as r + πe in order to underline the role of
expectations (in spite of the assumed ex post equality of πe and π). The model
treats the current interest rate, r, as given from the real side of the economy

6Neutrality still holds because even in the latter case, P itself does not enter the three-
dimensional dynamic system. And superneutrality still holds because (17.27) - (17.30) still
hold.
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(the current marginal productivity of capital at full employment) and πe as de-
termined by m, k, and c, as indicated by (17.26). In the long run, πe reflects µ
one to one, as indicated by (17.27).
We consider a one-off level shift in the money supply brought about by a

“helicopter drop of money”followed by unchanged monetary growth at rate µ. In
accordance with classical economic thinking, the model assumes that such a shift
leaves inflation expectations, πe, and real variables, like Y, c, k, and r, unchanged.
The higher money supply only drives up the price level, P, and does so quickly.
We may imagine that the increase in the money supply in the very short run
results in excess supply of money. In (17.32), “=” is thereby replaced by “<”.
Now people respond to their excess liquidity position and their increased financial
wealth by spending more on both consumption and investment. In the aggregate,
however, this attempt is frustrated since aggregate production is at capacity level
already. The excess liquidity is hereby transformed into excess demand for goods,
triggering a rise in the general price level. As a result, the excess supply of money
is eliminated by a fall in the real value per unit of money, 1/P.
This is a manifestation of the classical perception that the general price level

is perfectly flexible like a share price or an exchange rate. Empirical macro-
economics does not support this idea. It is the nominal interest rate, i, which
promptly responds to a sudden change in the money supply.7 This accords with
Keynes’theory where the short-run outcome is a fall in both the nominal and
the real interest rate, r ≡ i − πe. In this line of thought less than full capacity
utilization is the normal state of affairs, and the real interest rate is not tied to
the marginal productivity of capital in the short run.

17.3.2 Milton Friedman’s zero interest rate rule

Returning to the Sidrauski model, what can the monetary authority (government
or central bank) do to make the steady state of the economy (approximately) the
best possible as seen from the point of view of the representative household?
Within the frames of the model, the monetary authority controls the growth

rate, µ, of the money supply. A change in µ will, as mentioned, not have an impact
on k∗ and c∗, but will change real money holdings,m∗, in the opposite direction, as
(17.31) indicates. Thus, lower (possibly negative) growth in the nominal money
supply leads in equilibrium to a greater real value of the money supply. Other
things equal, this greater liquidity increases the representative household’s utility.
We obtain a steady state with approximately maximal welfare by setting µ close to
the negative of the “effective”rate of time preference −(ρ−n) (yet slightly larger

7For a discussion, see for example the symposium on “The Monetary Transmission Mecha-
nism”in Journal of Economic Perspectives, vol. 9, no. 4, 1995.
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because otherwise a steady state with P > 0 cannot exist according to (17.31)).
With this policy the opportunity cost of holding money, the nominal interest
rate, comes down close to nil.8 So does the marginal utility of m, αm∗(µ)−ε,
since m∗(µ) ≡ α1/εc∗θ/ε(µ+ ρ− n)−1/ε (cf. (17.31)) becomes extremely large, cf.
Fig. 17.2.

Although the logic goes through for any positive elasticity of marginal utility
of money, ε, the intuition goes through clearest in the empirically realistic case
of ε > 1 (where the interest elasticity of money demand is 1/ε < 1). In this case,
shown in Fig. 17.2, the utility-of-money has a least upper bound, −α/(1 − ε).
By choosing µ close to −(ρ−n), the monetary authority can get arbitrarily close
to this upper bound. Thereby the marginal utility of m will be practically zero
so that the gain by moving µ even closer to −(ρ− n) is negligible. Approximate
satiation with money has been obtained.9

We may draw a parallel to the theory of “shoe-leather costs” of inflation.
High inflation encourages people to hold little cash because its value deteriorates
quickly along with the rising prices in the economy. Hence, before the modern
times of net banking and electronic payment, high inflation induced people to
make “frequent trips to the bank”to withdraw cash. The frequent walking to the
bank resulted in “shoe-leather wear and tear”. To minimize these costs, which of
course subsume all kinds of time and inconvenience costs associated with having
to hold small amounts of cash, a low-inflation policy is recommendable.

Similarly, since the nominal interest rate is the pecuniary opportunity cost of
holding money, a high nominal interest rate induces people to limit their average
money holding in favor of holding interest-bearing assets. So “more frequent
trips to the bank” are needed and the “shoe-leather wear and tear” becomes
higher. But a zero nominal interest rate policy is capable of eliminating these
“shoe-leather costs”.

This is Milton Friedman’s suggested long-run policy rule (from his legendary
article “The Optimum Quantity of Money”, 1969). The population should be
satiated with liquidity − that is, real money. Since ρ − n > 0, the needed µ
is negative, implying Ṁ < 0. So the nominal money supply should gradually
decline. This requires negative transfers, i.e., Xt < 0, which amounts to (lump-
sum) taxes being levied so as to gradually reduce the money supply.

8Indeed, if µ → −(ρ− n), then i∗ (= r∗ + π∗ = ρ+ (µ− n)) → 0.
9Owing to the assumed CRRA functional form of the utility of money holding there is no

possibility of full satiation with money. Full satiation with money requires that for some given
c̄ > 0, there is an m̄ > 0 such that um(c̄,m) = 0 for m > m̄.
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Figure 17.2: The lower is µ, hence µ+ (ρ− n), the greater are real money holdings in
steady state and so are the liquidity services of money. The case ε>1.
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Figure 17.3: A one-off increase in the money supply as a preliminary to a shift to
negative money growth.

17.3.3 Discussion

The recommendation that monetary policy should be deflationary is heavily dis-
puted. And apparently no central bank has ever tried to implement the idea in
practice (and in the mentioned article Friedman himself in fact expressed several
reservations regarding its implementation in the short and medium run). There
are several reasons for this.
First, as a preliminary to the shift to a negative growth rate of money supply,

such a policy would require a foregoing credible announcement combined with a
one-off increase in the money supply, as illustrated in Fig. 17.3. This is to avoid
that the private sector is hit by an unforeseen drop in the price level when the
deflationary policy is implemented (which could have devastating consequences
for firms and households with debt contracted in nominal terms). Let us explain
in more detail.
Consider an economy with n = 0. Suppose that before time t0 the economy

was in steady state with, say, zero inflation, π∗ = µ = 0. Then, at time t0,
µ is decreased to a level µ′ < 0 and credibly announced to stay there forever.
According to the model, expected (and actual) inflation πe immediately falls to
π∗′ = µ′, cf. Section 17.4. So the opportunity cost of holding money is now smaller
than before t0. This results in a rise in real money demand. If no one-off increase
in the money supply has taken place at time t0, then there will be excess demand
for money. The real value per unit of money, 1/P, would then immediately go up
through a drop in the price level, P . This would have unwelcome consequences
for households and firms with nominal debt. To avoid such a drop in the price
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level, the central bank has to initiate its Ṁ/M < 0 policy with a suffi cient rise
in Mt0 .

10 This zigzag movement may generate a credibility problem, however.
The second problem with a zero interest rate rule is that in practice it could

easily lead to recession. Nominal price rigidities are crucial for the short-run
working of the economy, but the Sidrauski model ignores them. In real world
situations the described policy may bring about a rise in the nominal and real
interest rate resulting in deficient aggregate demand and involuntary unemploy-
ment. Many macroeconomists believe, in contrast to Milton Friedman and his
followers, that the aim of stability and flexibility calls for: 1) maintaining a posi-
tive though moderate rate of inflation; 2) allowing changes in the money supply to
respond to the general state of the economy and the inflation rate. If we think in
broader terms and include private banks’money creation, we are here at the key
dividing line between Keynesianism and monetarism (the economic doctrines of
Friedman). The latter has always recommended what is known as the k-percent
money growth rule (where money is “broad money”, M2, say), irrespective of the
state of the business cycle. In Friedman’s earlier papers, k was a positive number
in the neighborhood of the long-run output growth rate so as to maintain a low,
preferably zero, rate of inflation. But in the mentioned 1969-paper the proposed
policy involves, at least in the long run, a negative k.

17.4 Are inflation and deflation bubbles possi-
ble?

Returning to the Sidrauski model in its own right, it remains to consider whether
expectations-driven hyperinflation or hyperdeflation can occur within the model.
So far we have simply assumed such bubbles away.
According to the model, the regularity governing long-run inflation in the

absence of inflation bubbles is that the long-run inflation rate, π∗, equals µ− n.
This means that high inflation arises only if money growth is high. And in fact
the known historical cases of hyperinflation are all associated with extremely high
money growth.11

If inflation bubbles are possible, however, hyperinflation can theoretically arise
without high money growth merely because hyperinflation is expected; that is,

10Some historical cases of ending hyperinflations do in fact have similarity with this pattern
(see Sargent 1982).
11It is not obvious where to draw the line between “high inflation”and “hyperinflation”. A

popular definition is that hyperinflation is present, when inflation is running at more than 50
% per month. Dornbusch et al. (2001, p. 426) suggest a lower threshold, namely 1000 % per
year or 20-25 % per month.
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as a self-fulfilling expectation. Surprisingly, even under the assumption of ratio-
nal expectations (here perfect foresight) expectations-driven hyperinflation can-
not generally be ruled out.12 Moreover, deflation bubbles are possible as well
(expectations-driven sustained deflation). On the other hand, whether and when
these theoretical possibilities might become of practical importance is not well
understood.
To see the possibility of these bubbles, together with the concomitant non-

uniqueness of equilibrium paths, consider the dynamics of the real money supply
per capita, m, as given by (17.23) after substitution of (17.26). As the economic
evolution occurs in three dimensions, it is not easy to illustrate m’s adjustment
process graphically. We may simplify, however, by imagining that the economy’s
capital level and consumption level already have reached their steady-state values,
k∗ and c∗. Then by (17.23), (17.26), and (17.28) follows the one-dimensional
differential equation

ṁt = (µ− αm−εt c∗θ + ρ− n)mt = (ρ+ µ− n)mt − αm1−ε
t c∗θ. (17.33)

We see that

ṁt S 0 for mt S m∗ = α1/εc∗θ/ε(ρ+ µ− n)−1/ε, (17.34)

respectively, where we have used (17.31) and that ε > 0.
For a given expected and actual initial inflation rate, π0, classical equilibrium

in the money market entails that the initial price level P0 immediately adjusts
such that

m0 ≡
Md

0

P0L0

= md(c∗, ρ+ π0) S md(c∗, ρ+ µ− n) = m∗ for π0 T π∗ = µ− n,
(17.35)

respectively. Combining this with (17.34) entails

ṁ0 ≡ lim
∆t→0+

m(∆t)−m(0)

∆t
S 0 for π0 T π∗ = µ− n,

respectively. From this we see, first, that the inflation rate π∗ = µ − n can be
rationally expected to reign for all t ≥ 0; if this rate is expected, mt remains
constant at the level m∗ for all t ≥ 0. Indeed, this is the case entailed in the
analysis of Section 17.3 above.
The question is whether the initially expected inflation rate, π0, must equal

the steady-state inflation rate, π∗, to be rational. Or, what amounts to the same:
is the only possible value for m0 the steady-state value, m∗? The full answer
to this depends on the parameter ε, which is inversely related to the (absolute)
interest elasticity of money demand, 1/ε.

12This also entails that, in the non-separable case, ucm 6= 0, absence of superneutrality can
theoretically arise from this source alone.
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Figure 17.4: Dynamics of m when k = k∗ and c = c∗. The case ε < 1.

The case ε < 1

Fig.17.4 illustrates the dynamics when the interest elasticity of money demand
is above one, i.e., when ε < 1. The solid curve with arrows graphs the function
(17.33).
Suppose 0 < m0 < m∗. Then, by (17.34), ṁt < 0 for all t ≥ 0. We get

mt → 0, reflecting that the inflation rate grows beyond all bounds, cf. (17.26)
with c = c∗ and k = k∗ where f ′(k∗) + δ = ρ. In the process, the inflation rate
is not so explosive as to go to infinity in finite time, however. And so the real
money supply does not reach zero in finite time. Hence this inflationary process
can be expected rationally; if it is generally expected, this expectation will be
self-fulfilling. The higher the inflation rate expected, the more eager the attempt
to “flee”away from money and into real assets and goods. But within the model
this is impossible in the aggregate. Supplies are given and so the price level keeps
rising and thereby confirms the inflationary expectations.
Note that the process is driven purely by expectations and not by M rising

faster and faster; indeed, Ṁ/M is and remains equal to the constant µ. In
analogy with speculative bubbles in the stock market, we are here dealing with
bubbles in the real value of money or, for short, inflation bubbles.13 So, in the case

13The background for naming these bubbles inflation bubbles is that they reflect an excess
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ε < 1 such bubbles can be rationally expected; and as m0 was chosen arbitrarily
within the interval (0,m∗), there are thereby infinitely many equilibrium paths,
all divergent, that can be generated by self-fulfilling expectations. It is only when
we ignore the theoretical possibility of these bubbles that the Sidrauski model’s
final solution is unique and necessarily converges toward the steady-state point
(k∗, c∗,m∗).
Now consider the opposite situation, m0 > m∗. Then, by (17.34), ṁt > 0 for

all t ≥ 0, and so mt →∞. Given µ ≥ 0, (17.33) shows that for t→∞, not only
does m rise without bound but

ṁt

mt

→ µ+ ρ− n ≥ ρ− n. (17.36)

The process considered is one of decreasing inflation which turns into deflation
if ρ > 0, since the inflation rate converges toward −ρ, cf. (17.26) with c = c∗

and k = k∗ where f ′(k∗) + δ = ρ. By (17.36), limt→∞mtc
∗−θe−(ρ−n)t > 0, so that

the economy-wide transversality condition (17.22) is violated. Consequently, this
scenario can not be an equilibrium. Indeed, confronted with the implied rising
real wealth the household would deviate in an attempt to increase its consumption
(in order not to save for the sake of saving). But this would entail excess demand
in the output market and push up the price level. The assumed falling inflation
or even deflation is thus contradicted and cannot be expected rationally.
This argument only holds, however, as long as µ ≥ 0. If µ < 0, real money

holding will still grow, but at a rate less than ρ − n. And as long as −(ρ − n)
< µ < 0, the mt →∞ path will not violate the transversality condition since the
growth rate of mt will be smaller than the discount rate, ρ−n. Deflation bubbles
are thus theoretically possible in this case. This reflects that money is a fairly
attractive asset when there is deflation.

The case ε ≥ 1

Fig.17.5 illustrates the dynamics when the interest elasticity of money demand
is below one, i.e., when ε ≥ 1. The solid curve with arrows depicts the function
(17.33).
Suppose, 0 < m0 < m∗. Then, by (17.34), ṁt < 0 for all t ≥ 0.We getmt → 0,

again reflecting that the inflation rate grows without bound. This time, however,
mt reaches the value 0 in finite time and is still decreasing (since, according to
(17.33), ṁ → −∞, when m → 0). This would reflect an inflationary process
which “explodes”so dramatically that the real money supply passes across zero

of inflation over the “natural”or “fundamental”rate of inflation, here µ− n. Another name in
the literature for these hypothetical bubbles is “bubbles on money”, that is, bubbles in the real
value of the asset money (cf. Blanchard and Fischer 1989, Ch. 5).
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Figure 17.5: Dynamics of m when k = k∗ and c = c∗. The case ε > 1.

in finite time. But a negative money supply is not possible, so this result cannot
be rationally expected.
Conversely, assume that m0 > m∗. By (17.34), ṁt > 0 for all t ≥ 0 so

that mt → ∞. Again, the process is one of decreasing inflation which turns into
deflation if ρ > 0. Given µ ≥ 0, we have again not only that mt grows without
bound but also that (17.36) holds. So in this case the mt →∞ path will violate
the economy-wide transversality condition and the process can not be rationally
expected.
If µ < 0, however, real money holding will still grow, but at a rate less than

ρ − n. So, as long as −(ρ − n) < µ < 0, the mt → ∞ path will not violate the
transversality condition. Hence, deflation bubbles are theoretically possible in
this case.
The same reasoning may be applied when ε = 1 (logarithmic utility from

money).
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Is money “essential”or “inessential”?

More generally, it can be shown that expectations-driven hyperinflation can oc-
cur if and only if money is inessential. Money is defined to be inessential if
limm→0 u

′
m(c, m)m = 0, that is, if the marginal utility of money increases at a

rate lower than the rate at which the real value of money goes to zero.14 And
money is defined as essential, if limm→0 u

′
m(c, m)m > 0. In our Sidrauski model,

if the (absolute) interest elasticity of money demand, 1/ε, is at most one, then
money is essential, in that we get u′m(c, m)m = αm−εm = αm1−ε which, for m
→ 0, approaches ∞, if ε > 1, and equals α > 0, if ε = 1. However, if 0 < ε < 1,
then αm1−ε → 0 for m→ 0, and money is inessential; hence, expectations-driven
hyperinflation can arise in this case.
Which assumption is more reasonable, that money is essential or that it is

not? Empirically, the (absolute) interest elasticity of money demand is found to
be, under “normal circumstances”, in a range below one. That should speak for
money being essential and thus expectations-driven hyperinflation being impos-
sible. Yet these empirical estimates need not be correct outside “normal circum-
stances”, that is, when the real money supply becomes very small (as it does
under hyperinflation).15 From a theoretical point of view we should in fact not
expect money to be essential. To show this, consider the simple case of additive
utility:

u(c,m) = ũ(c) + ṽ(m), ũ′ > 0, ṽ′ > 0, ũ′′ < 0, ṽ′′ < 0.

Money being essential implies

lim
m→0

ṽ′(m)m > 0.

As Lemma 1 in Appendix C shows, this implies

lim
m→0

ṽ(m) = −∞.

This behavior of the utility function ṽ seems implausible, as it implies that no
finite quantity of the consumption good can compensate an individual for not not
holding at least some money, as little as it may be. This is a kind of unconditional
necessity of money holding which seems inconsistent with money’s role as merely
reducing transaction costs (frictions) in the economy.
Hence, theoretically it seems we cannot rule out the possibility of hyperinfla-

tion driven by expectations. On the other hand, this bubble theory has at least
two shortcomings. One was emphasized already in Section 17.3, namely that the
short-run adjustment mechanism postulated by the Sidrauski model can hardly

14It is enough that this holds only for c in the relevant range.
15See next chapter.
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be considered a good approximation to reality. (A counter argument to this,
however, is that it may be a better approximation in situations where inflation is
high already from the beginning.) Another shortcoming is that it is hard to tell
how people’s expectations in a potential bubble situation should be coordinated.
Considering the law of movement for real money balances, (17.33), one should
remember that the initial value, m0, is not predetermined, but determined by the
initial expected inflation rate, πe0. Indeed, from (17.32) and (17.12) we have

m0 =
Md

0

P0L0

= md(c∗, r∗ + πe0) = α1/εc∗θ/ε(r∗ + πe0)−1/ε.

Outside the “fundamental” steady state (where πe is linked to money growth
through π = µ−n), it is hard to see how agents should agree on any particular πe0.
In fact, there are infinitely many values of πe0 with the property that if everybody
has this expectation, then it will be self-fulfilling according to the model.
Whatever the effects of possible self-fulfilling expectations, empirical hyper-

inflations have been associated with immense growth in the money supply. In
the next chapter the relation of this fact to large persistent government budget
deficits is addressed.

17.5 Concluding remarks

(incomplete)
After the global financial crisis and the Great Recession, the topic of “he-

licopter money”has had a renaissance. The economic circumstances are quite
distinct from the full capacity utilization assumed by the Sidrauski model. Be-
cause of the long period of lack of recovery in Europe, especially in the Eurozone,
and lack of punch of conventional monetary policy because of the zero-lower-
bound on the nominal interest rate, discussions about a need for money-financed
expansionary fiscal policy, i.e., “helicopter money”, have thrived. This theme is
taken up in Chapter ...

To be thought over :
Should the exposition above be extended with government bonds and changes

in the money supply through open-market operations? Cf. Buiter (2014).
The additive separability seems unrealistic and ucm > 0 likely. Check in Walsh

and Woodford 2003.

17.6 Literature notes

Comment on Sidrauski (1967b) and ...
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The k-percent rule, see (?) Friedman, M., 1960, A program for monetary
stability.
As to footnote 4, see Buiter and Siebert, p. 443-444.
MIU in Blanchard’s OLG model with nominal rigidities, see Buiter (2014).

Budget deficits financed partly by bond issue, partly by money issue. Quantita-
tive Easing (QE) and “helicopter money”.
Ricardo Reis, The analytics of non-neutrality in the Sidrauski model, WP.
Venkateswaran liquidity: A new monetarist model of financial and macro-

economic activity, NBER Macro Annual, 2014.

17.7 Appendix

A. Necessity and suffi ciency of the transversality condition (TVC) to-
gether with the first-order conditions

Before considering the transversality condition, we reduce the formats of both the
household’s dynamic budget constraint and its intertemporal budget constraint
to forms similar to those considered in Section 9.4. This will allow us to apply
the general theory of that chapter.
In view of (17.6) and the identity it = rt + πt, we have

ȧt = (rt−n)at+wt+xt− (ct+ itmt) ≡ (rt−n)at+w′t−c′t, a0 given, (17.37)

where at ≡ At/Lt and we have introduced the definitions c′t ≡ ct + itmt (“broad
consumption”) and w′t ≡ wt + xt. Per capita human wealth is then given as

h0 =

∫ ∞
0

w′te
−
∫ t

0
(rs−n)dsdt,

and the intertemporal budget constraint is∫ ∞
0

c′te
−
∫ t

0
(rs−n)dsdt ≤ a0 + h0. (IBC)

The relevant solvency condition We claimed in Section 17.1 that the rele-
vant solvency requirement in per capita terms is the condition

lim
t→∞

ate
−
∫ t
0 (rs−n)ds ≥ 0. (NPG’)

Since at ≡ At/Lt, that condition is equivalent to

lim
t→∞

Ate
−
∫ t
0 rsds ≥ 0, (NPG)
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which is more convenient for our present purpose. This condition allows that in
the long run, the household (or “family”) can still have a negative net financial
position (A < 0), the absolute value of which is even growing over time although,
at most, at a rate less than the interest rate.
But why is it that (NPG) is the relevant solvency requirement in the present

model where we have two assets, money and a non-monetary asset, so that At
≡ Mt/Pt + Vt? To answer this, consider first a finite time horizon, T. Then, the
solvency restriction is plainly that all previously accumulated debt can be repaid
at the terminal date. To ensure this, the condition

lim
t→T,t<T

At ≡ lim
t→T,t<T

Mt

Pt
+ lim

t→T,t<T
Vt ≥ 0 (*)

is suffi cient. This condition allows limt→T,t<T Vt < 0, i.e., right up to time T
there is a positive debt. Indeed, the debt can be cleared at the terminal date
T by transferring the needed amount of cash. Indeed, ruling out discontinuity
in P at time T, the needed amount of cash is available since (*) ensures that
limt→T,t<T Mt/Pt ≥ − limt→T,t<T Vt > 0.
For an infinite horizon, the analog to (*) is the constraint (NPG). Suppose

limt→∞ Vt exp(−
∫ t

0
rsds) < 0. Then, in view of At ≡ Mt/Pt + Vt, (NPG) ensures

that limt→∞(Mt/Pt) exp(−
∫ t

0
rsds) ≥ − limt→∞ Vt exp(−

∫ t
0
rsds) > 0.

The transversality condition Above we have reduced the formats of both the
household’s dynamic budget constraint and its intertemporal budget constraint
to forms similar to those considered in Section 9.4. This allows us to apply the
general theory of that chapter.
We first prove that an admissible interior path, (at, ct,mt)

∞
t=0, can only be

optimal if, in addition to the first-order conditions stated in Section 17.1, it
satisfies the transversality condition

lim
t→∞

atλte
−(ρ−n)t = 0. (TVC)

Even allowing for the possibility of satiation with money, the marginal utility of
consumption is, by assumption, always positive. This implies that an optimal
path must satisfy (IBC) with strict equality. Thereby, in view of Proposition
1 of Chapter 9, an optimal path must also satisfy (NPG) with strict equality.
Consequently, by Proposition 2 of Chapter 9, (TVC) must hold as well. This
proves the necessity of (TVC).
In Section 17.1 we also claimed that the first-order conditions, together with

(TVC), are suffi cient for an optimal solution. This claim is an immediate im-
plication of the Mangasarian’s suffi ciency theorem (see Math tools) since the
Hamiltonian, given in (17.7), is jointly concave in (a, c,m) for every t.
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B. The transitional dynamics

In Section 17.2 we claimed that if inflation and deflation bubbles are precluded,
then the Sidrauski model has a unique solution (kt, ct,mt), which converges to-
ward the steady-state point (k∗, c∗,m∗) for t → ∞. We will now show this
formally. The dynamic system of the model is three-dimensional:

k̇ = f(k)− c− (δ + n)k, (17.38)

ċ =
1

θ
[f ′(k)− δ − ρ]c, (17.39)

ṁ = (µ− αm−εcθ + f ′(k)− δ − n)m, (17.40)

where k0 > 0 is given (predetermined), while c and m are jump variables. For the
determination of the evolution over time we have, other than the given k0, the
requirement that the transversality conditions (17.21) and (17.22) are satisfied
and that neither inflation nor deflation bubbles occur.
We compute the Jacobian matrix for the system:

J(k, c,m) ≡

 ∂k̇
∂k

∂k̇
∂c

∂k̇
∂m

∂ċ
∂k

∂ċ
∂c

∂ċ
∂m

∂ṁ
∂k

∂ṁ
∂c

∂ṁ
∂m

 =

 f ′(k)− δ − n −1 0
1
θ
f ′′(k)c 1

θ
[f ′(k)− δ − ρ] 0

f ′′(k)m −αθm1−εcθ−1 j33


where j33 = µ−αm−εcθ +f ′(k)−δ−n+αγm−εcθ. Evaluated in the steady state,
the Jacobian matrix becomes

J(k∗, c∗,m∗) =

 ρ− n −1 0
1
θ
f ′′(k∗)c∗ 0 0
f ′′(k∗)m∗ −αθm∗1−εc∗θ−1 αγm∗−εc∗θ


This matrix is block-diagonal and the 2 × 2 sub-matrix in the upper left corner
has the determinant

1

θ
f ′′(k∗)c∗ < 0.

Since the determinant of a matrix is always equal to the product of the eigenvalues
of the matrix, the eigenvalues of this 2 × 2 matrix are real and opposite in sign
as J is block-diagonal. The third eigenvalue of the Jacobian matrix is simply the
remaining element on the main diagonal, αγm∗−εc∗θ > 0.
There are thus one negative and two positive eigenvalues. Hence, the steady

state of our three-dimensional dynamic system is a saddle point.16 For (local)

16A steady-state point in Rn is called a saddle point if all eigenvalues of the Jacobian matrix
of the dynamic system, evaluated in the steady state, have non-zero real parts, and at least two
of the eigen values have real parts of opposite sign.
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saddle-point stability of the steady state we further need that: (a) the number
of jump variables is equal to the number of positive eigenvalues; (b) locally, the
saddle path is not parallel to the linear subspace spanned by two eigenvectors
corresponding to the two positive eigenvalues; (c) there is a boundary condition
on the system such that the diverging paths are ruled out as solutions. The
requirement (a) is satisfied since there are two jump variables, c and m. By a
bit of linear algebra, the requirement (b) can be shown to hold. It would take
us too far to go through the details. The requirement (c) is satisfied since, by
the transversality condition of the representative household and by precluding
inflation and deflation bubbles, we have ruled out that the economy can follow
one of the divergent paths.
The steady state is thus (at least locally) saddle-point stable. In the present

case this means that, for some β > 0, there is an interval (k∗− β, k∗+ β) around
the steady-state value of k such that for any arbitrary initial value of the pre-
determined variable, k0, in this interval, there exist unique initial values of the
jump variables such that the solution, (kt, ct,mt)

∞
t=0, of the system of differential

equations converges toward the steady state for t→∞.
Saddle-point stability holds also in the general case where the instantaneous

utility function is not additively separable and, thus, where the system of differ-
ential equations cannot be decomposed. See for instance Blanchard and Fischer,
1989, Chapter 4, Appendix B.

C. Lemma on essential money

As stated in Section 17.4, given the simple case of additive utility, u(c,m) =
ũ(c) + ṽ(m), money being essential implies

lim
m→0+

ṽ′(m)m > 0. (17.41)

LEMMA 1. The a utility function ṽ(m), with ṽ′ > 0 and ṽ′′ < 0, satisfy (17.41).
Then

lim
m→0

ṽ(m) = −∞. (17.42)

Proof (Obstfeld and Rogoff 1996, p. 545). Since ṽ′ > 0, limm→0 ṽ(m) = a0 exists,
where possibly a0 = −∞. Now, assume (17.41) and suppose that (contrary to the
assertion of the lemma) a0 > −∞. As limm→0 ṽ

′(m)m > 0, there exists a1 > 0
and m0 > 0 such that

ṽ′(m)m > a1 for all m ∈ (0,m0). (17.43)

Since ṽ is a strictly concave function,

ṽ(m)− a0 > ṽ′(m)m for all m ∈ (0,m0). (17.44)
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Together, (17.43) and (17.44) imply ṽ(m)− a0 > a1 for all m ∈ (0,m0). But,
since a1 > 0, this contradicts that limm→0 ṽ(m) = a0. �

17.8 Exercises

17.1. Adding Harrod-neutral technical progress, cf. Section 17.2.
17.2. The case u(c,m) = (cαm1−α)1−θ/(1− θ), 0 < α < 1, θ > 0.
17.3. Adding bond-financed budget deficits, cf. Buiter 2014.

c© Groth, Lecture notes in macroeconomics, (mimeo) 2016.




