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This chapter provides a framework for addressing situations where expec-
tations in uncertain situations are important elements. Our previous models
have not taken seriously the problem of uncertainty. Where agent’s expectations
about future variables were involved and these expectations were assumed to be
model-consistent (“rational”), we only considered a special case: perfect foresight.
Shocks were treated in a peculiar, almost self-contradictory way: they might oc-
cur, but only as a complete surprise, a one-off event. Agents’expectations and
actions never incorporated that new shocks could arrive.
We will now allow recurrent shocks to take place. The environment in which

the economic agents act will be considered inherently uncertain. How can this be
modeled and how can we solve the resultant models? Since it is easier to model
uncertainty in discrete rather than continuous time, we examine uncertainty and
expectations in a discrete time framework.
Our main emphasis will be on the hypothesis that when facing uncertainty a

predominant fraction of the economic agents form “rational expectations”in the
sense of making probabilistic forecasts which coincide with the forecast calculated
on the basis of the “relevant economic model”. As an example of application of
this hypothesis we shall consider the issue of neutrality versus non-neutrality
of money in a framework where all agents have rational expectations whereas
nominal wages are not perfectly flexible.
But first a summary of simple traditional expectation formation formulas.

25.1 Preliminaries

Here we consider some “mechanistic”expectation formation formulas that have
been used to describe day-to-day expectations of people who do not think much
about the statistical properties of their economic environment.

25.1.1 Simple expectation formation hypotheses

One simple supposition is that expectations change gradually to correct past
expectation errors. Let Pt denote the general price level in period t and πt ≡
(Pt − Pt−1)/Pt−1 the corresponding inflation rate. Further, let πet−1,t denote the
“subjective expectation”, formed in period t−1, of πt, i.e., the inflation rate from
period t− 1 to period t.We may think of the “subjective expectation”as the ex-
pected value in a vaguely defined subjective conditional probability distribution.
The hypothesis of adaptive expectations (the AE hypothesis) says that the

expectation is revised in proportion to the past expectation error,

πet−1,t = πet−2,t−1 + λ(πt−1 − πet−2,t−1), 0 < λ ≤ 1, (25.1)
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where the parameter λ is called the adjustment speed. If λ = 1, the formula
reduces to

πet−1,t = πt−1. (25.2)

This limiting case is known as static expectations or myopic expectations: the
subjective expectation is that the inflation rate will remain the same. As we shall
see, if inflation follows a random walk, this subjective expectation is in fact the
“rational expectation”.
We may write (25.1) on the alternative form

πet−1,t = λπt−1 + (1− λ)πet−2,t−1. (25.3)

This says that the expected value concerning this period (period t) is a weighted
average of the actual value for the last period and the expected value for the last
period. By backward substitution we find

πet−1,t = λπt−1 + (1− λ)[λπt−2 + (1− λ)πet−3,t−2]

= λπt−1 + (1− λ)λπt−2 + (1− λ)2[λπt−3 + (1− λ)πet−4,t−3]

= λ
n∑
i=1

(1− λ)i−1πt−i + (1− λ)nπet−n−1,t−n,

assuming the adjustment speed has been the same in the previous n periods.
Since (1− λ)n → 0 for n→∞, we have (for πet−n−1,t−n bounded as n→∞),

πet−1,t = λ
∞∑
i=1

(1− λ)i−1πt−i. (25.4)

Thus, according to the AE hypothesis with 0 < λ < 1, the expected inflation rate
is a weighted average of the historical inflation rates back in time. The weights
are geometrically declining with increasing time distance from the current period.
The weights sum to one:

∑∞
i=1 λ(1− λ)i−1 = λ(1− (1− λ))−1 = 1.

The formula (25.4) can be generalized to the general backward-looking expec-
tations formula,

πet−1,t =
∞∑
i=1

wiπt−i, where
∞∑
i=1

wi = 1. (25.5)

If the weights wi in (25.5) satisfy wi = λ(1 − λ)i−1, i = 1, 2,. . . , we get the AE
formula (25.4). If the weights are

w1 = 1 + β, w2 = −β, wi = 0 for i = 3, 4, . . . ,
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25.1. Preliminaries 3

we get
πet−1,t = (1 + β)πt−1 − βπt−2 = πt−1 + β(πt−1 − πt−2). (25.6)

This is called the hypothesis of extrapolative expectations and says:

if β > 0, then the recent direction of change in π is expected to continue;

if β < 0, then the recent direction of change in π is expected to be reversed;

if β = 0, then expectations are static as in (25.2).

As hinted, there are cases where for instance myopic expectations are “ratio-
nal”(in a sense to be defined below). Example 2 below provides an example. But
in many cases purely backward-looking formulas are too rigid, too mechanistic.
They will often lead to systematic expectation errors to one side or the other. It
seems implausible that humans should not then respond to this experience and
revise their expectations formula. When expectations are about things that really
matter for people, they are likely to listen to professional forecasters who build
their forecasting on economic and statistical models. Such models are based on
a formal probabilistic framework, take the interaction between different variables
into account, and incorporate new information about future likely events.
Agents’expectations, whatever their nature, can enter a macroeconomic model

in different ways. The next sub-section considers two basic alternatives.

25.1.2 Two model types

Wefirst recapitulate a few concepts from statistics. A sequence {Xt; t = 0, 1, 2, . . . }
of random variables indexed by time is called a stochastic process. Often the in-
dex set T = {0, 1, 2, . . . } is understood and we just write {Xt} (or, if there is no
risk of confusion, just Xt). A stochastic process {Xt} is called white noise if for
all t, Xt has zero expected value, constant variance, and zero covariance across
time.1 A stochastic process {Xt} is called a first-order autoregressive process,
abbreviated AR(1), if Xt = β0 +β1Xt−1 + εt, where β0 and β1 are constants, and
{εt} is white noise. If |β1| < 1, then {Xt} is called a stationary AR(1) process.
A stochastic process {Xt} is called a random walk if Xt = Xt−1 + εt, where

{εt} is white noise. Since here the implicit β1 violates the requirement |β1| < 1,
the process is said to be non-stationary. But the first-difference, ∆Xt ≡ Xt−Xt−1

is stationary.

1The expression “white noise”derives from electrotechnics. In electrotechnical systems sig-
nals will often be subject to noise. If this noise is arbitrary and has no dominating frequence, it
looks like white light. The various colours correspond to a certain wave length, but white light
is light which has all frequences (no dominating frequence).
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Model type A: models with past expectations of current endogenous
variables

Suppose a given macroeconomic model can be reduced to two key equations for
each t, the first being

Yt = a Y e
t−1,t + c Xt, t = 1, 2, ..., (25.7)

where Yt is some endogenous variable (not necessarily GDP ), Y e
t−1,t is the subjec-

tive expectation formed in period t− 1, of the value of the variable Y in period t,
a and c are given constant coeffi cients, and Xt is an exogenous random variable
which follows some specified stochastic process.
The economic agents are in simple models assumed to hold the same expec-

tations. Or, at least there is a dominating expectation, Y e
t−1,t, in the market,

sometimes called the “market expectation”. What the equation (25.7) claims is
that the endogenous variable, Yt, depends, in a specified linear way, on the “gen-
erally held” expectation of Yt, formed in the previous period. It is convenient
to think of the outcome Yt as being the aggregate result of agents’decisions and
interaction in the market, the decisions being made at discrete points in time . . . ,
t − 2, t − 1, t, . . . , immediately after the uncertainty concerning the period in
question has been resolved.
The second key equation specifies how the subjective expectation is formed.

As an example, let us assume that the subjective expectation is myopic, i.e.,

Y e
t−1,t = Yt−1, (25.8)

as in (25.2) above.
Then a solution to the model is a stochastic process for Yt such that (25.7)

holds, given the expectation formation (25.8) and the stochastic process which
Xt follows. Substituting (25.8) into (25.7), we get

Yt = aYt−1 + cXt, t = 1, 2, . . . . (25.9)

If for instance Xt = x̄+εt, where x̄ is a constant and {εt} is white noise, then the
solution expressed in terms of the lagged Y is Yt = aYt−1 + cx̄+ cεt. In Example 1
below a solution appears as a specification of the complete time path of Yt, given
Y0.

EXAMPLE 1 (imported raw materials and domestic price level) Let the en-
dogenous variable in (25.7) represent the domestic price level (the consumer price
index) Pt, and let Xt be the price level of imported raw materials. Suppose the
price level is determined through a markup on unit costs,

Pt = (1 + µ)(λWt + ηXt), 0 < λ <
1

1 + µ
, (*)
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25.1. Preliminaries 5

where Wt is the nominal wage level in period t = 1, 2, . . . , and λ and η are
positive technical coeffi cients representing the assumed constant labor and raw
materials requirements, respectively, per unit of output; µ is a constant markup.
The upper inequality in (*) is imposed to avoid an exploding wage-price spiral.
Assume further that workers in period t − 1 negotiate next period’s wage level,
Wt, so as to achieve, in expected value, a certain target real wage which we, by
proper choice of unit measurement for labor, normalize to 1, i.e.,

Wt

P e
t−1,t

= 1. (**)

Substituting into (*), we get

Pt = a P e
t−1,t + c Xt, 0 < a ≡ λ(1 + µ) < 1, 0 < c ≡ η(1 + µ), t = 1, 2, . . . .

Assuming myopic expectations, P e
t−1,t = Pt−1, this gives the reduced-form

equation Pt = a Pt−1 + cXt, for t = 1, 2, . . . . By repeated application of this,
starting with a given P0, we find Pt = atP0 + c

∑t
i=1 a

t−iXi. Suppose Xt = x̄+ εt,
where x̄ is a positive constant and {εt} is white noise. Then the stochastic process
followed by Pt is a stationary AR(1) process. We can express the solution to the
model as a time path of P, given P0 and the realized values of the noise term ε :

Pt = atP0 + c
t∑
i=1

at−ix̄+ c
t∑
i=1

at−iεi

= (P0 − P ∗) at + P ∗ + c
t∑
i=1

at−iεi, (***)

where P ∗ ≡ cx̄
1−a and t = 1, 2, . . . . In this derivation we have applied the rule for

the first t terms of a geometric series.
Without shocks, since 0 < a < 1, the price level converges to P ∗ for t → ∞.

Shocks to the price of imported raw materials result in transitory deviations
from P ∗, the persistence of which can be measured by a. The parameter a also
governs the persistence of the systematic expectation error generated by myopic
expectations in this model. Suppose that for a long time no shocks have occurred
and Pt has settled down at P ∗. Then, at t = t0 a positive shock εt0 occurs so
that Pt0 = P ∗ + cεt0 . If for t = t0 + 1, t0 + 2, ..., no new shocks occur, then, for
t ≥ t0, Pt = (Pt0 − P ∗) at + P ∗ according to the rule in (***). And after t0 the
subjective expectation systematically exceeds the realization of Pt by the amount
(Pt0−P ∗)a(t−1−t0)− (Pt0−P ∗)a(t−t0) = (Pt0−P ∗)(1−a)a(t−1−t0). This systematic
expectation bias arises because the expectation formation is mechanistic and does
not consider how the system as a whole actually functions. �
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Equation (25.7) can also be interpreted as a vector equation (such that Yt
and Y e

t−1,t are n-vectors, a is an n× n matrix, c an n×m matrix, and X an m-
vector). The crucial feature is that the endogenous variables dated t only depend
on previous expectations of date-t values of these variables and on the exogenous
variables.
Models with past expectations of current endogenous variables will serve as

our point of reference when considering the role of rational expectations below.

Model type B: models with forward-looking expectations

Another way in which agents’expectations may enter is exemplified by

Yt = a Y e
t,t+1 + c Xt, a 6= 1, t = 0, 1, 2, .... (25.10)

Here Y e
t,t+1 is the subjective expectation, formed in period t, of the value of Y in

period t+ 1. Example: the equity price today depends on current circumstances
as well as what the equity price is expected to be tomorrow. Or more generally:
the current expectation of a future value of an endogenous variable influences
the current value of this variable. We name this the case of forward-looking
expectations. (In “everyday language”also Y e

t−1,t in model type 1 can be said to
be a forward-looking variable as seen from period t − 1. But the dividing line
between the two model types, (25.7) and (25.10), is whether current expectations
of future values of the endogenous variables do or do not influence the current
values of these.)
A complete model with forward-looking expectations will include an addi-

tional equation, specifying how the subjective expectation, Y e
t,t+1, is formed. We

might again impose the myopic expectations hypothesis, now taking this form:

Y e
t,t+1 = Yt. (25.11)

A solution to the model is a stochastic process for Yt satisfying (25.10), given
the stochastic process followed by Xt and given the specified expectation forma-
tion (25.11) and perhaps some additional restrictions in the form of boundary
conditions. In the present case, where expectations are myopic, the solution
simply is

Yt = aYt + cXt =
cXt

1− a t = 0, 1, 2, ..... (25.12)

The case of forward-looking expectations is important in connection with
many topics in macroeconomics, including aggregate fixed capital investment,
evolution of asset prices, issues of asset price bubbles, etc.
In passing we note that in type A as well as type B models, it is the mean

(in the subjective probability distribution) of the random variable(s) that enters.
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25.1. Preliminaries 7

This is typical of simple macroeconomic models which often do not require other
measures such as the median, the mode, or higher-order moments. The latter,
say the variance of Xt, may be included in advanced models where for instance
behavior towards risk is important.

25.1.3 The model-consistent expectation

The concepts of a rational expectation and a model-consistent expectation are
closely related, but not the same. We need the latter concept to be able to define
the former.
Consider a stochastic model of type A, as represented by (25.7) combined

with some given expectation formation, (25.8) say. Then the model-consistent
expectation of the endogenous variable Yt as seen from period t− 1 is the mathe-
matical conditional expectation that can be calculated on the basis of the model
and available relevant data revealed up to and including period t− 1. A common
notation for this expectation is

E(Yt|It−1), (25.13)

where E is the expectation operator and It−1 is the information set available at
time t− 1. We think of period t− 1 as the half-open time interval [t− 1, t) and
imagine that the uncertainty concerning the exogenous random variable Xt−1 is
resolved at time t − 1. Unless otherwise indicated, we think of It−1 as including
knowledge of the realization of Xt−1 and Yt−1.
Letting Yt be a continuous stochastic variable with range (−∞,∞), the model-

consistent expectation as seen from period t− 1 is

E(Yt|It−1) =

∫ ∞
−∞

ytf(yt|It−1)dyt, (25.14)

where f(yt|It−1) is the conditional probability density function for Yt, given the
model and the information set It−1.
The information set It−1 may comprise knowledge of the realized values of X

and Y since period 0 and up until (and including) period t − 1. Instead of the
abstract form (25.13) we can then write

E(Yt|Yt−1 = yt−1, . . . , Y0 = y0;Xt−1 = xt−1, . . . , X0 = x0),

where the small letters refer to realized values of the stochastic variables. As time
passes, more and more realizations of the exogenous and endogenous variables
become known. The information thus expands with rising t.
In mathematical statistics a precise definition of the conditioning information

set can be given such that It−1 appears as a clearly demarcated set (in the formal
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sense) with the inclusion property . . . It−1 ⊆ It ⊆ It+1 . . . . This inclusion property
reflects that “more and more is known to have happened”. Expounding the pre-
cise definition of information sets requires a formal conceptual apparatus beyond
the scope of this text. For our purposes an intuitive notion of information will
suffi ce. The key feature is that an expanding information set means that more
and more ex ante possible “states of the world” can be ruled out. The other
side of the coin is that the set of possible states of the world shrinks over time.
Indeed, as more information becomes available, more and more “uncertainty”is
resolved. An increasing amount of information and reduced uncertainty are thus
two sides of the same thing.2

For a simple example of a model-consistent expectation, consider a model of
type A combined with myopic expectations and Xt = x̄ + εt. On the basis of
(25.9), we find the model-consistent expectation to be

E(Yt|It−1) = aYt−1 + cx̄.

As another example, consider a model of type B, again with myopic expecta-
tions and Xt = x̄+ εt. From (25.12), we get

E(Yt+1|It) = c
x̄

1− a.

Now to rational expectations.

25.2 The rational expectations hypothesis

Unsatisfied with mechanistic formulas for agents’ subjective expectations like
those in Section 25.1.1, the American economist John F. Muth (1961) introduced
a radically different approach, the hypothesis of rational expectations. Muth
stated the hypothesis the following way:

I should like to suggest that expectations, since they are informed
predictions of future events, are essentially the same as the predictions
of the relevant economic theory. At the risk of confusing this purely
descriptive hypothesis with a pronouncement as to what firms ought
to do, we call such expectations ’rational’(Muth 1961).

2Appendix A is a refresher on conditional expectations and a warning against a potential
confusion regarding the inclusion relationship between conditioning sets appearing to the right
of the separator “|”. The inclusion relationship between information sets differs from that
between the corresponding subsets of the outcome space for the conditioning variables.
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25.2. The rational expectations hypothesis 9

Muth applied this hypothesis to simple microeconomic problems with stochas-
tic elements. The hypothesis was subsequently extended and applied to general
equilibrium theory and macroeconomics. Nobel laureate Robert E. Lucas from
the University of Chicago lead the way by a series of papers starting with Lu-
cas (1972), Lucas (1973), and Lucas (1975). To assume agents hold rational
expectations instead of, for instance, adaptive expectations may radically alter
the results, including the impact of economic policy, both quantitatively and
qualitatively. This lead to a profound change in macroeconomists’thinking, the
“rational expectations revolution”of the 1970s.

25.2.1 The concept of a rational expectation

Assuming the economic agents hold rational expectations is to assume that their
subjective expectation equals the model-consistent expectation. As we have detailed
in the previous section, the latter is the mathematical conditional expectation
that can be calculated on the basis of the model and available relevant infor-
mation about the exogenous stochastic variables. So, the hypothesis of rational
expectations is the hypothesis that

Y e
t−1,t = E(Yt|It−1), (25.15)

saying that agents’subjective conditional expectation coincides with the “true”
conditional expectation, given the model in question, that is, the mathematical
model-consistent conditional expectation. The agents are thus assumed not to
make systematic forecast errors.
If our point of departure is a model of type A, combining it with the rational

expectations hypothesis implies that we can write the model in compact form as

Yt = aE(Yt|It−1) + c Xt, t = 1, 2, .... (25.16)

This equation makes up a simple rational expectations model (henceforth an RE
model), where past expectations of current endogenous variables affect these. As
a simple example, consider:

EXAMPLE 2 In the model (25.7), let a = 0 so that Yt = cXt, and assume that
the process {Xt} is a random walk, Xt = Xt−1 +εt. Then the myopic expectation
of Yt as seen from period t−1 is Y e

t−1,t = Yt−1, cf. (25.2). The rational expectation
of Yt as seen from period t − 1 is E(Yt|It−1) = cE(Xt|It−1) = cXt−1 = Yt−1. In
this example, the myopic expectation is thus also the rational expectation. �
If our point of departure is a model of type B, combining it with rational

expectations gives, in compact form,

Yt = aE(Yt+1|It) + c Xt, t = 0, 1, 2, .... (25.17)
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This equation makes up an RE model, where current expectations of the future
value of the endogenous variables affect the current values of these — in brief,
an RE model with forward-looking rational expectations. This model framework
will be our main focus in the next chapter.
Returning to model type A, but in contrast to Example 2, we shall now open

up for a 6= 0.

Solving an RE model with past expectations of current endogenous
variables

To solve a stochastic model means to find the stochastic process followed by the
endogenous variable(s), Yt, given the stochastic process followed by the exoge-
nous variable(s), Xt. For a linear RE model with past expectations of current
endogenous variables, the solution procedure is the following.

1. By substitution, reduce the RE model (or the relevant part of the model)
into a form like (25.16) expressing the endogenous variable in period t in
terms of its past expectation and the exogenous variable(s). (The case with
multiple endogenous variables is treated similarly.)

2. Take the conditional expectation on both sides of the equation and solve
for the conditional expectation of the endogenous variable.3

3. Insert into the “reduced form”attained at 1.

In practice there is often a fourth step, namely to express other endogenous
variables in the model in terms of those found in step 3. Let us see how the
procedure works by way of the following example.

EXAMPLE 3 (imported raw materials and domestic price level under rational
expectations) We modify Example 1 by replacing myopic expectations by rational
expectations, i.e., P e

t−1,t = E(Pt|It−1). We still assume Xt = x̄+ εt. Step 1:

Pt = aE(Pt|It−1) + c Xt, 0 < α < 1, c > 0, t = 1, 2, ..... (25.18)

Step 2: E(Pt|It−1) = aE(Pt|It−1) + cx̄, implying

E(Pt |It−1) =
cx̄

1− a.

3It is here assumed that the model is not degenerate. In the model (25.16), this requires
a 6= 1. If a = 1, the model is inconsistent unless E(Xt |It−1)) = 0 in which case there are
infinitely many solutions. Indeed, for any number k ∈ (−∞, +∞), the process Yt = k + cXt

solves the model when E(Xt |It−1) = 0.
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25.2. The rational expectations hypothesis 11

Step 3: Insert into (25.18) to get

Pt = a
cx̄

1− a + c(x̄+ εt) = P ∗ + cεt, t = 1, 2, ....

where P ∗ ≡ cx̄/(1 − a). So E(Pt |It−1) = P ∗ for t = 1, 2, .... The structure and
the parameters may have been different before period 0, and so we take the
expectation of P0 as seen for period −1 as given. Thus P0 is fixed, given the
disturbance ε0. We see that under rational expectations, the economy functions
such that a deviation of this P0 from P ∗ has no impact on the price from period
1 and onward. For t = 1, 2, ..., the price equals its constant expected value plus
the noise term. The forecast error, Pt− E(Pt |It−1) , has zero mean. These are
important differences compared with the myopic expectations in Example 1. �
We return to the general form (25.16). Before specifying the process {Xt} ,

the second step gives

E(Yt |It−1) = c
E(Xt |It−1)

1− a , (25.19)

presupposing a 6= 1. Then, in the third step we get

Yt = c
aE(Xt |It−1) + (1− a)Xt

1− a = c
Xt − a(Xt − E(Xt |It−1))

1− a . (25.20)

Let Xt follow the process Xt = x̄+ρXt−1 +εt, where 0 < ρ < 1 and εt has zero
expected value, given all observed past values of X and Y. Then (25.20) yields
the solution

Yt = c
Xt − aεt

1− a = c
x̄+ ρXt−1 + (1− a)εt

1− a , t = 0, 1, 2, ....

In Exercise 2 you are asked to solve a simple Keynesian model of this form and
compare the solution under rational expectations with the solution under myopic
expectations.

Expounding the concept of rational expectations

Assuming rational expectations means assuming that the economic actors do not
make systematic expectation errors. This assumption is often convenient, but a
drastic simplification that at best offers an approximation. First, the assumption
entails that the economic actors4 share one and the same understanding about
how the economic system functions (and in this chapter they also share one and

4Or, to be more precise, the economic actors whose expectations matter for the aggregate
utcome Yt.
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the same information, It−1). This is already a big mouthful. Second, this un-
derstanding is assumed to comply with the model put forward by the informed
economic specialist. Third, that model is supposed to be an accurate (“true”)
model of the economic process (otherwise the actors would make systematic ex-
pectation errors and gradually experience this). The actors’supposed knowledge
not only embraces the accurate model structure, but also its “true”parameter
values as well as the parameter values of the stochastic process which Xt follows.
Indeed, by equalizing Y e

t−1,t with the true conditional expectation, E(Yt|It−1) in
(25.16), rather than with some econometric estimate of this, it is presumed that
the actors know the exact values of the parameters a and c in the data-generating
process which the model is supposed to mimic. In practice it is not possible to
attain such precise knowledge, at least not unless the considered economic sys-
tem has reached a steady state and no structural changes occur. This condition
is hardly ever satisfied in macroeconomics.

Nevertheless, a model based on the rational expectations hypothesis can in
many contexts be seen as a useful cultivation of a theoretical research question.
The results that emerge cannot be due to systematic expectation errors from the
economic agents’side. In this sense the assumption of rational expectations makes
up a theoretically interesting benchmark case. On the other hand, there are issues,
in particular related to business cycles, where systematic expectation errors —say
excess optimism or pessimism —are a key ingredient of the phenomenon to be
studied. Then the assumption of rational expectations would of course be a bad
point of departure.

Finally, a terminological remark. As witnessed by the reservation made by
Muth (2001) in the quotation above, the term “rational expectations”itself is not
unproblematic. Usually, in economists’terminology, “rational”refers to behavior
based on optimization subject to the constraints faced by the agent. So one might
think that the RE hypothesis stipulates that economic agents try to get the most
out of a situation with limited information, contemplating the benefits and costs
of gathering more information and using more elaborate statistical estimation
methods. But this is a misunderstanding. The RE hypothesis presumes that an
essentially “correct”model of the system is already known to the agents. The
“rationality” just refers to taking this assumed knowledge fully into account in
the chosen actions.

Anyway, the term “rational expectations”has become standard and we shall
stick to it.
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25.2. The rational expectations hypothesis 13

25.2.2 The forecast error*

Let the forecast of some variable Y one period ahead be denoted Y e
t−1,t. Suppose

the forecast is determined by a given function, f , of realizations of Y and X
up to and including period t− 1, that is, Y e

t−1,t = f(yt−1, yt−2, ..., xt−1, xt−2, ...).
Such a function is known as a forecast function. It might for instance be one of
the mechanistic forecasting principles in Section 25.1.1. At the other extreme the
forecast function might coincide, at least theoretically, with the model-consistent
conditional expectation. In the latter case it is a model-consistent forecast func-
tion and we can write

Y e
t−1,t = f(yt−1, yt−2, ..., xt−1, xt−2, ...) = E(Yt |It−1) (25.21)

= E(Yt |Yt−1 = yt−1, Yt−2 = yt−2, ..., xt−1 = xt−1, xt−2 = xt−2, ...) .

The forecast error is the difference between the actual value, Yt, of a variable
and the in advance forecasted value. So, for a given forecast, Y e

t−1,t, the forecast
error is et ≡ Yt − Y e

t−1,t and is itself a stochastic variable.
If the forecast function in (25.21) complies with the true data-generating

process (a big “if”), then the implied forecasts would have several ideal prop-
erties:

(a) the forecast error has zero mean;

(b) the forecast error is uncorrelated with any of the variables in the information
set It−1 and therefore also with its own past values; and

(c) the expected squared forecast error is minimized.

To see this, note that the model-consistent forecast error is et = Yt−E(Yt |It−1) .
From this follows that E(et |It−1) = 0, cf. (a). Also the unconditional expecta-
tion is nil, i.e., E(et) = 0. This is because E(E(et |It−1)) = E(0) = 0 at the same
time as E(E(et |It−1)) = E(et). The latter equality follows by the law of iterated
expectations from statistics which says that the unconditional expectation of the
conditional expectation of a stochastic variable Z is given by the unconditional
expectation of Z, cf. Appendix A. Indeed, if beforehand we have good reasons to
expect that we will revise our expectations upward, say, if we receive additional
information, then the original expectation must be biased, hence not rational.5.
Considering the specific model (25.7), the model-consistent-forecast error is et
= Yt − E(Yt |It−1) = c(Xt − E(Xt |It−1)), by (25.19) and (25.20). An ex post

5Imagine you ask a stockbroker in which direction she expects to revise her expectations
upon the arrival of more information. Suppose the broker answers “upward”, say. Well, another
broker would then be recommendable.
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error (et 6= 0) thus emerges if and only if the realization of the exogenous variable
deviates from its conditional expectation as seen from the previous period.
As to property (b), for i = 1, 2, ..., let st−i be some variable value belonging

to the information It−i. Then, property (b) is the claim that the (unconditional)
covariance between et and st−i is zero, i.e., Cov(etst−i) = 0, for i = 1, 2, ....
This follows from the orthogonality property of model-consistent expectations
(see Appendix B). In particular, with st−i = et−i, we get Cov(etet−i) = 0, i.e.,
the forecast errors exhibit lack of serial correlation. If the covariance were not
zero, it would be possible to improve the forecast by incorporating the correlation
into the forecast. In other words, under the assumption of rational expectations
economic agents have no more to learn from past forecast errors. As remarked
above, the RE hypothesis precisely refers to the fictional situation where learning
has been completed and underlying mechanisms do not change.
Finally, a desirable property of a forecast function f(·) is that it maximizes

“accuracy”, i.e., minimizes an appropriate loss function. A popular loss func-
tion, L, in this context is the expected squared forecast error conditional on the
information It−1,

L = E((Yt − f(yt−1, yt−2, ..., xt−1, xt−2, ...))
2 |It−1) .

Assuming Yt, Yt−1, ..., Xt−1, Xt−2, ... are jointly normally distributed, then the so-
lution to the problem of minimizing L is to set f(·) equal to the conditional
expectation E(Yt |It−1) based on the data-generating model as in (25.21).6 This
is what property (c) refers to.

EXAMPLE 4 Let Yt = aE(Yt |It−1)+cXt, with Xt = x̄+εt, where x̄ is a constant
and εt is white noise with variance σ2. Then (25.20) applies, so that

Yt =
cx̄

1− a + cεt, t = 0, 1, ...,

with variance c2σ2. The model-consistent forecast error is et = Yt − E(Yt |It−1)
= cεt with conditional expectation equal to E(cεt |It−1) = 0. This forecast error
itself is white noise and is therefore uncorrelated with the information on which
the forecast is based. �

It is worth emphasizing that in practice the “true” conditional expectation
usually can not be known — neither to the economic agents nor to the inves-
tigator; sometimes it does not even exist due to the presence of fundamental

6For proof, see Pesaran (1987). Under the restriction of only linear forecast functions,
property (c) holds even without the joint normality assumption, see Sargent (1979).
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25.2. The rational expectations hypothesis 15

uncertainty.7 At best there can be a reasonable estimate, probably somewhat
different across the agents because of differences in information and conceptions
of how the economic system functions. Deeper models of expectations attempt
to give an account of the way agents learn about the economic environment. An
important ingredient here is how agents contemplate the costs and potential gains
associated with further information search needed to reduce systematic expecta-
tion errors where possible. This contemplation is intricate because information
search often means entering unknown territory. Moreover, for a large subset of
the agents the costs may be prohibitive. A further complicating factor involved
in learning is that when the agents have obtained some knowledge about the sta-
tistical properties of the economic variables, the resulting behavior of the agents
tends to modify these statistical properties. This kind of modeling is complicated
and belongs to the current research frontier.
The rational expectations hypothesis sets these problems aside. It is simply

assumed that the learning process has been completed and the structure of the
economy remains unchanged.

25.2.3 Perfect foresight as a special case

The notion of perfect foresight corresponds to the limiting case where the variance
of the exogenous variable(s) is zero so that with probability one, Xt = E(Xt |It−1)
for all t. Then we have a non-stochastic model where rational expectations imply
that agents’ex post forecast error with respect to Yt is zero.8 To put it differently:
rational expectations in a non-stochastic model is equivalent to perfect foresight.
Note, however, that perfect foresight necessitates the exogenous variable Xt to
be known in advance. Many real-world situations are not like that. If we want
our model to take this into account, the model ought to be formulated in an
explicit stochastic framework. And assumptions should be stated about how the
economic agents respond to the uncertainty in their behavior and with respect
to expectations formation. The rational expectations assumption is an approach
to the latter problem. It has been much applied in macroeconomics since the
early 1980s, perhaps because it at least helps providing insight in an important
benchmark case.
The remainder of this chapter addresses the issue of money neutrality or non-

neutrality in a framework where agents have rational expectations.

7Fundamental uncertainty is present in situations where the full “range”of possible outcomes
is not even known, hence cannot be endowed with a probability (“it is not known what is
unknown”). In Section 26.2.4 of the next chapter we shall have a little more to say about this
situation.

8Here we disregard zero probability events.
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25.3 Wage setting in advance

The specific economic question to be studied in the subsequent sections is:

Do rational expectations rule out persistent effects on output of changes
in money supply?

Effects of money supply shocks are said to be persistent to the extent that the
real effects go beyond the period in which the shock occurs. As documented in
surveys by Blanchard (1990) and Stock and Watson (1999), the empirics indicate
that there is definitely a tendency for monetary shocks to have quite persistent
effects on output. On the other hand, the effects on output of even permanent
shifts in the money supply tend to gradually die out.
We shall address some suggested explanations of these phenomena, based on

a series of simple stochastic aggregate demand-aggregate supply (AD-AS) models
for a closed economy where agents have rational expectations. The models are
stated in log-linear form. Then one can apply the simple rule that the expected
value of a sum is the sum of the expected values. There are many cases where
linearity in logs seems an acceptable first approximation (cf. Appendix C).
The AD-AS models to be considered are dynamic short-run models with both

a Keynesian and a monetarist flavour. The “Keynesian”flavor comes from the
presence of nominal rigidities, the “monetarist”flavor from the assumption of an
autonomous money stock.
Some (unspecified) kind of imperfect competition in both the labor market

and the output market is assumed. The nominal wage is in every period prede-
termined, by monopolist trade unions or through bargaining in advance. Behind
the scene there are various kinds of contracting costs making it advantageous to
contract for fixed periods of time and renegotiate when the contract is about to
expire.
It turns out that the degree of persistence of the effects of monetary shocks

depends very much on the timing of the wage contracts. First, it matters whether
wages are negotiated at the different local levels (where “local”may refer to a
particular firm or a particular craft union) at the same time (synchronous wage
setting) or in some kind of staggered pattern (asynchronous wage setting). As we
shall see, in a RE model only in the last case will there be persistent effects of
changes in changes in the money supply. Second, in the case of staggered wage
setting, it matters whether wages, negotiated for two periods, say, can be set at
different levels over the two periods or not. For example, wage contracts may
specify that the wage in the second period should be α per cent above the level
in the first period. Alternatively, wages might have to be set at the same level
over the two periods. In that case, which is natural when the period length is
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25.4. A benchmark model with synchronous wage setting 17

relatively short, pronounced persistence of real effects of changes in money supply
arises under rational expectations.

The two models to be applied for throwing light on these themes were formu-
lated by the American economists Stanley Fischer (1977) and John Taylor (1979,
1980), respectively. In the stylized versions discussed here, both models consider
wages to be set in advance for two periods. In Fischer’s model there is staggered
wage setting with possibly different wage levels in the two periods. In Taylor’s
model there is staggered wage setting with the same wage level for the two pe-
riods. This difference is the key to understanding why Fischer’s model does not
predict persistent real effects of money while Taylor’s does.

To put the notion of staggering clearly into relief we start out from a bench-
mark model which has synchronous wage setting. Throughout the focus is on
how (if at all) anticipated and unanticipated money supply changes affect output
under the conditions of wage sluggishness in the sense of pre-determined wages.

25.4 A benchmark model with synchronous wage
setting

We follow the general convention in macroeconomic log-linear analysis that vari-
ables measured in natural units are denoted by capital letters and the logarithm
of such a variable is denoted by the corresponding lower case letter.9 These lower
case letters are then the stochastic variables that are assumed related linearly.
So from now on we depart from the convention in mathematical statistics using
capital letters for stochastic variables and lower case letters for the specific values
(real numbers) these can take (as in the exposition above). It should be clear from
the context whether a given letter should be interpreted as a stochastic variable
or as a specific value of this variable.

A further notational simplification is that from now on the expected value
of any stochastic variable, zt, conditional on information It−1, will be denoted
Et−1zt. So the RE hypothesis is from now written

zet−1,t = Et−1zt ≡ E(zt|It−1). (25.22)

9Usually the interest rate is an exception in that i usually means the nominal interest rate,
not its logarithm. But in this chapter, the interest rate is not a key variable anyway.
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25.4.1 Wage setting one period in advance

We consider a dynamic AD-AS model with synchronous wage setting one period
in advance. The model consists of these three equations:

yt = mt − pt, (25.23)

yt = −(wt − pt), (25.24)

wt = wt−1,t = Et−1pt, (25.25)

where yt is output, mt the nominal money supply, pt is the price level, and wt is
the nominal wage, all in logs and referring to period t. Further, wt−1,t is the wage
set in period t− 1 for period t, and Et−1pt is the expected price level in period t,
conditional on information available in period t− 1. We will often speak of y, p,
and w as just “output”, “price level”and “wage level”(instead of “log of output”
etc.). The money supply, mt, is treated as an exogenous stochastic variable.
Equation (25.23) is the aggregate demand equation (AD equation), equation

(25.24) is the aggregate supply equation (AS equation), and (25.25) is the wage
setting equation. We now provide detailed interpretations of these three equa-
tions.

The AD equation

The reduced form of a simple IS-LM framework with exogenous money supply
says that output, y, equals output demand, the latter depending on money supply,
the current price level, and the expected price level next period. In (25.23),
however, the expected price level next period does not enter. This reflects a
simplifying assumption that the quantity theory of money holds approximately
(velocity of money being independent of the nominal interest rate).
Let us spell this out in more detail. Let i be the nominal interest rate and πe

the expected forward-looking inflation rate, i.e., πe ≡ (P e
+1 − P )/P ≈ pe+1 − p .

In a customary IS-LM model one considers an IS equation like

Y = D(Y, r) · U IS, 0 < DY < 1, Dr < 0, (25.26)

where U IS is a multiplicative demand disturbance and r = (1 + i)/(1 + πe) − 1
≈ i − (pe+1 − p) is the (expected) real interest rate. We suppress the dating of
the variables where not needed. The equation (25.26) defines Y as an implicit
function, written Y = Ỹ (r, U IS), of r and U IS. A log-linear approximation gives
y = c0− c1(i− (pe+1− p)) + c2u

IS. For simplicity we set c0 = 0 and c2 = 1, so that

y = −c1(i− (pe+1 − p)) + uIS, c1 > 0, (IS)
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25.4. A benchmark model with synchronous wage setting 19

Similarly, the customary LM equation is

M

P
= L(Y, i) · ULM , LY > 0, Li < 0,

where ULM is a multiplicative money demand disturbance, by Keynesians com-
monly called a liquidity preference shock, by monetarists a velocity shock. A
log-linear approximation is m − p = b0 + b1y − b2i + uLM , where we simplify by
setting b0 = 0. Thus,

m− p = b1y − b2i+ uLM , b1 > 0, b2 > 0. (LM)

Isolating i and substituting into (IS), we end up with

y =
c1

b2 + b1c1

(m− uLM − p) +
b2c1

b2 + b1c1

(pe+1 − p) +
b2

b2 + b1c1

uIS.

In the simple case of the quantity theory of money, we have b2 = 0. Then the
output demand disturbance uIS as well as expected inflation, pe+1−p, is uncoupled
from the system. Being interested only in qualitative properties, we simplify by
setting b1 = 1 so as to get y = m−uLM−p. Since bothm and−uLM are exogenous
and only occur together and additively, we can shorten notation by considering
only one exogenous variable, m̃ ≡ m − uLM . We rename this variable as m and
the reader is free to interpret this as if uLM ≡ 0. Thus we finally arrive at (25.23).
When needed, we shall re-introduce uLM explicitly as a separate component.
Although the quantity theory is unrealistic, it helps us sidestep the technical

issues of forward-looking expectations associated with terms like pe+1−p.10 These
are not of key importance in a first approach to the question at hand. All in
all, (25.23) is merely a reordering of a money market clearing condition saying
that real money supply equals real money demand, which is simplifying assumed
interest inelastic.

The AS equation

The aggregate supply equation, (25.24), reflects firms’profit maximization. If
Y = LaK1−a, 0 < a < 1, where K denotes capital input, then the marginal
productivity of labor is ∂Y/∂L = aLa−1K1−a. Since K moves little in the short
run, we fix it at the value 1. Then marginal cost is MC = W/(aLa−1). Suppose
there is monopolistic competition and that the price elasticity of demand is a
constant, −η < 0. Then profit maximizing firms choose a constant mark-up µ

10This modeling trick became popular after Lucas (1973). It considerably increases the
tractability of the stocastic AD-AS model which otherwise, as witnessed by Chapter 27, is
analytically complex.
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= η/(η − 1) > 1 so that P = µMC = µW/(aLa−1); perfect competition can be
interpreted as the limiting case η =∞ whereby µ = 1.
We now have L = [(µ/a)W/P ]1/(a−1) so that

Y = La = [(µ/a)W/P ]a/(a−1) . (25.27)

By taking logs on both sides and ignoring unimportant constants, we get (25.24).11

Note that, unless µ = 1 (the case of perfect competition), (25.27) is not an
aggregate supply function in the classical sense of a relation determining the
amount firms will supply when facing a given price, P, and given input prices.
Beyond perfect competition, firms are price makers and not price takers. Then
(25.27) should be seen as just stating what combinations of P and Y are consistent
with firms’profit maximization, given the wage level W. This broad meaning is
understood when we use the convenient term “AS equation”.

The wage setting equation

Finally, the interpretation of the wage setting equation, (25.25), is that workers
set or negotiate wages so as to achieve, in expected value, a target real wage ap-
proximately equal to 1. If the price level turns out as expected, pt = Et−1pt, then,
according to (25.25), wt − pt = 0, i.e., ln(Wt/Pt) = 0 or Wt/Pt = 1. Nonetheless,
strictly speaking, (25.25) implies a target real wage, ω, slightly above 1. Indeed,
letting ω denote the target real wage (thus also the expected real wage), we have
ω = Et−1(Wt/Pt) = WtEt−1(P−1

t ), so that

lnω = lnWt + lnEt−1(P−1
t ) > lnWt + Et−1 ln(P−1

t ) = wt − Et−1pt = 0,

where the inequality follows from Jensen’s inequality for a strictly concave func-
tion (the ln function) and where the last equality follows from the wage setting
behavior (25.25). This implies ω > 1, but the difference is small, if the variance
of 1/Pt is small so that Et−1 ln(1/Pt) approximates lnEt−1(1/Pt) reasonably well.

25.4.2 Solving the benchmark model

The only exogenous variable is mt which follows a stochastic process known to
the agents. The agents are assumed to have the information needed to calculate
the true conditional expectation of mt as seen from the end of period t− 1, that
is, Et−1mt. The remaining four variables, yt, pt, wt, and wt−1,t, are endogenous.
And we have four equations, since (25.25) contain two equations. This seems
promising.
We follow the solution procedure described in Section ??.

11Since we are interested only in qualitative properties, additive constants are ignored and
unimportant positive coeffi cients put equal to 1, which here corresponds to setting a = 1

2 .
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1. The endogenous variable the expectation of which appears in the model is
pt. Inserting (25.25) into (25.24) gives yt = pt − Et−1pt. Substituting this
into (25.23) gives pt − Et−1pt = mt −pt or

2pt = Et−1pt +mt. (25.28)

2. Taking the conditional expectation on both sides gives 2Et−1pt = Et−1pt +
Et−1mt. Thus the conditional expectation of p is found to be

Et−1pt = Et−1mt. (25.29)

3. Inserting into the reduced form (25.28) yields pt = 1
2

(Et−1mt +mt), i.e.,

pt =
1

2
mt − Et−1mt) + Et−1mt. (25.30)

4. Given this solution for the realized value of the price level in period t, the
realized value of output is found by substituting (25.30) into (25.23), which
gives

yt =
1

2
(mt − Et−1mt). (25.31)

Finally, substituting (25.29) into (25.25) gives the solution for the nominal
wage,

wt = wt−1,t = Et−1mt. (25.32)

We see from (25.31) that with synchronous wage setting only the unanticipated
part of money supply affects output. This is similar to the policy ineffectiveness
conclusion from Lucas (1972, 1973).12 The mechanism is slightly different, how-
ever, because we consider an AD-AS model where the nominal wage is set in
advance. When positive “surprises” in money supply occur, wages are already
set, but prices can adjust, cf. (25.30), thus allowing an equilibrium with lower
ex post real wage and higher labor demand and employment, hence also higher
output.
We have ignored unimportant constants in such a way that the obvious in-

terpretation of the model’s yt is as an output gap. That is, we may take yt to
represent lnYt = lnQt − ln Q̄t, where Qt is actual aggregate output (GDP) and
Q̄t is the “natural” level of output (that level which obtains when expectations
are realized).
The conclusion is that with synchronous wage setting, money supply only

affect output within the time interval for which wages are preset. In the present

12See Chapter 27.
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case wages were reset every period in advance, and then the effect of a money
supply shock lasts only one period. Assuming policy makers can not act more
often − and do not have more information − than wage-setters, policy makers
can not stabilize output. If wages were preset synchronously for two periods and
policy makers could act every period, there would be some scope for stabilization
policy. The important thing to notice is that with synchronous wage setting there
are, under rational expectations, no lasting effects of shocks.

25.5 Asynchronous wage setting for several pe-
riods: Fischer’s approach

The fundamental characteristic of Fischer’s approach is that wages are set in an
asynchronous way for two periods with possibly different levels in the two periods.
One half of the labor force, group A, presets at the end of period t−1 its nominal
wages for period t and period t + 1, respectively. Thereby wt−1,t and wt−1,t+1

are fixed. At the end of period t + 1, group A resets wages for the next two
periods and so on. The other half, group B, has at the end of period t− 2 preset
its nominal wages for period t − 1 and period t, respectively, i.e., wt−2,t−1 and
wt−2,t. At the end of period t, group B resets wages for the next two periods and
so on. Fig. 25.1 illustrates.13 Each group sets wages for each period with the
aim of achieving, in expected value, the target real wage, which we assume to be
constant and approximately equal to one. A possible explanation of the existence
of staggering is that the economic agents, for example trade unions, want to
obtain information about what is going on in other markets before decisions are
made.
As mentioned above, Fischer’s model does not predict persistent real effects

of money while Taylor’s does. The two models also differ in other respects that
may be of interest. We will therefore present the Fischer model in two versions.
The first version is essentially the same as his original model, whereas the second
is close to Taylor’s setup except in one key respect. This will make it easier to
identify the fundamental source of persistence.
As in the benchmark model above, in the first version of Fischer’s model only

the wage level is pre-determined. The price level is assumed flexible and formed
through a constant mark-up on rising marginal production costs in the period.
In Taylor’s setup, however, marginal production costs are scale independent and
then the constant mark-up implies that also the price is effectively pre-determined
when the wage is. But now to Fischer’s original model.

13Following our usual timing convention, period t is the time interval [t, t+ 1) .
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Figure 25.1: Configuration of wage setting in the Fischer models.

25.5.1 The original Fischer model

The model is:

yt = mt − pt, (25.33)

yt = −(wt − pt) = −
[

1

2
(wt−1,t + wt−2,t)− pt

]
, (25.34)

wt−1,t = Et−1pt, wt−2,t = Et−2pt. (25.35)

The “general”wage level wt in period t is now an arithmetic average of (the
log of) wages set by different groups in period t−1 and period t−2, respectively.
The general wage level may also be written wt ≡ lnWt ≡ ln

[
(Wt−1,t ·Wt−2,t)

1/2
]
,

so that wt is the log of the geometric average of the actual wage levels, Wt−1,t

and Wt−2,t, set in advance by the two groups for period t. Similarly, p should
be interpreted as an average price level. We will call this version of Fischer’s
contribution version I.
We follow our standard solution procedure:

1. Inserting (25.35) into (25.34) gives yt = −(1
2
)(Et−1pt +Et−2pt) +pt. Substi-

tuting this into (25.33) yields

2pt =
1

2
(Et−1pt + Et−2pt) +mt. (25.36)

2. We then take the conditional expectation as seen from t− 2 on both sides
to get

2Et−2pt =
1

2
[Et−2(Et−1pt) + Et−2pt] + Et−2mt

= Et−2pt + Et−2mt, so that

Et−2pt = Et−2mt, (25.37)
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where we have used that Et−2(Et−1pt) = Et−2pt, according to the law of
iterated expectations (cf. Appendix A). In words: your best forecast today
of how you are going to forecast tomorrow the price the day after tomorrow,
will be the same as your best forecast today of the price the day after tomor-
row; it takes new information to change a rational expectation. Second, we
take the conditional expectation as seen from t− 1 on both sides of (25.36)
to get 2Et−1pt = (1

2
)(Et−1pt + Et−2pt) + Et−1mt. Substituting (25.37) into

this and ordering yields

Et−1pt =
1

3
Et−2mt +

2

3
Et−1mt. (25.38)

3. To find the solution for pt, substitute (25.37) and (25.38) into (25.36) and
reorder:

pt =
1

2
(mt +

1

3
Et−1mt +

2

3
Et−2mt) (25.39)

=
1

2
(mt − Et−1mt) +

2

3
(Et−1mt − Et−2mt) + Et−2mt.

4. The solution for yt is found by inserting this into (25.33) to get

yt =
1

2

(
mt −

1

3
Et−1mt −

2

3
Et−2mt

)
=

1

2
(mt − Et−1mt) +

1

3
(Et−1mt − Et−2mt)

=
1

3

[
1

2
(mt − Et−1mt) +mt − Et−2mt

]
. (25.40)

We have expressed the solutions for pt and yt, respectively, in several distinct
ways in order to ease interpretation. The first equalities in (25.39) and (25.40)
reveal that the effects on pt and yt, respectively, of previously formed expectations
have opposite sign and exhibit symmetry in the sense that there is no effect on
pt + yt. This is as expected in view of (25.33), which implies pt + yt = mt.14 The
second equalities in (25.39) and (25.40) reveal that the effects on pt and yt of
shocks in period t and period t− 1, respectively, have the same sign and sum to
1× (size of shock). Again no surprise, in view of pt+yt = mt. Fig. 25.2 illustrates
the effect of a positive monetary shock in period t. For given expectations, wt is
fixed and this defines the position of the upward-sloping AS curve. The position

14The additional symmetry displayed by the coeffi cients 1/2, 1/3, etc., is an artifact due to
the simplifying choice of parameter values such that the coeffi cients in the AD and AS relations
become unity.
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Figure 25.2: Equilibrium of the Fischer model in response to a positive monetary shock
in period t (when also period t− 1 featured a positive monetary shock).

of the solid downward-sloping AD curve is determined by the actual mt. The
stippled downward-sloping curve shows the position of the AD curve in case mt

= Et−1mt. The positive monetary shock implies that the equilibrium is located
North-East of its position in the absence of the shock.15

The last equality in (25.40) reveals that there is a potential for real effects of
monetary shocks to last two periods. To put it differently, it is always so that
a significant fraction of the current wages has been set two periods in advance.
Shocks in the current and the preceding period will thus matter for current output.
But earlier shocks will not. After two periods, the price level has fully absorbed a
monetary shock. A current shock, however, shows up partly in the current price
and partly in the current output. In the next period there is still both an output
effect and a price effect, but with more weight on the latter.
In the case illustrated by Fig. 25.2 there has been a monetary shock also in

period t− 1 in that Et−1mt 6= Et−2mt. Otherwise, the equilibrium corresponding
to the stippled AD curve would be located on the vertical axis and thus have
yt = 0 and wt = pt = mt = Et−1mt = Et−2mt (remember, y is the output gap).
Like in the benchmark model only the unanticipated part of money supply can
affect output and make the output gap deviate from zero. This result is most
clearly brought out by the last equality in (25.40).

15That the AS and AD curves are straight lines is due to the assumed linearity of the model.
That these lines have slopes exactly equal to 1 and −1, respectively, is an artifact as explained
in the preceeding footnote.
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The overall conclusion is that in the Fischer model of asynchronous wage
setting, real effects of monetary shocks are still not “truly”persistent; the effects
last no longer than the contract period. Yet, if policy makers can act every
period, the Fischer model allows stabilization policy to have a role. To see this,
we introduce a demand shock by extending (25.33) into

yt = mt − pt + ut.

With mt replaced by mt + ut,
16 the solution (25.40) takes the form

yt =
1

3

[
1

2
(mt + ut − Et−1(mt + ut)) +mt + ut − Et−2(mt + ut)

]
.

Suppose ut follows a random walk, i.e.,

ut = ut−1 + εt,

where εt is white noise with variance σ2. Thus, Et−1ut = ut−1 and Et−2ut = ut−2.
Consider two alternative monetary policies:
Policy 1. Suppose the central bank is known to follow a passive monetary

policy:
mt = m̄ for all t, (25.41)

where m̄ is a constant. We get Et−2mt = m̄ = Et−1mt and therefore

yt =
1

3

[
1

2
(ut − Et−1ut) + ut − Et−2ut

]
=

1

3

(
1

2
εt + ut−1 + εt − ut−2

)
=

1

2
εt +

1

3
εt−1,

so that the conditional variance of yt as seen from the end of period t− 2 is

Vart−2(yt) = (
1

4
+

1

9
)σ2.

Policy 2. Suppose the central bank is known to follow the counter-cyclical
monetary policy:

mt = −εt−1. (25.42)

We get Et−1mt = −εt−1, Et−2mt = Et−2 [−εt−1] = 0, so that

yt =
1

3

[
1

2
(−εt−1 + ut + εt−1 − ut−1)− εt−1 + ut − ut−2

]
=

1

3

(
1

2
εt − εt−1 + ut−1 + εt − ut−2

)
=

1

2
εt. (25.43)

16The natural interpretation of ut is that it equals −uLMt , i.e., the negative of the velocity
shock discussed in Section 25.41.

c© Groth, Lecture notes in macroeconomics, (mimeo) 2017.



25.5. Asynchronous wage setting for several periods: Fischer’s approach 27

The conditional variance of yt as seen from the end of period t− 2 is now

Vart−2(yt) =
1

4
σ2,

which is smaller than under the passive monetary policy.
With the policy rule (25.42), mt has become an endogenous variable in the

system, partly offsetting the demand shock from the preceding period by moving
in the opposite direction. One might ask: since shocks are not directly observable,
how can monetary policy react to the shock εt−1? The answer is that this shock
can be inferred from the observed yt−1, as is seen from (25.43) if we replace t
by t − 1. Indeed, the monetary policy rule (25.42) can directly be written mt

= −2yt−1.

25.5.2 A modified Fischer model

Here we modify the above model into a setup which is similar to Taylor’s model
of the subsequent section except in one key respect. The purpose is to highlight
the fundamental source of persistent real effects of monetary shocks. We name
this modified model version II. The model is:

yt = mt − pt, (25.44)

pt = wt =
1

2
(wt−1,t + wt−2,t), (25.45)

wt−1,t = Et−1pt + αEt−1yt, wt−2,t = Et−2pt + αEt−2yt, (25.46)

where 0 < α < 1. In a diagram corresponding to Fig. 25.2 the AD curve is
thus unchanged, whereas the AS curve is now horizontal. The implicit (short-
run) production function behind (25.45) is of the “fixed proportions type”, Y
= min(ξK, βL), where ξ and β are constant technical coeffi cients. As long as
the capital stock is not fully utilized, production is Y = βL.17 Then, with price
equal to a mark-up on marginal costs we have P = µMC = µW/β.18 With µ
= β (for simplicity) we get, in logs, p = w. The average wage w in period t is,
as before, defined as wt = (1

2
)(wt−1,t + wt−2,t). Equation (25.46) gives the wage,

wt−1,t, set (or negotiated) for period t by the group which at the end of period

17By empiricists this is sometimes considered a better approximation to reality under “nor-
mal circumstances”than the falling-marginal-product-of-labor approach of the first version of
Fischer’s model.
18So the real wage is W/P = β/µ, a constant. Consequently, the real wage is here acyclical

vis-a-vis demand shocks and not countercyclical as in the original Fischer model above and the
benchmark model we started with. An acyclical real wage is actually a welcome feature of a
model. The evidence does not point to countercyclical real wages but rather acyclical or slightly
procyclical real wages (Stock and Watson, 1999).
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t−1 sets wages for the next two periods, possibly at different levels. The wage set
by this group for period t+ 1 will be wt−1,t+1 = Et−1pt+1 + αEt−1yt+1. Thus, the
wage level a group sets for a given period depends on the expected price and the
expected output (employment) in that period. The constant α is the elasticity
of the group’s target real wage w.r.t. employment; the assumption that this
elasticity is positive reflects that workers’(unions’) bargaining power increases
with employment.
The employment-dependent target real wage adds to the realism of the model.

We will name α the local real wage flexibility. The prefix “local” is important.
Whereas the relative wages of the two groups will fluctuate depending on who is
the first to act on new information, the global (or average) real wage level, w−p,
remains constant, as indicated by (25.45).
By substituting (25.46) into (25.45) and taking expected values as seen from

the end of period t − 2, we see that Et−2yt = 0. By (25.44) then follows Et−2pt
= Et−2mt. Agents know that after two periods any monetary shock is fully
swallowed by the price level, leaving the output gap at its natural level, which is
zero. Taking expected values as seen from the end of period t− 1 in (25.45) then
gives

Et−1pt =
1

2
(Et−1pt + αEt−1yt + Et−2mt) = pt, (25.47)

by (25.45). Thus, pt = Et−1pt. Indeed, pt is cost determined and costs depend
only on wt−1,t and wt−2,t, both of which belong to the information available at
the end of period t− 1, as indicated by (25.46). To put it differently, at the end
of period t− 1, group A workers (or trade union) can in fact forecast pt precisely,
knowing their own decision, wt−1,t, as well as group B’s previous decision, wt−2,t,
and knowing the price formation function (25.45).
Taking expected values in (25.44) and substituting into (25.47) gives

pt = Et−1pt =
α

1 + α
Et−1mt +

1

1 + α
Et−2mt

=
α

1 + α
(Et−1mt − Et−2mt) + Et−2mt.

Finally, we substitute this into (25.44) to get

yt = mt −
α

1 + α
Et−1mt −

1

1 + α
Et−2mt

= mt − Et−1mt +
1

1 + α
(Et−1mt − Et−2mt).

Again the effects on pt and yt of a monetary shock in period t − 1 have the
same sign and sum to 1× (size of shock). A new aspect is, however, that now
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a shock in period t shows up fully in the current output, with no effect on the
current price level. This is due to the horizontal AS curve the position of which
is determined by wt which is set in advance.19 But wt, hence also pt, is affected
by any shock in period t − 1 and the more so, the higher is the local real wage
flexibility, α. This means that the effect of such past shocks on yt is lower, the
higher is α. The mirror image of this is that the real effect of the shock is greater,
the higher is local real wage rigidity, as measured by, say, 1/(1 + α).
We can rewrite the solution for output as

yt =
α

1 + α
(mt − Et−1mt) +

1

1 + α
(mt − Et−2mt).

Thus it still holds that only the unanticipated part of money supply affects out-
put. The overall conclusion is that also in this version of the Fischer model of
asynchronous wage setting, real effects of monetary shocks are not “truly”per-
sistent.

25.6 Asynchronous wage setting with constant
wage level for several periods: Taylor’s model

As both versions of the Fisher model illustrated, asynchronous (staggered) wage
setting as such is not enough to generate truly persistent effects of money on out-
put. Indeed, the effects of monetary shocks did not last longer than the contract
period. But the empirical evidence referred to above indicates persistent real
effects. This is where Taylor’s model comes in. Taylor (1979, 1980) incorporated
the essential observation that wages (and prices) are often set at constant values
for a fairly long time (say, N quarters of a year). When this is combined with
the fact that the contract periods at the different local markets are staggered
(overlapping), output persistence results, as we will now see.20

We present a simplified version of the Taylor model by letting N = 2. Then
it becomes easy to compare it with Fischer’s approach. Again one half of the
labor force, group A, presets at the end of period t− 1 its nominal wage level for
period t and period t+1. The essential feature is that this level is the same for the
two periods, i.e., wt−1,t = wt−1,t+1 = xt (the contract wage of period t and period
t+ 1). At the end of period t+ 1, group A resets the wage level for the next two
periods, i.e., chooses xt+2, and so on. The other half, group B, has at the end of

19Behind the story is the presumption that employment can adjust without an immediate
wage increase. Thus, the existence of involuntary unemployment is presupposed.
20A pertinent question is, of course, why nominal contracts are fixed for so long and why

indexing to the general price level is not used more often. Gray (1978) provides a study of this
issue.
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Figure 25.3: Configuration of wage setting in the Taylor model.

period t − 2 preset its nominal wage level for period t − 1 and period t at some
level xt−1, i.e., wt−2,t−1 = wt−2,t = xt−1. At the end of period t, group B resets its
wage to some level, xt+1, for the next two periods and so on. Fig. 25.3 illustrates.
The wage set by a group for the subsequent two periods is set with the aim of
achieving, in expected value, a certain target real wage. As in version II of the
Fischer model this target real wage is assumed to be an increasing function of
expected output (employment).

The Taylor model is:

yt = mt − pt, (25.48)

pt = wt ≡
1

2
(wt−1,t + wt−2,t) =

1

2
(xt + xt−1), (25.49)

xt =
1

2
(Et−1pt + αEt−1yt) +

1

2
(Et−1pt+1 + αEt−1yt+1), (25.50)

where 0 < α < 1. Like in version II of the Fischer model, the implicit (short-
run) production function behind the horizontal AS curve, (25.49), is of the “fixed
proportions type”. The average wage w in period t is, as before, defined as wt ≡
(1

2
)(wt−1,t+wt−2,t), which in view of the constant wage during the contract period

(i.e., wt−2,t−1 = wt−2,t = xt−1) can be expressed as the average of the current and
the previous period’s contract wages, (xt + xt−1)/2. Equation (25.50) gives the
wage, xt, set (or negotiated) by the group which at the end of period t−1 sets its
wage level to be in force in the next two periods. The two periods count equally
much, since in a short-run perspective discounting is unimportant. Finally, the
constant α also here indicates the elasticity of the local target real wage w.r.t.
output (employment), thus reflecting the local real wage flexibility.

Before considering the solution to the model, we shall note a useful alternative
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interpretation of the wage setting behavior. We rewrite (25.50) as

xt =
1

2
(Et−1pt + Et−1pt+1) +

α

2
(Et−1yt + Et−1yt+1)

=
1

2
(pt + Et−1pt+1) +

α

2
(Et−1yt + Et−1yt+1),

where we have used that pt = Et−1pt. Indeed, pt is cost determined and costs
depend only on xt and xt−1, both of which belong to the information available
at the end of period t − 1, as indicated by (25.50). Inserting (25.49), both as it
stands and in expected form with t replaced by t+ 1, gives

xt =
1

2

[
1

2
(xt + xt−1) +

1

2
(Et−1xt+1 + xt)

]
+
α

2
(Et−1yt + Et−1yt+1)

=
1

2
(xt−1 + Et−1xt+1) + α(Et−1yt + Et−1yt+1). (25.51)

Thus, worker’s wage setting behavior can be interpreted as if workers care about
relative wages. Thus, the group of workers that sets wage at the end of period
t − 1 is concerned about xt−1 and Et−1xt+1, i.e., the wages paid to the other
group in period t and period t + 1. Since not only past expectations of current
endogenous variables are present in the model, but also past expectations of future
endogenous variables, finding the solution is somewhat more complicated than in
the two previous models. The method we shall apply is called the method of
undetermined coeffi cients.
Application of this method requires that we specify the stochastic process

followed by the money supply. We assume money supply follows a random walk,
i.e.,

mt = mt−1 + εt, (25.52)

where εt is white noise. Then, by the method of undetermined coeffi cients we
find the reduced form of the model to be:21

xt = (1− λ)mt−1 + λxt−1, λ ≡ 1−
√
α

1 +
√
α
∈ (0, 1), (25.53)

pt =
1

2
[(1− λ)mt−1 + (1 + λ)xt−1] , (25.54)

yt =
1 + λ

2
(mt−1 − xt−1) + εt. (25.55)

The graph of λ as a function of the local-real-wage-flexibility parameter α is
shown in Fig. 25.4. The negative dependency of λ on α invites seeing λ as an
index of the degree of local real wage rigidity, which we may also call the local real
wage inertia. The less relative prices respond to changes in demand, the greater
is this “real rigidity”in the terminology of Ball and Romer (1990).
21The derivation is in Appendix D.
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Figure 25.4: The graph of λ = 1−
√
α

1+
√
α
.

The crucial feature is that now output has always a backward link. This is
because output depends on demand, which depends negatively on the price level,
which depends positively on the average wage level. But this wage level is formed
as an average of the preset xt and xt−1, where xt was set with a view of how
xt−1 was set a period earlier. That is, not only do the expected circumstances in
period t matter, but also the expected circumstances in period t− 1 as seen from
the end of period t − 2.22 And so on backward in time. The system never gets
completely free from its previous history. Therefore, the effects of changes in the
money supply last longer than the time during which each nominal wage is fixed.
One way of getting the intuition behind the result is to recognize that workers
care about relative wages, as shown by (25.51). Workers are therefore not only
forward-looking, but also backward-looking.

To be more concrete, let us consider a positive permanent shock to the money
supply. We assume the economy has been in steady state until period t. That is,
we have mt−i = m̄ for i = 1, 2, ... . The corresponding steady-state values of x, p,
and y are called x̄, p̄, and ȳ, respectively, and can be found in the following way.
From (25.49) follows p̄ = x̄. Then (25.50) gives x̄ = 1

2
(2p̄ + 2αȳ) = x̄ + αȳ. But

this requires ȳ = 0. From (25.48) now follows p̄ = x̄ = m̄.

Suppose an unanticipated positive permanent once-for-all money supply shock
occurs in period t, i.e., mt = m̄+ ε ≡ m̄′ > m̄ and mt+i = m̄′ for i = 1, 2, ... (no
new shocks). The consequences of this shock are illustrated in Fig. 25.5, where
the stipulated contract wages are indexed according to which group has set the

22This is in contrast to both versions of the Fischer model.
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Figure 25.5: Adjustments to an unanticipated rise in the money supply.
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wage. We have, from (25.53),

xt = (1− λ)mt−1 + λxt−1 = (1− λ)m̄+ λm̄ = m̄,

xt+1 = (1− λ)mt + λxt = (1− λ)(m̄+ ε) + λm̄ = m̄+ (1− λ)ε,

xt+2 = (1− λ)mt+1 + λxt+1 = (1− λ)(m̄+ ε) + λm̄+ λ(1− λ)ε

= m̄+ (1− λ)(1 + λ)ε,

xt+3 = (1− λ)mt+2 + λxt+2 = (1− λ)(m̄+ ε) + λm̄+ λ(1− λ)(1 + λ)ε,

= m̄+ (1− λ)(1 + λ+ λ2)ε,

........................................

xt+i = m̄+ (1− λ)(1 + λ+ λ2 + ...+ λi−1)ε = m̄+ (1− λ)
1− λi

1− λ ε

= m̄+ (1− λi)ε.

We see that
xt+i → m̄+ ε for i→∞, since 0 < λ < 1.

From (25.49) follows pt = 1
2
(xt + xt−1) = m̄ and, for i = 1, 2, ... ,

pt+i+1 =
1

2
(xt+i+1 + xt+i) =

1

2

[
m̄+ (1− λi+1)ε+ m̄+ (1− λi)ε

]
= m̄+ ε− λi(1 + λ)ε.

Thus,
pt+i+1 → m̄+ ε for i→∞.

Finally, by (25.55), yt = ((1 + λ)/2)(mt−1 − xt−1) + ε = ε and, for i = 1, 2, ...,

yt+i+1 =
1 + λ

2
(mt+i − xt+i) + εt+i+1 =

1 + λ

2

[
m̄+ ε− m̄− (1− λi)ε

]
+ 0

=
1 + λ

2
λiε,

so that
yt+i+1 → 0 for i→∞.

In period t, where the shock occurs, the price level is predetermined because
prices are formed as a constant mark-up on predetermined marginal costs. Thus,
the money shock has full effect on output in period t.23 Thereafter the effect on
output remains positive, but declining. This is because wages begin to adjust and
so do prices. In the long run, if no new shocks occur, output returns to “natural”.

23Like in version II of the Fischer model, this response of output without any current wage
and price effect presupposes the existence of involuntary unemployment.
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Note that the lower is α (local real wage flexibility), the closer is λ (local
real wage inertia) to one and the slower is the return to the natural output level.
Thus, local real wage rigidity is important for persistence: a higher λ results in
higher persistence of the effect of monetary shocks on output.
The conclusion is that in addition to staggered wage contracts two factors

contribute to significant persistence of real effects of a permanent money supply
shock:

• nominal wage rigidity in the Taylor sense of local nominal wages fixed at
the same level over several periods, and

• local real wage rigidity.

The first kind of rigidity results in nominal wages containing both a forward-
looking and a backward-looking element (dependency of the past). The second
kind of rigidity has to do with sluggishness in the response of relative prices (here
the local target real wage). Higher local real wage rigidity, λ, which reflects lower
sensitivity, α, of the target real wage to demand conditions, implies slower price
adjustment. Therefore, the monetary easing in period t implies a higher real
money supply for a longer time interval.24

Although in the above analysis only an unanticipated change in money supply
was considered, it can be shown that in the Taylor model also an anticipated
change in the money supply affects output. The intuition is that the contract wage
xt has both a backward-looking and a forward-looking component and begins its
adjustment already at the time of the announcement of the future change in
money supply. Indeed, the group of workers who set wages for the last period
before the change in money supply is actually implemented and the first period
of this implementation obviously takes the expected rise in the price level into
account. This feeds back to the other group who sets wages one period earlier
and so on backward in time to the period of the announcement, where the public
becomes aware that a future change in money supply is on the way. As this change
has not yet taken place, real money supply is gradually reduced in the periods
between announcement and implementation. In the period where the announced
policy change is implemented the price level is not yet fully adjusted (due to its
backward link). Thus, real money supply is temporarily high and so is output.
In the long run the price level adjusts fully, and output returns to the “natural”
level (from above). In this manner the anticipated monetary easing in period t
has a contractionary effect as long as it is expected, but not yet realized, and

24The importance of real rigidities in exacerbating sluggishness of price adjustment is high-
lighted by Ball and Romer (1990).
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an expansionary effect when it is realized. But the expansionary effect gradually
dies out as time proceeds.25

25.7 Conclusion

(preliminary, incomplete, messy)
In this chapter we have addressed macroeconomic themes where expectations

in uncertain situations are important elements. This has been done within a
simple New Keynesian framework:

• facing uncertainty due to stochastic disturbances to the money supply, the
agents form model-consistent expectations;

• although wages and possibly also prices are sticky in the short run, they
may change over time.

–
How well the RE hypothesis performs empirically is disputed. It is fair to say

that the performance depends on the circumstances. Still, there is no generally
accepted alternative workhorse hypothesis about expectations formation. When
a model assumes rational expectations, we at least know that the emerging results
will not depend on systematic expectation errors from the economic agents’side.
In this sense the RE solution of a model may be considered a theoretically relevant
benchmark case.
In some model setups (see next chapter) rational expectations lead to policy

ineffectiveness. But as the above analysis has shown, when nominal rigidities in
the form of staggered wage contracts are present, policy ineffectiveness is refuted.
In the Fischer models as well as the Taylor model stabilization policy can be
effective. Furthermore, in the Taylor model, but not in the Fischer models,
money supply changes have persistent effects; shocks to money supply (or output
demand in a more general model) have effects that last longer than the contract
period. Outstanding wage contracts only gradually adjust to new information.
An analogous staggered pattern for prices prevails if price setters set prices at

different times at different stages in the chain of production. Blanchard (1983)
shows that this in itself can give rise to substantial price level inertia and non-
neutrality of money even though prices change less often than wages. With
combined wage and price staggering a wage-price spiral arises and the real effects
of changes in money supply are reinforced, see Blanchard (1986), Edge (2002),
and Rabanal and Rubio-Ramirez (2005).

25For details, see Andersen (1994).
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A necessary, but not suffi cient condition for weighty non-neutrality of money
is the presence of some form of rigidity in relative prices, in particular real wages.
Such “real price rigidities”can arise from wage bargaining, effi ciency-wage mech-
anisms, insider-outsider relations, and search phenomena.
So far we have discussed models where wages and/or prices are set by different

agents for fixed periods of time and revised only after fixed time intervals. Calvo
(1982) developed a very popular model of price stickiness where each firm only
has the option of changing price when it receives a random signal. Thus, in every
period a constant fraction of the firms (randomly selected) make price decisions
and these decisions are forward-looking, taking into account the expected path
of the general price level. Inspired by this, Mankiw and Reis (2002) suggest a
model where not prices, but information is sticky. In each period a constant
fraction of firms (randomly selected) obtains new information about the state of
the economy and computes a new path of optimal prices. Other firms continue
to set prices based on old plans and old information. This structure also displays
non-neutrality of money, and both price inertia and inflation inertia arise.
All these models focus on “time-dependent adjustment” in that plans can

be revised only after a certain span of time or after arrival of a random signal.
Another and probably more realistic approach is based on “state-dependent ad-
justment”. Here adjustments follow so-called Ss rules. That is, adjustments only
take place if the difference between actual price and a target price exceeds some
threshold value (for an overview, see Blanchard 1990).
The fundamental issue why agents, and in particular firms, do not change

prices more often is related to the existence of various kinds of price adjustment
costs (menu costs etc.). We addressed this topic in Chapter ??.

25.8 Literature notes

(incomplete)
The exposition in Section 25.3-6 draws heavily upon Blanchard (1990).
Critique of RE: Shiller in The New Palgrave, ...
Are there compelling alternatives? On “natural expectations”, see
Learning: Ewans and Honkapohja ( ).
On the concept of information, see Rubinstein (1998) and Brunnermeier (2001).

The latter book is a structured overview of advanced theory of information, asym-
metric information, bubbles, crashes, and herding.
Fehr and Tyron (2005) survey research of relevance for the questions: When

does a small amount of irrationality have large aggregate effects in the economy?
And when does a small share of rational actors generate an aggregate outcome
close to the prediction under the assumption that everybody are rational?

c© Groth, Lecture notes in macroeconomics, (mimeo) 2017.



38

A systematic treatment of econometric methodology which sustains empirical
modeling of economic time series is given in Hendry (1995). The econometric
diffi culties that arise because the stochastic properties of an an economy are not
constant during economic development are discussed in Hendry and Mizon ( ).

25.9 Appendix

A. Conditional expectations and the law of iterated expectations
Generalities. We may think of the mathematical conditional expectation as a
weighted sum of the possible values of the stochastic variable with weights equal to
the corresponding conditional probabilities (“expectation”is used synonymously
with “expected value”).
Let Y and X be two discrete stochastic variables with joint probability func-

tion h(y, x) and marginal probability functions f(y) and g(x), respectively. If the
conditional probability function for Y given X = x0 is denoted j(y |x0) , we have
j(y |x0) = h(y, x0)/g(x0), assuming g(x0) > 0. The (mathematical) conditional
expectation of Y given X = x0, denoted E(Y |X = x0), is then

E(Y |X = x0) =
∑
y

y
h(y, x0)

g(x0)
. (25.56)

The summation is over all the possible values of y. This conditional expectation
is a function of the given number x0, perceived as a realization of X.
We may consider the conditional expectation itself as a new stochastic variable

which is a function of the stochastic variable X. We may denote this new sto-
chastic variable E(Y |X). What is then its expectation? Generally, for a function
of a discrete stochastic variable X, say k(X), the expectation is

E(k(X)) =
∑
x

k(x)g(x).

When we here let the conditional expectation E(Y |X) play the role of k(X) and
sum over all x ∈ S where S is the set of x-values for which g(x) > 0, we get

E(E(Y |X)) =
∑
x∈S

E(Y |X = x)g(x) =
∑
x∈S

(∑
y

y
h(y, x)

g(x)

)
g(x) (by (25.56))

=
∑
x∈S

(∑
y

yh(y, x)

)
=
∑
y

y

(∑
x∈S

h(y, x)

)
=
∑
y

yf(y) = E(Y ).

This result is a manifestation of the law of iterated expectations, applied for
instance in Section 25.2.2 and extensively applied in the next chapter. The law
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says that the unconditional expectation of the conditional expectation of Y is
given by the unconditional expectation of Y.
Now consider the case where Y andX are continuous stochastic variables with

joint probability density function h(y, x) and marginal density functions f(y) and
g(x), respectively. The conditional density function for Y given X = x0, denoted
j(y |x0) , is defined by j(y |x0) = h(y, x0)/g(x0), if g(x0) > 0, and is not defined
otherwise.26 With the range of Y being, for instance, (−∞,∞), the conditional
expectation of Y given X = x0, where g(x0) > 0, is

E(Y |X = x0) =

∫ ∞
−∞

y
h(y, x0)

g(x0)
dy. (25.57)

Again, we may view the conditional expectation itself as a stochastic variable,
writing it as E(Y |X). Generally, for a function of a continuous stochastic variable
X, say k(X), the expected value is

E(k(X)) =

∫
S

k(x)g(x)dx,

where S is the set of x-values for which g(x) > 0.When we here let the conditional
expectation E(Y |X) play the role of k(X), we get

E(E(Y |X)) =

∫
S

E(Y |X = x)g(x)dx =

∫
S

(∫ ∞
−∞

y
h(y, x)

g(x)
dy

)
g(x)dx

=

∫ ∞
−∞

y

(∫
S

h(y, x)dx

)
dy =

∫ ∞
−∞

yf(y)dy = E(Y ). (25.58)

This shows us the law of iterated expectations in action for a continuous stochastic
variable: the unconditional expectation of the conditional expectation of Y is
given by the unconditional expectation of Y.

EXAMPLE Let the two stochastic variables, X and Y, follow a two-dimensional
normal distribution. Then, from mathematical statistics we know that the con-
ditional expectation of Y given X satisfies

E(Y |X) = E(Y ) +
Cov(Y,X)

Var(X)
(X − E(X)).

Taking expectations on both sides gives

E(E(Y |X)) = E(Y ) +
Cov(Y,X)

Var(X)
(E(X)− E(X)) = E(Y ). �

26In spite of the event X = x0 generally having zero probability when X is a continuous
stochastic variable (recall that this does not contradict that g(x0) > 0), performing the ap-
propriate integrations tells us that this definition results in properties corresponding to our
intuitive notions of conditional probability and conditional expectation.
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As an extension, let the conditioning stochastic variable X be a vector, X
= (X1, X2), in R2. Let Y, X1, and X2 have joint density function h(y, x1, x2), and
Y and X1 have joint density function m(y, x1), whereas X1 and X2 have joint
density function g(x1, x2). In addition, let X1 have marginal density function
n(x1).
The conditional expectation of Y givenX1 = x1 andX2 = x2, where g(x1, x2) >

0, is

E(Y |X1 = x1, X2 = x2) =

∫ ∞
−∞

y
h(y, x1, x2)

g(x1, x2)
dy. (25.59)

Let E(Y |X1 = x1, X2) denote the conditional expectation of Y given X1 = x1,
but before the realization of X2. With S denoting the set of x2-values for which
g(x1, x2) > 0, we consider this conditional expectation as a function of the sto-
chastic variable X2 and calculate its expected value:

E(E(Y |X1 = x1, X2)) =

∫
S

(∫ ∞
−∞

y
h(y, x1, x2)

g(x1, x2)
dy

)
g(x1, x2)

n(x1)
dx2

=

∫
S

(∫ ∞
−∞

y
h(y, x1, x2)

n(x1)
dy

)
dx2 =

∫ ∞
−∞

y

(∫
S
h(y, x1, x2)dx2

n(x1)

)
dy

=

∫ ∞
−∞

y
m(y, x1)

n(x1)
dy = E(Y |X1 = x1).

In brief,
E(E(Y |X1 = x1, X2)) = E(Y |X1 = x1), (25.60)

which is the law of iterated expectations for this case.

Information sets and Wenn diagrams: a warning. In a dynamic context we
typically consider periods, say, 1, 2, . . . , t, . . . , and interpret x1, x2, . . . , xt, . . . , as
successive realizations ofX1, X2, . . . , Xt, . . . , whereas Y could refer to period t+1.
If t = 2, the expression (25.60) then illustrates the law of iterated expectations
in a dynamic perspective.
In line with this, the main text expressed the conditioning explicitly in terms

of dated information sets, . . . , It−1, It, It+1, . . . .. This is convenient in a dynamic
context. These dated information sets satisfy the inclusion relationship It−1 ⊆ It,
and the law of iterated expectations takes the form

E(E(Yt+1|It)|It−1) = E(Yt+1|It−1). (25.61)

In words: the expectation, conditional of the information up to period t − 1, of
the conditional expectation of Yt+1, given the information up to period t, equals
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the expectation of Yt+1, conditional of the information up to period t− 1. So the
expectation today of the expectation tomorrow, when more may be known, of
a variable the day after tomorrow is the same as the expectation today of the
variable the day after tomorrow.27

What is the relationship between these information sets and Wenn diagrams
as used for elementary instruction in set theory? Let again the situation described
in (25.60) be our example. Let the event A be that (X1, X2) = (x1, unknown),
whereas the event B is that (X1, X2) = (x1, x2). So B is a proper subset of A,
B ⊂ A. Before the realization of X2 is known, E(Y |B) is a stochastic variable.
Then (25.60) can be written:

E(E(Y |B) |A) = E(Y |A) . (25.62)

So, in terms of the subsets A and B of the outcome space for the conditioning
variables, the law of iterated expectations says that the expectation, conditional
on A, of the expectation of Y, conditional on B, is the same as the expectation,
conditional on A, of Y.
The analogy with (25.61) with t = 2 is that given A, only X1 = x1 is known,

which corresponds to the information set It−1, whereas given B, both X1 = x1

and X2 = x2 are known, corresponding to the information set It. But now we
face a perplexing feature. The inclusion relationship between B and A in (25.62)
is opposite of that between the “corresponding” information sets, It and It−1,
in (25.61), that is, B ⊆ A whereas It ⊇ It−1. Although not really visible in
the notation to the right of the separator “|”, the inclusion relationship between
subsets of the outcome space for the conditioning variables is thus the opposite
of that between the corresponding information sets.
The resolution of the seeming paradox is as follows. If what appears to the

right of “|”is subsets, like A and B, of the outcome space for the conditioning
variables, here X, then, in spite of B ⊂ A looking as if B were less informative
than A, the concept of information implies the opposite. Indeed, B is more
informative than A in the sense that B rules out a larger set of ex ante outcome
possibilities for X1 and X2 than A. Actually, B rules out the complement of B,
Bc, and it is Bc that is larger than the complement of A, Ac, hence making B
more informative than A. In B more of the uncertainty has been eliminated. This
is in line with It ⊇ It−1.
What we learn from this is that the standard notation is tricky. It does not

clearly discriminate between the case where to the right of the separator “|”
appears subsets of the outcome space for the conditioning variables and the case
where the corresponding information sets appear.

27In particular in the subsequent chapters does this principle play a key role.
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B. Properties of the model-consistent forecast
As in the text of Section 25.2.2, let et denote the model-consistent forecast error
Yt − E(Yt|It−1). Then, if St−1 is a subset of the information set It−1,

E(et |St−1) = E(Yt − E(Yt |It−1) |St−1) = E(Yt |St−1)− E(E(Yt |It−1) |St−1)

= E(Yt |St−1)− E(Yt |St−1) = 0, (25.63)

where we have used that E(E(Yt |It−1) |St−1) = E(Yt |St−1) , by the law of iterated
expectations, cf. Appendix A. With St−1 = It−1 we have, as a special case,

E(et |It−1) = 0, as well as (25.64)

E(et) = E(Yt − E(Yt |It−1)) = E(Yt)− E(E(Yt |It−1)) = 0,

in view of the law of iterated expectations. This proves property (a) in Section
25.2.2.
As to property (b), for i = 1, 2, ..., let st−i be an arbitrary variable value

belonging to the information It−i. Then, E(etst−i |It−i) = st−iE(et |It−i) = 0, by
(25.63) with St−1 = It−i (since It−i is contained in It−1). Thus, by the law of
iterated expectations,

E(etst−i) = E (E(etst−i |It−i)) = E(0) = 0 for i = 1, 2, .... (25.65)

This result is known as the orthogonality property of model-consistent expecta-
tions (two stochastic variables Z and V are said to be orthogonal if E(ZV ) = 0).
From the general formula for the (unconditional) covariance follows

Cov(etst−i) = E(etst−i)− E(et)E(st−i) = 0− 0 = 0, for i = 1, 2, ...,

by (25.64) and (25.65). In particular, with st−i = et−i, we get Cov(etet−i) = 0.
This proves that model-consistent forecast errors exhibit lack of serial correlation.

C. The log-linear specification
In many macroeconomic models with rational expectations the equations are
specified as log-linear, that is, as being linear in the logarithms of the variables.
If Y, X, and Z are the original positive stochastic variables, defining y = lnY ,
x = lnX, and z = lnZ, a log-linear relationship between Y, X, and Z is a relation
of the form

y = α + βx+ γz, (25.66)

where α, β, and γ are constants. The motivation for assuming log-linearity can
be:
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(a) Linearity is convenient because of the simple rule for the expected value of
a sum: E(α + βx + γz) = α + βE(x) + γE(z), where E is the expecta-
tion operator. Indeed, for a non-linear function, f(x, z), we generally have
E(f(x, z)) 6= f(E(x), E(z)).

(b) Linearity in logs may often seem a more realistic assumption than linearity
in anything else.

(c) In time series models a logarithmic transformation of the variables followed
by formation of first differences can be the road to eliminating a trend in
the mean and variance.

As to point (b) we state the following:

CLAIM To assume linearity in logs is equivalent to assuming constant elasticities.

Proof Let the positive variables Y , X and Z be related by Y = F (X, Z), where
F is a continuous function with continuous partial derivatives. Taking the differ-
ential on both sides of ln Y = lnF (X,Z), we get

d lnY =
1

F (X,Z)

∂F

∂X
dX +

1

F (X,Z)

∂F

∂Z
dZ (25.67)

=
X

Y

∂Y

∂X

dX

X
+
Z

Y

∂Y

∂Z

dZ

Z
= ηY X

dX

X
+ ηY Z

dZ

Z
= ηY Xd lnX + ηY Zd lnZ,

where ηY X and ηY Z are the partial elasticities of Y w.r.t. X and Z, respectively.
Thus, defining y = lnY , x = lnX, and z = lnZ, gives

dy = ηY Xdx+ ηY Zdz. (25.68)

Assuming constant elasticities amounts to putting ηY X = β and ηY Z = γ, where
β and γ are constants. Then we can write (25.68) as dy = βdx + γdz. By
integration, we get (25.66) where α is now an arbitrary integration constant.
Hereby we have shown that constant elasticities imply a log-linear relationship
between the variables.
Now, let us instead start by assuming the log-linear relationship (25.66).

Then,
∂y

∂x
= β,

∂y

∂z
= γ. (25.69)

But (25.66), together with the definitions of y, x and z, implies that

Y = eα+βx+γz = eα+β lnX+γ lnZ ,

from which follows that

∂Y

∂X
= Y β

1

X
so that ηY X ≡

X

Y

∂Y

∂X
= β,
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and
∂Y

∂Z
= Y γ

1

Z
so that ηY Z ≡

Z

Y

∂Y

∂Z
= γ.

That is, the partial elasticities are constant. �
So, when the variables are in logs, then the coeffi cients in the linear expres-

sions are the elasticities. Note, however, that the interest rate is normally an
exception. It is often regarded as more realistic to let the interest rate itself
and not its logarithm enter linearly. Then the associated coeffi cient indicates the
semi-elasticity with respect to the interest rate.

D. Solving the Taylor model
With money supply following a random walk, the Taylor model can be reduced
to a stochastic difference equation in only one endogenous variable, the contract
wage xt. To accomplish that, we eliminate the other endogenous variables, y and
p, and the expected values of these. In (25.48), as it reads and shifted one period
ahead, we substitute (25.49) and take expected values on both sides, using the
random walk hypothesis, (25.52),

Et−1yt = mt−1 −
1

2
xt −

1

2
xt−1, and

Et−1yt+1 = mt−1 −
1

2
Et−1xt+1 −

1

2
xt,

where we have applied that Et−1xt = xt (remember, xt is set at the end of period
t − 1 and thus belongs to the information It−1). Substituting these expressions
into (25.51), we get

xt =
1

2
(xt−1 + Et−1xt+1) + α

[
2mt−1 − xt −

1

2
xt−1 −

1

2
Et−1xt+1

]
=

1

2
(1− α)(xt−1 + Et−1xt+1) + α [2mt−1 − xt] . (25.70)

Reordering yields

xt =
1− α

2(1 + α)
(xt−1 + Et−1xt+1) +

2α

1 + α
mt−1

≡ γ

2
(xt−1 + Et−1xt+1) + (1− γ)mt−1, with γ ≡

1− α
1 + α

, (25.71)

where 0 < γ < 1.
This is a linear second-order stochastic difference equation. Applying the

method of undetermined coeffi cients, an informed conjecture is that any (non-
explosive) solution is a linear function (with constant coeffi cients) of the lagged
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values of x and m. Hence, we guess the solution takes the form:

xt = λxt−1 + βmt−1, (25.72)

where the coeffi cients λ and β are to be determined. We forward this expression
one period and take period t− 1 expectations (again using that Et−1xt = xt and
Et−1mt = mt−1):

Et−1xt+1 = λEt−1xt + βEt−1mt = λxt + βmt−1.

Then, we substitute into (25.71) to get

xt =
γ

2
(xt−1 + λxt + βmt−1) + (1− γ)mt−1.

By ordering,

xt =
γ

2− γλxt−1 +
γβ + 2(1− γ)

2− γλ mt−1.

Comparing with (25.72), we see that for our conjecture to be correct, we must
have

γ

2− γλ = λ and (25.73)

γβ + 2(1− γ)

2− γλ = β. (25.74)

Equation (25.73) implies the quadratic equation

γλ2 − 2λ+ γ = 0, (25.75)

which has the solution

λ =
1

(+)

−
√

1− γ2

γ
=

1 + α− 2
√
α

1− α =
(1−

√
α)2

1− (
√
α)2

=
(1−

√
α)2

(1 +
√
α)(1−

√
α)

=
1−
√
α

1 +
√
α
.

where we have used that γ ≡ (1 − α)/(1 + α) ∈ (0, 1) so that 1 − γ2 = 4α/(1 +
α)2. We have excluded the other root, which is above 1 and therefore implies
an explosive solution. Next we find the coeffi cient β. From (25.74) we have
γβ + 2(1− γ) = (2− γλ)β = γβ/λ, by (25.73). Ordering yields

γλβ + 2λ− 2γλ = γβ ⇒
γλβ + γλ2 + γ − 2γλ = γβ (by (25.75))
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We now divide through by γ and get λβ + λ2 + 1− 2λ = β ⇒

(1− λ)β = (1− λ)2 ⇒
β = 1− λ.

With these values of λ and β, by way of construction, (25.72) is a solution of
(25.71), thus confirming (25.53) in Section 19.5. Then, (25.54) and (25.55) follow
by (25.49) and (25.48), respectively. If wage setters believe the economy moves
according to (25.53), (25.54), and (25.55), the aggregate effects of their wage
setting behavior will be such that their beliefs are confirmed.

25.10 Exercises

25.1. Suppose that Yt = Xt + et, where {Xt} is a random walk and et is white
noise.

a) What is the rational expectation of Yt conditional on all relevant information
up to and including period t− 1?

b) Compare with the subjective expectation of Yt based on the static expec-
tations formula (the adaptive expectations formula with adjustment speed
equal to one).

c) Compare the rational expectation of Xt with the static expectation as seen
from period t− 1

25.2. Consider a simple Keynesian model of a closed economy with constant
wages and prices (behind the scene), abundant capacity, and output determined
by demand:

Yt = Dt = Ct + Ī +Gt, (1)

Ct = α + βY e
t−1,t, α > 0, 0 < β < 1, (2)

Gt = (1− ρ)Ḡ+ ρGt−1 + εt, Ḡ > 0, 0 < ρ < 1, (3)

where the endogenous variables are Yt = output (= income), Dt = aggregate
demand, Ct = consumption, and Y e

t−1,t = expected output (income) in period t
as seen from period t − 1, while Gt, which stands for government spending on
goods and services, is considered exogenous as is εt, which is white noise. Finally,
investment, Ī, and the parameters α, β, ρ, and Ḡ are given positive constants.
Suppose expectations are “static”in the sense that expected income in period

t equals actual income in the previous period.
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a) Solve for Yt.

b) Find the income multiplier (partial derivative of Yt) with respect to a change
in Gt−1 and εt, respectively.

Suppose instead that expectations are rational.

c) Explain what this means.

d) Solve for Yt.

e) Find the income multiplier with respect to a change in Gt−1 and εt, respec-
tively.

f) Compare the result under e) with that under b). Comment.
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