
Chapter 3

The basic OLG model: Diamond

There exists two main analytical frameworks for analyzing the basic intertemporal
choice, consumption versus saving, and the dynamic implications for the economy
as a whole of this choice: the overlapping-generations (OLG) approach and the
representative agent approach. In the first type of models the focus is on (a)
the interaction between different generations alive at the same time, and (b) the
never-ending entrance of new generations and thereby new decision makers. In
contrast, the second type of models views the household sector as consisting of
a finite number of infinitely-lived dynasties all alike.1 This approach, also called
the Ramsey approach, will be described in Chapter 10.

The OLG approach is the topic of the present and the next chapter. The
life-cycle aspect of human behavior is at the center of attention. During lifetime
one’s educational level, working experience, working capacity, income, and needs
change and this is reflected in the individual labor supply and saving behavior.
Different OLG models focusing on the aggregate implications of the behavior of
coexisting individuals at different stages in their life have shown their usefulness
for analysis of public debt, taxation of capital income, financing of social security
(pensions), design of educational systems, non-neutrality of money, the possibility
of speculative bubbles, etc.

We will here present what is considered the basic macroeconomic OLG model,
put forward by the American economist and Nobel Prize laureate Peter A. Dia-
mond (1940-).2 Saving and dissaving are core elements in life-cycle behavior and
hence also in Diamond’s model. Before going into the specifics of the model, we
will give a brief outline of possible motives for saving.

1The interpretation is that the parents take the utility of their descendants fully into account
by bequeathing them and so an intergenerational chain arises.

2Diamond (1965).
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68 CHAPTER 3. THE BASIC OLG MODEL: DIAMOND

3.1 General motives for saving

Before going into the specifics of Diamond’s model, let us briefly consider what
may in general motivate people to save:

(a) The consumption-smoothing motive for saving. Individuals go through a life
cycle where earnings typically have a hump-shaped time pattern; by saving
and dissaving the individual then attempts to obtain the desired smoothing
of consumption across lifetime. This is the essence of the life-cycle saving
hypothesis put forward by Nobel laureate Franco Modigliani (1918-2003)
and associates in the 1950s. This hypothesis states that consumers plan
their saving and dissaving in accordance with anticipated variations in in-
come and needs over lifetime. Because needs vary less over lifetime than
income, the time profile of saving tends to be hump-shaped with some dis-
saving early in life (for instance if studying), positive saving during the
years of peak earnings and then dissaving after retirement.

(b) The precautionary motive for saving. Income as well as needs may vary
due to conditions of uncertainty: sudden unemployment, illness, or other
kinds of bad luck. By saving, the individual can obtain a buffer against
such unwelcome events.

Horioka and Watanabe (1997) find that empirically, the saving motives (a)
and (b) are of dominant importance (Japanese data). Yet other motives include:

(c) Saving enables the purchase of durable consumption goods and owner-occupied
housing as well as repayment of debt.

(d) Saving may be motivated by the desire to leave bequests to heirs.

(e) Saving may simply be motivated by the fact that financial wealth may lead
to social prestige and economic as well as political power.

Diamond’s OLG model aims at simplicity and concentrates on motive (a). In
fact only one aspect of motive (a) is considered, namely the saving for retirement.
People live for two periods only, as “young”they work full-time and as “old”they
retire and live by their savings.
Now to the details.

c© Groth, Lecture notes in macroeconomics, (mimeo) 2017.



3.2. The model framework 69

3.2 The model framework

The flow of time is divided into successive periods of equal length, taken as the
time unit. Given the two-period lifetime of (adult) individuals, the period length
is understood to be very long, around, say, 30 years. The main assumptions are:

1. The number of young people in period t, denoted Lt, changes over time
according to Lt = L0(1 + n)t, t = 0, 1, 2, ..., where n is a constant, n > −1.
Indivisibility is ignored and so Lt is just considered a positive real number.

2. Only the young work. Each young supplies one unit of labor inelastically.
The division of available time between work and leisure is thereby considered
exogenous. People have no bequest motive.

3. Output is homogeneous and can be used for consumption as well as invest-
ment in physical capital. Physical capital is the only non-human asset in
the economy; it is owned by the old and rented out to the firms. Output is
the numeraire (unit of account) used in trading. Cash (physical means of
payment) is ignored.3

4. The economy is closed (no foreign trade).

5. Firms’technology has constant returns to scale.

6. In each period three markets are open, a market for output, a market for
labor services, and a market for capital services. Perfect competition rules
in all markets. Uncertainty is absent; when a decision is made, its conse-
quences are known.

7. Agents have perfect foresight.

Assumption 7 entails the following. First, the agents are assumed to have
“rational expectations”or, with a better name, “model-consistent expectations”.
This means that forecasts made by the agents coincide with the forecasts that
can be calculated on the basis of the model. Second, as there are no stochastic
elements in the model (no uncertainty), the forecasts are point estimates rather
than probabilistic forecasts. Thereby the model-consistent expectations take the
extreme form of perfect foresight : the agents agree in their expectations about the
future evolution of the economy and ex post this future evolution fully coincides
with what was expected.

3Wemay imagine that agents have safe electronic accounts in a fictional central bank allowing
costless transfers between accounts.
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70 CHAPTER 3. THE BASIC OLG MODEL: DIAMOND

Figure 3.1: The two-period model’s time structure.

Of course, this is an unrealistic assumption. The motivation is to simplify in
a first approach. The results that emerge will be the outcome of economic mech-
anisms in isolation from expectational errors. In this sense the model constitutes
a “pure”case (benchmark case).
The time structure of the model is illustrated in Fig. 3.1. In every period

two generations are alive and interact with each other as indicated by the arrows.
The young supply labor and earn a labor income. They consume an endogenous
fraction of this income and save the remainder for retirement. Thereby the young
offset the dissaving by the old. Possibly, aggregate net saving in the economy will
be positive. At the end of the first period the savings by the young are converted
into direct ownership of capital goods. In the next period the now old owners of
the capital goods rent them out to the firms. We may imagine that the firms are
owned by the old, but this ownership is not visible in the equilibrium allocation
because pure profits will be nil due to the combination of perfect competition and
constant returns to scale.
Let the consumption good (= the output good) be the numeraire, i.e., in any

period the consumption good has the price 1. Let r̂t denote the rental rate for
capital in period t; that is, r̂t is the real price a firm has to pay at the end of
period t for the right to use one unit of someone else’s physical capital through
period t. So the owner of Kt units of physical capital receives a

real (net) rate of return on capital =
r̂tKt − δKt

Kt

= r̂t − δ, (3.1)

where δ is the rate of physical capital depreciation which is assumed constant,
0 ≤ δ ≤ 1.
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Suppose there is also a market for loans. Assume you have lent out one unit
of output from the end of period t− 1 to the end of period t. If the real interest
rate in the loan market is rt, then, at the end of period t you should get back
1 + rt units of output. In the absence of uncertainty, equilibrium requires that
capital and loans give the same rate of return,

r̂t − δ = rt. (3.2)

This no-arbitrage condition indicates how the rental rate for capital and the more
everyday concept, the interest rate, would be related in an equilibrium where
both the market for capital services and a loan market were active. We shall
see, however, that in this model no loan market will be active in an equilibrium.
Nevertheless we will follow the tradition and call the right-hand side of (3.2) the
interest rate.

Table 3.1 provides an overview of the notation. As to our timing convention,
notice that any stock variable dated t indicates the amount held at the beginning
of period t. That is, the capital stock accumulated by the end of period t − 1
and available for production in period t is denoted Kt. We therefore write Kt

= (1 − δ)Kt−1 + It−1 and Yt = F (Kt, Lt), where F is an aggregate production
function. In this context it is useful to think of “period t”as running from date
t to right before date t + 1. So period t is the half-open time interval [t, t+ 1)
on the continuous-time axis. Whereas production and consumption take place
in period t, we imagine that all decisions are made at discrete points in time
t = 0, 1, 2, ... (“dates”). We further imagine that receipts for work and lending as
well as payment for the consumption in period t occur at the end of the period.
These timing conventions are common in discrete-time growth and business cycle
theory;4 they are convenient because they make switching between discrete and
continuous time analysis fairly easy.

Table 3.1. List of main variable symbols

4In contrast, in the accounting and finance literature, typically Kt would denote the end-
of-period-t stock that begins to yield its services next period.

c© Groth, Lecture notes in macroeconomics, (mimeo) 2017.



72 CHAPTER 3. THE BASIC OLG MODEL: DIAMOND

Symbol Meaning
Lt the number of young people in period t
n generation growth rate
Kt aggregate capital available in period t
c1t consumption as young in period t
c2t consumption as old in period t
wt real wage in period t
rt real interest rate (from end of per. t− 1 to end of per. t)
ρ rate of time preference (impatience)
θ elasticity of marginal utility
st saving of each young in period t
Yt aggregate output in period t

Ct = c1tLt + c2tLt−1 aggregate consumption in period t
St = Yt − Ct aggregate gross saving in period t
δ ∈ [0, 1] capital depreciation rate

Kt+1 −Kt = It − δKt aggregate net investment in period t

3.3 The saving by the young

Suppose the preferences of the young can be represented by a lifetime utility
function as specified in (3.3). Given wt and rt+1, the decision problem of the
young in period t then is:

max
c1t,c2t+1

U(c1t, c2t+1) = u(c1t) + (1 + ρ)−1u(c2t+1) s.t. (3.3)

c1t + st = wt · 1 (wt > 0), (3.4)

c2t+1 = (1 + rt+1)st (rt+1 > −1), (3.5)

c1t ≥ 0, c2t+1 ≥ 0. (3.6)

The interpretation of the variables is given in Table 3.1 above. We may think of
the “young”as a household consisting of one adult and 1 +n children whose con-
sumption is included in c1t. Note that “utility”appears at two levels. There is a
lifetime utility function, U, and a period utility function, u.5 The latter is assumed
to be the same in both periods of life (this has little effect on the qualitative re-
sults and simplifies the exposition). The period utility function is assumed twice
continuously differentiable with u′ > 0 and u′′ < 0 (positive, but diminishing
marginal utility of consumption). Many popular specifications of u, e.g., u(c)
= ln c, have the property that limc→0 u(c) = −∞. Then we define u(0) = −∞.

5Other names for these two functions are the intertemporal utility function and the subutility
function, respectively.

c© Groth, Lecture notes in macroeconomics, (mimeo) 2017.



3.3. The saving by the young 73

The interpretation is that c = 0 is something the individual will avoid whenever
economically possible.
The parameter ρ is called the rate of time preference. It acts as a utility

discount rate, whereas (1 + ρ)−1 is a utility discount factor, cf. Box 3.1. By
definition, ρ > −1, but ρ > 0 is usually assumed. We interpret ρ as reflecting the
degree of impatience with respect to the “arrival”of utility. When preferences can
be represented in this additive way, they are called time-separable. In principle,
as seen from period t the interest rate appearing in (3.5) should be interpreted as
an expected real interest rate. But as long as we assume perfect foresight, there is
no need that our notation distinguishes between actual and expected magnitudes.

Box 3.1. Discount factors and discount rates

A discount factor is a factor by which future benefits or costs, measured
in some unit of account, are converted into present equivalents. By a discount
rate is meant an interest rate applied in the construction of a discount factor.
The higher the discount rate the lower the discount factor.

One should bear in mind that a discount rate depends on what is to be dis-
counted. In (3.3) the unit of account is “utility”and ρ acts as a utility discount rate.
In (3.7) the unit of account is the consumption good and rt+1 acts as a consump-
tion discount rate. If people also work as old, the right-hand side of (3.7) would
read wt + (1 + rt+1)−1wt+1 and thus rt+1 would act as an earnings discount rate.
This will be the same as the consumption discount rate if we think of real income
measured in consumption units. But if we think of nominal income, that is, income
measured in monetary units, there would be a nominal earnings discount rate,
namely the nominal interest rate, which in an economy with inflation will exceed
the consumption discount rate. Unfortunately, confusion of different discount rates
is not rare.

As the price of the consumption good is 1, it is not visible. The reason that
the right-hand side of (3.4) is written wt · 1 is that the inelastic labor supply of
the young is normalized to one unit of work.
In (3.5) the interest rate rt+1 acts as a (net) rate of return on saving.6 An

interest rate may also be seen as a discount rate relating to consumption over time.

6While st in (3.4) appears as a flow (non-consumed income), in (3.5) st appears as a stock
(the accumulated financial wealth at the end of period t). This notation is legitimate because
the magnitude of the two is the same when the time unit is the same as the period length.
Indeed, the interpretation of st in (3.5) st = st ·∆t = st · 1 units of account.
In real life the gross payoff of individual saving is sometimes nil (for instance if invested

in a project that completely fails). But we ignore this possibility and so the discount factor
1/(1 + rt+1) is always well-defined.
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74 CHAPTER 3. THE BASIC OLG MODEL: DIAMOND

Indeed, by isolating st in (3.5) and substituting into (3.4), we may consolidate
the two period budget constraints of the individual into one budget constraint,

c1t +
1

1 + rt+1

c2t+1 = wt. (3.7)

This is an intertemporal budget constraint and says that the present value from
the end of period t, of the planned consumption sequence, must equal the labor
income received at the end of period t. The interest rate appears as the discount
rate entering the discount factor converting future amounts of consumption into
present equivalents. That is why addition on the left-hand side of equation (3.7)
makes sense.

Solving the saving problem

To avoid the possibility of corner solutions, we impose the No Fast Assumption

lim
c→0

u′(c) =∞. (A1)

In view of the sizeable period length in the model, this is definitely plausible.
Inserting the two budget constraints into the objective function in (3.3), we get

U(c1t, c2t+1) = u(wt−st) +(1+ρ)−1u((1+rt+1)st) ≡ Ũt(st), a function of only one
decision variable, st. According to the non-negativity constraint on consumption
in both periods, (3.6), st must satisfy 0 ≤ st ≤ wt. Maximizing with respect to
st gives the first-order condition

dŨt
dst

= −u′(wt − st) + (1 + ρ)−1u′((1 + rt+1)st)(1 + rt+1) = 0. (FOC)

The second derivative of Ũt is

d2Ũt
ds2

t

= u′′(wt − st) + (1 + ρ)−1u′′((1 + rt+1)st)(1 + rt+1)2 < 0. (SOC)

Hence there can at most be one st satisfying (FOC). Moreover, for a positive
wage income there always exists such an st. Indeed:

LEMMA 1 Let wt > 0 and suppose the No Fast Assumption (A1) applies. Then
the saving problem of the young has a unique solution st = s(wt, rt+1). The
solution is interior, i.e., 0 < st < wt, and st satisfies (FOC).

Proof. Assume (A1). For any s ∈ (0, wt), dŨt(s)/ds > −∞. Now consider the
endpoints s = 0 and s = wt. By (FOC) and (A1),

lim
s→0

dŨt
ds

= −u′(wt) + (1 + ρ)−1(1 + rt+1) lim
s→0

u′((1 + rt+1)s) =∞,

lim
s→w

dŨt
ds

= − lim
s→wt

u′(wt − s) + (1 + ρ)−1(1 + rt+1)u′((1 + rt+1)wt) = −∞.
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3.3. The saving by the young 75

By continuity of dŨt/ds follows that there exists an st ∈ (0, wt) such that at
s = st, dŨt/ds = 0. This is an application of the intermediate value theorem.
It further follows that (FOC) holds for this st. By (SOC), st is unique and can
therefore be written as an implicit function, s(wt, rt+1), of the exogenous variables
in the problem, wt and rt+1. �
Inserting the solution for st into the two period budget constraints, (3.4) and

(3.5), we immediately get the optimal consumption levels, c1t and c2t+1.
The simple optimization method we have used here is called the substitution

method : by substitution of the constraints into the objective function an uncon-
strained maximization problem is obtained.7

The consumption Euler equation

The first-order condition (FOC) can conveniently be written

u′(c1t) = (1 + ρ)−1u′(c2t+1)(1 + rt+1). (3.8)

This is known as an Euler equation, after the Swiss mathematician L. Euler (1707-
1783) who was the first to study dynamic optimization problems. In the present
context the condition is called a consumption Euler equation.
Intuitively, in an optimal plan the marginal utility cost of saving must equal

the marginal utility benefit obtained by saving. The marginal utility cost of
saving is the opportunity cost (in terms of current utility) of saving one more
unit of account in the current period (approximately). This one unit of account
is transferred to the next period with interest so as to result in 1 + rt+1 units of
account in that period. An optimal plan requires that the utility cost equals the
utility benefit of instead having 1 + rt+1 units of account in the next period. And
this utility benefit is the discounted value of the extra utility that can be obtained
next period through the increase in consumption by 1+rt+1 units compared with
the situation without the saving of the marginal unit.
It may seem odd to attempt an intuitive interpretation this way, that is, in

terms of “utility units”. The utility concept is just a convenient mathematical de-
vice used to represent the assumed preferences. Our interpretation is only meant
as an as-if interpretation: as if utility were something concrete. An interpretation
in terms of concrete measurable quantities goes like this. We rewrite (3.8) as

u′(c1t)

(1 + ρ)−1u′(c2t+1)
= 1 + rt+1. (3.9)

The left-hand side measures the marginal rate of substitution, MRS, of consump-
tion as old for consumption as young, evaluated at the point (c1, c2). MRS is

7Alternatively, one could use the Lagrange method.
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defined as the increase in period-(t + 1) consumption needed to compensate for
a marginal decrease in period-t consumption. That is,

MRSc2c1 = −dc2t+1

dc1t

|U=Ū =
u′(c1t)

(1 + ρ)−1u′(c2t+1)
, (3.10)

where we have used implicit differentiation in U(c1t, c2t+1) = Ū . The right-hand
side of (3.9) indicates the marginal rate of transformation, MRT, which is the
rate at which saving allows an agent to shift consumption from period t to period
t+ 1 via the market. In an optimal plan MRS must equal MRT.
Even though interpretations in terms of “MRS equals MRT”are more satis-

factory, we will often use “as if” interpretations like the one before. They are a
convenient short-hand for the more elaborate interpretation.
By the Euler equation (3.8),

ρ Q rt+1 implies u′(c1t) R u′(c2t+1), i.e., c1t Q c2t+1,

respectively, in the optimal plan (because u′′ < 0). That is, absent uncertainty
the optimal plan entails either increasing, constant or decreasing consumption
over time according to whether the rate of time preference is below, equal to, or
above the market interest rate, respectively. For example, when ρ < rt+1, the
plan is to start with relatively low consumption in order to take advantage of the
relatively high rate of return on saving.
Note that there are infinitely many pairs (c1t, c2t+1) satisfying the Euler equa-

tion (3.8). Only when requiring the two period budget constraints, (3.4) and
(3.5), satisfied, do we get the unique solution st and thereby the unique solution
for c1t and c2t+1.

Properties of the saving function

The first-order condition (FOC), where the two budget constraints are inserted,
determines the saving as an implicit function of the market prices faced by the
young decision maker, i.e., st = s(wt, rt+1).
The partial derivatives of this function can be found by applying the implicit

function theorem on (FOC). A practical procedure is the following. We first
interpret dŨt/dst in (FOC) as a function, f, of the variables involved, st, wt, and
rt+1, i.e.,

dŨt
dst

= −u′(wt − st) + (1 + ρ)−1u′((1 + rt+1)st)(1 + rt+1) ≡ f(st, wt, rt+1).

By (FOC),
f(st, wt, rt+1) = 0. (*)
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The implicit function theorem (see Math tools) now implies that if ∂f/∂st 6= 0,
then the equation (*) defines st as an implicit function of wt and rt+1, st =
s(wt, rt+1), with continuous partial derivatives

∂st
∂wt

= −∂f/∂wt
D

and
∂st
∂rt+1

= −∂f/∂rt+1

D
,

where D ≡ ∂f/∂st ≡ d2Ũt/ds
2
t < 0 by (SOC). We find

∂f

∂wt
= −u′′(c1t) > 0,

∂f

∂rt+1

= (1 + ρ)−1 [u′(c2t+1) + u′′(c2t+1)st(1 + rt+1)] .

Consequently, the partial derivatives of the saving function st = s(wt, rt+1) are

sw ≡ ∂st
∂wt

=
u′′(c1t)

D
> 0 (but < 1), (3.11)

sr ≡
∂st
∂rt+1

= −(1 + ρ)−1[u′(c2t+1) + u′′(c2t+1)c2t+1]

D
, (3.12)

where in the last expression we have used (3.5).8

The role of wt for saving is straightforward. Indeed, (3.11) shows that 0 <
sw < 1, which implies that 0 < ∂c1t/∂wt < 1 and 0 < ∂c2t/∂wt < 1 + rt+1. The
positive sign of these two derivatives indicate that consumption in each of the
periods is a normal good (which certainly is plausible since we are talking about
the total consumption by the individual in each period).9

The sign of sr in (3.12) is seen to be ambiguous. This ambiguity regarding
the role of rt+1 for saving reflects that the Slutsky substitution and income effects
on consumption as young of a rise in the interest rate are of opposite signs. To

8A perhaps more straightforward procedure, not requiring full memory of the exact content
of the implicit function theorem, is based on “implicit differentiation”. First, keeping rt+1 fixed,
one calculates the total derivative w.r.t. wt on both sides of (FOC). Next, keeping wt fixed,
one calculates the total derivative with respect to rt+1 on both sides of (FOC).
Yet another possible procedure is based on “total differentiation” in terms of differentials.

Taking the differential w.r.t. st, wt, and rt+1 on both sides of (FOC) gives −u′′(c1t)(dwt−dst)+
+(1+ρ)−1·{u′′(c2t+1) [(1 + rt+1)dst + stdrt+1] (1 + rt+1) + u′(c2t+1)drt+1} = 0. By rearranging
we find the ratios dst/dwt and dst/drt+1, which will indicate the value of the partial derivatives
(3.11) and (3.12).

9Recall, a consumption good is called normal for given consumer preferences if the demand
for it is an increasing function of the consumer’s “endowment”, sometimes called the “initial
resources”or “initial wealth”. Since in this model the consumer is born without any financial
wealth, the consumer’s “endowment”evaluated at the end of period t is simply the value of the
labor earnings, i.e., wt · 1.
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understand this, it is useful to keep the intertemporal budget constraint, (3.7),
in mind. The substitution effect on c1t is negative because the higher interest
rate makes future consumption cheaper in terms of current consumption. And
the income effect on c1t is positive because with a higher interest rate, a given
budget can buy more consumption in both periods, cf. (3.7).10 Generally there
would be a third Slutsky effect, a wealth effect of a rise in the interest rate. But
such an effect is ruled out in this model. This is because there is no labor income
in the second period of life. Indeed, as indicated by (3.7), the “initial resources”
of a member of generation t, evaluated at the end of period t, is simply wt,
which is independent of rt+1. (In contrast, with labor income, say wt+1, in the
second period, the “initial resources”would be wt +wt+1/(1 + rt+1). This present
discounted value of life-time earnings clearly depends negatively on rt+1, and so
a negative wealth effect on c1t of a rise in the interest rate would arise.)
Rewriting (3.12) gives

sr =
(1 + ρ)−1u′(c2t+1)[θ(c2t+1)− 1]

D
T 0 for θ(c2t+1) S 1, (3.13)

respectively, where θ(c2t+1) is the absolute elasticity of marginal utility of con-
sumption in the second period, that is,

θ(c2t+1) ≡ − c2t+1

u′(c2t+1)
u′′(c2t+1) ≈ −∆u′(c2t+1)/u′(c2t+1)

∆c2t+1/c2t+1

> 0,

where the approximation builds upon u′′(c2t+1) ≈ ∆u′(c2t+1)/∆c2t+1. The in-
equalities in (3.13) show that when the absolute elasticity of marginal utility is
below one, then the substitution effect on consumption as young of an increase in
the interest rate dominates the income effect and saving increases. The opposite
is true if the elasticity of marginal utility is above one.
The reason that θ(c2t+1) has this role is that θ(c2t+1) reflects how sensitive

marginal utility of c2t+1 is to a rise in c2t+1. To see the intuition, consider the
case where consumption as young − and thus saving − happens to be unaffected
by an increase in the interest rate. Even in this case, consumption as old, c2t+1, is
automatically increased (in view of the higher income as old through the higher
rate of return on the unchanged saving); and the marginal utility of c2t+1 is thus
decreased in response to a higher interest rate. The point is that this outcome can
only be optimal if the elasticity of marginal utility of c2t+1 is of “medium”size.
A very high absolute elasticity of marginal utility of c2t+1 would result in a sharp
decline in marginal utility − so sharp that not much would be lost by dampening
the automatic rise in c2t+1 and instead increase c1t, thus reducing saving. On the

10Economists’jargon for substitution effect and income effect is sometimes carrot effect and
hammock effect, respectively.
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3.3. The saving by the young 79

other hand, a very low elasticity of marginal utility of c2t+1 would result in only a
small decline in marginal utility − so small that it is beneficial to take advantage
of the higher rate of return and save more, thus accepting a first-period utility
loss brought about by a lower c1t.
We see from (3.13) that an absolute elasticity of marginal utility equal to

exactly one is the case leading to the interest rate being neutral vis-a-vis the
saving of the young. What is the intuition behind this? Neutrality vis-a-vis
the saving of the young of a rise in the interest rate requires that c1t remains
unchanged since c1t = wt − st. In turn this requires that the marginal utility,
u′(c2t+1), on the right-hand side of (3.8) falls by the same percentage as 1 + rt+1

rises. At the same time, the budget (3.5) as old tells us that c2t+1 has to rise
by the same percentage as 1 + rt+1 if st remains unchanged. Altogether we thus
need that u′(c2t+1) falls by the same percentage as c2t+1 rises. But this requires
that the absolute elasticity of u′(c2t+1) with respect to c2t+1 is exactly one.
The elasticity of marginal utility, also called the marginal utility flexibility,

will generally depend on the level of consumption, as implicit in the notation
θ(c2t+1). There exists a popular special case, however, where the elasticity of
marginal utility is constant.

EXAMPLE 1 The CRRA utility function. If we impose the requirement that
u(c) should have an absolute elasticity of marginal utility of consumption equal
to a constant θ > 0, then one can show (see Appendix A) that the utility function
must, up to a positive linear transformation, be of the CRRA form:

u(c) =

{
c1−θ−1

1−θ , when θ 6= 1,

ln c, when θ = 1.
, (3.14)

It may seem odd that when θ 6= 1, we subtract the constant 1/(1 − θ) from
c1−θ/(1 − θ). Adding or subtracting a constant from a utility function does not
affect the marginal rate of substitution and consequently not behavior. So we
could do without this constant, but its occurrence in (3.14) has two formal ad-
vantages. One is that in contrast to c1−θ/(1−θ), the expression (c1−θ−1)/(1−θ)
can be interpreted as valid even for θ = 1, namely as identical to ln c. This is
because (c1−θ − 1)/(1− θ) → ln c for θ → 1 (by L’Hôpital’s rule for “0/0”). An-
other advantage is that the kinship between the different members, indexed by
θ, of the “CRRA family”becomes more transparent. Indeed, by defining u(c) as
in (3.14), all graphs of u(c) will go through the same point as the log function,
namely (1, 0), cf. Fig. 3.2. The equation (3.14) thus displays the CRRA utility
function in normalized form.
The higher is θ, the more “curvature”does the corresponding curve in Fig. 3.2

have. In turn, more “curvature”reflects a higher incentive to smooth consumption
across time. The reason is that a large curvature means that the marginal utility
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Figure 3.2: The CRRA family of utility functions.

will drop sharply if consumption rises and will increase sharply if consumption
falls. Consequently, not much utility is lost by lowering consumption when it
is relatively high but there is a lot of utility to be gained by raising it when it
is relatively low. So the curvature θ indicates the degree of aversion towards
variation in consumption. Or we may say that θ indicates the strength of the
preference for consumption smoothing.11 �

Suppose the period utility is of CRRA form as given in (3.14). (FOC) then

11The name CRRA is a shorthand for Constant Relative Risk Aversion and comes from the
theory of behavior under uncertainty. Also in that theory does the CRRA function constitute an
important benchmark case. And θ is in that context called the degree of relative risk aversion.
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yields an explicit solution for the saving of the young:

st =
1

1 + (1 + ρ)(1+rt+1

1+ρ
)
θ−1
θ

wt. (3.15)

We see that the signs of ∂st/∂wt and ∂st/∂rt+1 shown in (3.11) and (3.13), re-
spectively, are confirmed. Moreover, the saving of the young is in this special
case proportional to income with a factor of proportionality that depends on the
interest rate (as long as θ 6= 1). But in the general case the saving-income ratio
depends also on the income level.
A major part of the attempts at empirically estimating θ suggests that θ > 1.

Based on U.S. data, Hall (1988) provides estimates above 5, while Attanasio and
Weber (1993) suggest 1.25 ≤ θ ≤ 3.33. For Japanese data Okubo (2011) suggests
2.5 ≤ θ ≤ 5.0. As these studies relate to much shorter time intervals than the
implicit time horizon of about 2×30 years in the Diamond model, we should be
cautious. But if the estimates were valid also to that model, we should expect
the income effect on current consumption of an increase in the interest rate to
dominate the substitution effect, thus implying sr < 0 as long as there is no
wealth effect of a rise in the interest rate.
When the elasticity of marginal utility of consumption is a constant, θ, its

inverse, 1/θ, equals the elasticity of intertemporal substitution in consumption.
This concept refers to the willingness to substitute consumption over time when
the interest rate changes. Under certain conditions the elasticity of intertemporal
substitution reflects the elasticity of the ratio c2t+1/c1t with respect to 1 + rt+1

when we move along a given indifference curve. The next subsection, which can
be omitted in a first reading, goes more into detail with the concept.

Digression: The elasticity of intertemporal substitution*

Consider a two-period consumption problem like the one above. Fig. 3.3 depicts
a particular indifference curve, u(c1) + (1 + ρ)−1u(c2) = Ū . At a given point,
(c1, c2), on the curve, the marginal rate of substitution of period-2 consumption
for period-1 consumption, MRS, is given by

MRS = −dc2

dc1

|U=Ū ,

that is,MRS at the point (c1, c2) is the absolute value of the slope of the tangent
to the indifference curve at that point.12 Under the “normal” assumption of
“strictly convex preferences” (as for instance in the Diamond model), MRS is

12When the meaning is clear from the context, to save notation we just write MRS instead
of the more precise MRSc2c1 .
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rising along the curve when c1 decreases (and thereby c2 increases). Conversely,
we can let MRS be the independent variable and consider the corresponding
point on the indifference curve, and thereby the ratio c2/c1, as a function of
MRS. If we raise MRS along the indifference curve, the corresponding value of
the ratio c2/c1 will also rise.

Figure 3.3: Substitution of period 2-consumption for period 1-consumption as MRS
increases to MRS′.

The elasticity of intertemporal substitution in consumption at a given point
is defined as the elasticity of the ratio c2/c1 with respect to the marginal rate
of substitution of c2 for c1, when we move along the indifference curve through
the point (c1, c2). Letting the elasticity with respect to x of a differentiable
function f(x) be denoted E`xf(x), the elasticity of intertemporal substitution in
consumption can be written

E`MRS
c2

c1

=
MRS

c2/c1

d (c2/c1)

dMRS
|U=Ū ≈

∆(c2/c1)
c2/c1

∆MRS
MRS

,

where the approximation is valid for a “small”increase, ∆MRS, in MRS.

A more concrete understanding is obtained when we take into account that
in the consumer’s optimal plan, MRS equals the ratio of the discounted prices
of good 1 and good 2, that is, the ratio 1/(1/(1 + r)) given in (3.7). Indeed, from
(3.10) and (3.9), omitting the time indices, we have

MRS = −dc2

dc1

|U=Ū =
u′(c1)

(1 + ρ)−1u′(c2)
= 1 + r. (3.16)
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Letting R ≡ 1+r and σ(c1, c2) denote the elasticity of intertemporal substitution,
evaluated at the point (c1, c2), we then have

σ(c1, c2) =
R

c2/c1

d (c2/c1)

dR
|U=Ū ≈

∆(c2/c1)
c2/c1
∆R
R

. (3.17)

Consequently, the elasticity of intertemporal substitution can here be interpreted
as the approximate percentage increase in the consumption ratio, c2/c1, triggered
by a one percentage increase in the inverse price ratio, holding the utility level
unchanged.13

Given u(c), we let θ(c) be the absolute elasticity of marginal utility of con-
sumption, i.e., θ(c) ≡ −cu′′(c)/u′(c). As shown in Appendix B, we then find the
elasticity of intertemporal substitution to be

σ(c1, c2) =
c2 +Rc1

c2θ(c1) +Rc1θ(c2)
. (3.18)

We see that if u(c) belongs to the CRRA class and thereby θ(c1) = θ(c2) = θ,
then σ(c1, c2) = 1/θ. In this case (as well as whenever c1 = c2) the elasticity of
marginal utility and the elasticity of intertemporal substitution are simply the
inverse of each other.

3.4 Production

Output is homogeneous and can be used for consumption as well as investment
in physical capital. The capital stock is thereby just accumulated non-consumed
output. We may imagine a “corn economy”where output is corn, part of which
is eaten (flour) while the remainder is accumulated as capital (seed corn in the
ground).
The specification of technology and production conditions follows the simple

competitive one-sector setup discussed in Chapter 2.4. Although the Diamond
model is a long-run model, we shall in this chapter for simplicity ignore techno-
logical change.

The representative firm

There is a representative firm with a neoclassical production function and con-
stant returns to scale (CRS). Omitting the time argument t when not needed for

13This characterization is equivalent to saying that the elasticity of substitution between two
consumption goods indicates the approximate percentage decrease in the ratio of the chosen
quantities of the goods (when moving along a given indifference curve) induced by a one-
percentage increase in the corresponding price ratio.
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clarity, we have

Y = F (K,L) = LF (k, 1) ≡ Lf(k), f(0) ≥ 0, f ′ > 0, f ′′ < 0, (3.19)

where Y is output (GNP) per period, K is capital input, L is labor input, and k ≡
K/L is the capital-labor ratio. The derived function, f, is the production function
in intensive form. Capital installation and other adjustment costs are ignored.
With r̂ denoting the rental rate for capital, (pure) profit isΠ ≡ F (K,L)−r̂K−wL.
The firm maximizes Π under perfect competition. This gives, first, ∂Π/∂K =
FK (K,L)− r̂ = 0, that is,

FK (K,L) =
∂ [Lf (k)]

∂K
= f ′ (k) = r̂. (3.20)

Second, ∂Π/∂L = FL (K,L)− w = 0, that is,

FL (K,L) =
∂ [Lf (k)]

∂L
= f (k)− kf ′ (k) = w. (3.21)

We may interpret these two conditions as saying that the firm will in every
period use capital and labor up to the point where the marginal productivities of
K and L, respectively, given the chosen input of the other factor, are equal to the
respective factor prices from the market. Such an intuitive formulation does not
take us far, however. Indeed, because of CRS there may be infinitely many pairs
(K,L), if any, that satisfy (3.20) and (3.21). What we can definitely ascertain,
however, is that in view of f ′′ < 0, a k > 0 satisfying (3.20) will be unique.14

Let us call it the desired capital-labor ratio and recognize that at this stage the
separate factor inputs, K and L, are indeterminate. While (3.20) and (3.21) are
just first-order conditions for the profit maximizing representative firm, to get
further we have to appeal to equilibrium in the factor markets.

Factor prices in equilibrium

Let the aggregate demand for capital services and labor services be denoted Kd

and Ld, respectively. Clearing in factor markets in period t implies

Kt
d = Kt, (3.22)

Lt
d = Lt = L0(1 + n)t, (3.23)

14It might seem that k is overdetermined because we have two equations, (3.20) and (3.21),
but only one unknown. This reminds us that for arbitrary factor prices, r̂ and w, there will
generally not exist a k satisfying both (3.20) and (3.21). But in equilibrium the factor prices
faced by the firm are not arbitrary. They are equilibrium prices, i.e., they are adjusted so that
(3.20) and (3.21) become consistent.
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whereKt is the aggregate supply of capital services and Lt the aggregate supply of
labor services. As was called attention to in Chapter 1, unless otherwise specified
it is understood that the rate of utilization of each production factor is constant
over time and normalized to one. So the quantityKt will at one and the same time
measure both the capital input, a flow, and the available capital stock. Similarly,
the quantity Lt will at one and the same time measure both the labor input, a
flow, and the size of the labor force as a stock (= the number of young people).
The aggregate input demands, Kd and Ld, are linked through the desired

capital-labor ratio, kd. In equilibrium we have Kd
t /L

d
t = kt

d = Kt/Lt ≡ kt, by
the market clearing conditions (3.22) and (3.23). The k in (3.20) and (3.21) can
thereby be identified with the ratio of the stock supplies, kt ≡ Kt/Lt > 0, which
is a predetermined variable. Interpreted this way, (3.20) and (3.21) determine
the equilibrium factor prices r̂t and wt in each period. In view of the no-arbitrage
condition (3.2), the real interest rate satisfies rt = r̂t − δ, where δ is the capital
depreciation rate, 0 ≤ δ ≤ 1. So in equilibrium we end up with

rt = f ′(kt)− δ ≡ r(kt) (r′(kt) = f ′′(kt) < 0), (3.24)

wt = f(kt)− ktf ′(kt) ≡ w(kt) (w′(kt) = −ktf ′′(kt) > 0), (3.25)

where causality is from the right to the left in the two equations. In line with
our general perception of perfect competition, cf. Section 2.4 of Chapter 2, it is
understood that the factor prices, r̂t and wt, adjust quickly to the market-clearing
levels.

Technical Remark. In these formulas it is understood that L > 0, but we may
allowK = 0, i.e., k = 0. In case f ′(0) is not immediately well-defined, we interpret
f ′(0) as limk→0+ f ′(k) if this limit exists. If it does not, it must be because
we are in a situation where limk→0+ f ′(k) = ∞, since f ′′(k) < 0 (an example
is the Cobb-Douglas function, f(k) = Akα, 0 < α < 1, where limk→0+ f ′(k)
= limk→0+ Aαkα−1 = +∞). In this situation we simply include +∞ in the range
of r(k) and define r(0) · 0 ≡ limk→0+(f ′(k) − δ)k = 0, where the last equality
comes from the general property of a neoclassical CRS production function that
limk→0+ kf ′(k) = 0, cf. (2.18) of Chapter 2. Letting r(0) · 0 = 0 also fits well
with intuition since, when k = 0, nobody receives capital income anyway. Note
that since δ ∈ [0, 1] , r(k) > −1 for all k ≥ 0. What about w(0)? We interpret
w(0) as limk→0w(k). From (2.18) of Chapter 2 we have that limk→0+ w(k) = f(0)
≡ F (0, 1) ≥ 0. If capital is essential, F (0, 1) = 0. Otherwise, F (0, 1) > 0. Finally,
since w′ > 0, we have, for k > 0, w(k) > 0 as also noted in Chapter 2. �
To fix ideas we have assumed that households (here the old) own the physical

capital and rent it out to the firms. In view of perfect competition and constant
returns to scale, pure profit is nil in equilibrium. As long as the model ignores

c© Groth, Lecture notes in macroeconomics, (mimeo) 2017.



86 CHAPTER 3. THE BASIC OLG MODEL: DIAMOND

uncertainty and capital installation costs, the results will be unaffected if instead
we let the firms themselves own the physical capital and finance capital investment
by issuing bonds and shares. These bonds and shares would then be accumulated
by the households and constitute their financial wealth instead of the capital
goods themselves. The equilibrium rate of return, rt, would be the same.

3.5 The dynamic path of the economy

As in microeconomic general equilibrium theory, it is important to distinguish
between the set of technically feasible allocations and an allocation brought about,
within this set, by a specific economic institution (the rules of the game). The
economic institution assumed by the Diamond model is the private-ownership
perfect-competition market institution.
We shall in the next subsections introduce three different concepts concerning

allocations over time in this economy. The three concepts are: technically feasible
paths, temporary equilibrium, and equilibrium path. These concepts are related to
each other in the sense that there is a whole set of technically feasible paths, within
which there may exist a unique equilibrium path, which in turn is a sequence of
states that have certain properties, including the temporary equilibrium property.

3.5.1 Technically feasible paths

When we speak of technically feasible paths, the focus is merely upon what is
feasible from the point of view of the given technology as such and available initial
resources. That is, we disregard the agents’preferences, their choices given the
constraints, their interactions in markets, the market forces etc.
The technology is given by Yt = F (Kt, Lt), and there are two exogenous

“initial resources”, the labor force, Lt = L0(1 + n)t, and the initial capital stock,
K0. From national income accounting aggregate consumption can be written Ct ≡
Yt− St = F (Kt, Lt)− St, where St denotes aggregate gross saving, and where we
have inserted (3.19). In a closed economy aggregate gross saving equals (ex post)
aggregate gross investment, Kt+1 −Kt + δKt. So

Ct = F (Kt, Lt)− (Kt+1 −Kt + δKt). (3.26)

Let ct denote aggregate consumption per unit of labor in period t, i.e.,

ct ≡
Ct
Lt

=
c1tLt + c2tLt−1

Lt
= c1t +

c2t

1 + n
.
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Combining this with (3.26) and using the definitions of k and f(k), we obtain the
dynamic resource constraint of the economy:

c1t +
c2t

1 + n
= f(kt) + (1− δ)kt − (1 + n)kt+1. (3.27)

DEFINITION 1 Let k̄0 ≥ 0 be the historically given initial ratio of available
capital and labor. Let the path {(kt, c1t, c2t)}∞t=0 have nonnegative kt, c1t, and c2t

for all t = 0, 1, 2, . . . . The path is called technically feasible if it has k0 = k̄0 and
satisfies (3.27) for all t = 0, 1, 2, . . . .

The next subsections consider how, for given household preferences, the private-
ownership institution in combination with competitive markets generates a se-
lection within the set of technically feasible paths. A member of this selection
(which may but need not have just one member) is called an equilibrium path.
It constitutes a sequence of states with certain properties, one of which is the
temporary equilibrium property.

3.5.2 A temporary equilibrium

It is natural to think of next period’s interest rate as an expected interest rate
that provisionally can deviate from the ex post realized one. We let ret+1 > −1
denote the expected real interest rate of period t+ 1 as seen from period t.
Essentially, by a temporary equilibrium in period t is meant a state where for

a given ret+1, all markets clear in the period. There are three markets, namely
two factor markets and a market for produced goods. We have already described
the two factor markets. In the market for produced goods the representative firm
supplies the amount Y s

t = F (Kd
t , L

d
t ) in period t. The demand side in this market

has two components, consumption, Ct, and gross investment, It. Equilibrium in
the goods market requires that demand equals supply, i.e.,

Ct + It = c1tLt + c2tLt−1 + It = Y s
t = F (Kd

t , L
d
t ), (3.28)

where consumption by the young and old, c1t and c2t, respectively, were deter-
mined in Section 3.
By definition, aggregate gross investment equals aggregate net investment,

INt , plus capital depreciation, i.e.,

It = INt + δKt ≡ IN1t + IN2t + δKt ≡ SN1t +SN2t + δKt = stLt + (−Kt) + δKt. (3.29)

The first equality follows from the definition of net investment and the assump-
tion that capital depreciation equals δKt. Next comes an identity reflecting that
aggregate net investment is the sum of net investment by the young and net in-
vestment by the old. In turn, saving in this model is directly an act of acquiring
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capital goods. So the net investment by the young, IN1t , and the old, I
N
2t , are

identical to their net saving, SN1t and S
N
2t , respectively. As we have shown, the net

saving by the young in the model equals stLt. And the net saving by the old is
negative and equals −Kt. Indeed, because they have no bequest motive, the old
consume all they have and leave nothing as bequests. Hence, the young in any
period enter the period with no inheritance, no non-human wealth. Consequently,
any non-human wealth existing at the beginning of a period must belong to the
old in that period and be the result of their saving as young in the previous pe-
riod. As Kt constitutes the aggregate non-human wealth in our closed economy
at the beginning of period t, we therefore have

st−1Lt−1 = Kt. (3.30)

Recalling that the net saving of any group is by definition the same as the increase
in its non-human wealth, the net saving of the old in period t is −Kt. Aggregate
net saving in the economy is thus stLt + (−Kt), and (3.29) is thereby explained.

DEFINITION 2 Let a given period t have capital stock Kt ≥ 0, labor supply
Lt > 0, and hence capital-labor ratio kt = Kt/Lt. Let the expected real interest
rate be given as ret+1 > −1. And let the functions s(wt, ret+1), w(kt), and r(kt)
be defined as in Lemma 1, (3.25), and (3.24), respectively. Then a temporary
equilibrium in period t is a state (kt, c1t, c2t, wt, rt) of the economy such that
(3.22), (3.23), (3.28), and (3.29) hold (i.e., all markets clear) for c1t = wt− st, c2t

= (kt + r(kt)kt)(1 + n), where wt = w(kt) > 0 and st = s(wt, r
e
t+1).

The reason for the requirement wt > 0 in the definition is that if wt = 0,
people would have nothing to live on as young and nothing to save from for
retirement. The system would not be economically viable in this case. With
regard to the equation for c2t in the definition, note that (3.30) gives st−1 =
Kt/Lt−1 = (Kt/Lt)(Lt/Lt−1) = kt(1 + n), which is the wealth of each old at
the beginning of period t. Substituting into c2t = (1 + rt)st−1, we get c2t =
(1 + rt)kt(1 +n), which can also be written c2t = (kt + rtkt)(1 +n). This last way
of writing c2t has the advantage of being applicable even if kt = 0, cf. Technical
Remark in Section 3.4. The remaining conditions for a temporary equilibrium
are self-explanatory.

PROPOSITION 1 Suppose the No Fast Assumption (A1) applies. Consider a
given period t with a given kt ≥ 0. Then for any ret+1 > −1,
(i) if kt > 0, there exists a temporary equilibrium, (kt, c1t, c2t, wt, rt), and c1t and
c2t are positive;
(ii) if kt = 0, a temporary equilibrium exists if and only if capital is not essential;
in that case, wt = w(kt) = w(0) = f(0) > 0 and c1t and st are positive (while
c2t = 0);
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(iii) whenever a temporary equilibrium exists, it is unique.

Proof. We begin with (iii). That there is at most one temporary equilibrium is
immediately obvious since wt and rt are functions of the given kt : wt = w(kt)
and rt = r(kt). And given wt, rt, and ret+1, c1t and c2t are uniquely determined.

(i) Let kt > 0. Then, by (3.25), w(kt) > 0.We claim that the state (kt, c1t, c2t, wt, rt),
with wt = w(kt), rt = r(kt), c1t = w(kt)−s(w(kt), r

e
t+1), and c2t = (1+r(kt))kt(1+

n), is a temporary equilibrium. Indeed, Section 3.4 showed that the factor prices
wt = w(kt) and rt = r(kt) are consistent with clearing in the factor markets in
period t. Given that these markets clear (by price adjustment), it follows by Wal-
ras’law (see Appendix C) that also the third market, the goods market, clears
in period t. So all criteria in Definition 2 are satisfied. That c1t > 0 follows from
w(kt) > 0 and the No Fast Assumption (A1), in view of Lemma 1. That c2t > 0
follows from c2t = (1 + r(kt))kt(1 + n) when kt > 0, since r(kt) > −1 always.

(ii) Let kt = 0. Suppose f(0) > 0. Then, by Technical Remark in Section 3.4,
wt = w(0) = f(0) > 0 and c1t = wt− s(wt, ret+1) is well-defined, positive, and less
than wt, in view of Lemma 1; so st = s(wt, r

e
t+1) > 0. The old in period 0 will

starve since c2t = (0 + 0)(1 + n), in view of r(0) · 0 = 0, cf. Technical Remark in
Section 3.4. Even though this is a bad situation for the old, it is consistent with
the criteria in Definition 2. On the other hand, if f(0) = 0, we get wt = f(0) = 0,
which violates one of the criteria in Definition 2. �

Point (ii) of the proposition says that a temporary equilibrium may exist even
in a period where k = 0. The old in this period will starve and not survive. But if
capital is not essential, the young get positive labor income out of which they will
save a part for their old age and be able to maintain life also next period which
will be endowed with positive capital. Then, by our assumptions the economy is
viable forever.15

Generally, the term “equilibrium” is used to denote a state of “rest”, often
just “temporary rest”. The temporary equilibrium in the present model is an
example of a state of “temporary rest” in the following sense: (a) the agents
optimize, given their expectations and the constraints they face; and (b) the
aggregate demands and supplies in the given period are mutually consistent, i.e.,
markets clear. The qualification “temporary”is motivated by two features. First,
in the next period the conditioning circumstances may be different, possibly as a
consequence of the currently chosen actions in the aggregate. Second, the given
expectations may turn out wrong.

15For simplicity, the model ignores that in practice a certain minimum per capita consumption
level (the subsistence minimum) is needed for viability.
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3.5.3 An equilibrium path

The concept of an equilibrium path, also called an intertemporal equilibrium or
dynamic general equilibrium, requires more conditions satisfied. The concept
refers to a sequence of temporary equilibria such that expectations of the agents
are fulfilled in every period:

DEFINITION 3 An equilibrium path is a technically feasible path {(kt, c1t, c2t)}∞t=0

such that for t = 0, 1, 2,. . . , the state (kt, c1t, c2t, wt, rt) is a temporary equilibrium
with ret+1 = r (kt+1).

To characterize such a path, we forward (3.30) one period and rearrange so
as to get

Kt+1 = stLt. (3.31)

Since Kt+1 ≡ kt+1Lt+1 = kt+1Lt(1 + n), this can be written

kt+1 =
s (w (kt) , r (kt+1))

1 + n
, (3.32)

using that st = s(wt, r
e
t+1), wt = w(kt), and ret+1 = rt+1 = r (kt+1) in a sequence of

temporary equilibria with fulfilled expectations. Equation (3.32) is a first-order
difference equation, known as the fundamental difference equation or the law of
motion of the Diamond model.

PROPOSITION 2 Suppose the No Fast Assumption (A1) applies. Then,
(i) for any k0 > 0 there exists at least one equilibrium path;
(ii) if k0 = 0, an equilibrium path exists if and only if f(0) > 0 (i.e., capital not
essential);
(iii) in any case, an equilibrium path has wt > 0, t = 0, 1, 2, . . . , and kt > 0, t
= 1, 2, 3, . . . ;
(iv) an equilibrium path satisfies the first-order difference equation (3.32).

Proof. (i) and (ii): see Appendix D. (iii) For a given t, let kt ≥ 0. Then, since an
equilibrium path is a sequence of temporary equilibria, we have, from Proposition
1, wt = w(kt) > 0 and st = s(w (kt) , r

e
t+1), where ret+1 = r (kt+1) . Hence, by

Lemma 1, s(w (kt) , r
e
t+1) > 0, which implies kt+1 > 0, in view of (3.32). This

shows that only for t = 0 is kt = 0 possible along an equilibrium path. (iv) This
was shown in the text above. �
The formal proofs of point (i) and (ii) of the proposition are quite technical

and placed in the appendix. But the graphs in the ensuing figures 3.4-3.7 provide
an intuitive verification. The “only if” part of point (ii) reflects the not very
surprising fact that if capital were an essential production factor, no capital
“now”would imply no income “now”, hence no saving and investment and thus
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no capital in the next period and so on. On the other hand, the “if”part of point
(ii) says that when capital is not essential, an equilibrium path can set off also
from an initial period with no capital. Then point (iii) adds that an equilibrium
path will have positive capital in all subsequent periods. Finally, as to point
(iv), note that the fundamental difference equation, (3.32), rests on equation
(3.31). Recall from the previous subsection that the economic logic behind this
key equation is that since capital is the only non-human asset in the economy and
the young are born without any inheritance, the aggregate capital stock at the
beginning of period t+ 1 must be owned by the old generation in that period. It
must thereby equal the aggregate saving these people had in the previous period
where they were young.

The transition diagram

To be able to further characterize equilibrium paths, we construct a transition
diagram in the (kt, kt+1) plane. The transition curve is defined as the set of points
(kt, kt+1) satisfying (3.32). Its form and position depends on the households’
preferences and the firms’technology. Fig. 3.4 shows one possible, but far from
necessary configuration of this curve. A complicating circumstance is that the
equation (3.32) has kt+1 on both sides. Sometimes we are able to solve the
equation explicitly for kt+1 as a function of kt, but sometimes we can do so only
implicitly. What is even worse is that there are cases where kt+1 is not unique
for a given kt. We will proceed step by step.
First, what can we say about the slope of the transition curve? In general, a

point on the transition curve has the property that at least in a small neighbor-
hood of this point, the equation (3.32) will define kt+1 as an implicit function of
kt.16 Taking the derivative with respect to kt on both sides of (3.32), we get

dkt+1

dkt
=

1

1 + n

(
sww

′ (kt) + srr
′ (kt+1)

dkt+1

dkt

)
. (3.33)

By ordering, the slope of the transition curve within this small neighborhood can
be written

dkt+1

dkt
=
sw (w (kt) , r (kt+1))w′ (kt)

D(kt, kt+1)
, (3.34)

when the denominator,

D(kt, kt+1) ≡ 1 + n− sr(w(kt), r(kt+1))r′(kt+1),

differs from nil.
16An exception occurs if the denominator in (3.34) below vanishes.
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In view of sw > 0 and w′(kt) = −kt f ′′(kt) > 0, the numerator in (3.34) is
always positive and we have

dkt+1

dkt
≷ 0 for sr(w(kt), r(kt+1)) ≷ 1 + n

r′ (kt+1)
,

respectively, since r′ (kt+1) = f ′′(kt+1) < 0.

Figure 3.4: Transition curve and the resulting dynamics when u(c) = ln c and Y =
AKαL1−α, 0 < α < 1, cf. Example 2.

It follows that the transition curve is universally upward-sloping if and only if
sr(w(kt), r(kt+1)) > (1 + n)/r′ (kt+1) everywhere along the transition curve. The
intuition behind this finding becomes visible by rewriting (3.34) in terms of small
changes in kt and kt+1. Since ∆kt+1/∆kt ≈ dkt+1/dkt for ∆kt “small”, (3.34)
implies

[1 + n− sr (·) r′ (kt+1)] ∆kt+1 ≈ sw (·) w′(kt)∆kt. (*)

Let ∆kt > 0. This rise in kt will always raise wage income and, via the resulting
rise in st, raise kt+1, everything else equal. Everything else is not equal, however,
since a rise in kt+1 implies a fall in the rate of interest. There are four cases to
consider:
Case 1: sr (·) = 0. Then there is no feedback effect from the fall in the rate of

interest. So the tendency to a rise in kt+1 is neither offset nor fortified.
Case 2: sr (·) > 0. Then the tendency to a rise in kt+1 will be partly offset

through the dampening effect on saving resulting from the fall in the interest
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rate. This negative feedback can not fully offset the tendency to a rise in kt+1.
The reason is that the negative feedback on the saving of the young will only
be there if the interest rate falls in the first place. We cannot in a period have
both a fall in the interest rate triggering lower saving and a rise in the interest
rate (via a lower kt+1) because of the lower saving. So a suffi cient condition for
a universally upward-sloping transition curve is that the saving of the young is a
non-decreasing function of the interest rate.
Case 3: (1 + n)/r′ (kt+1) < sr (·) < 0. Then the tendency to a rise in kt+1 will

be fortified through the stimulating effect on saving resulting from the fall in the
interest rate.
Case 4: sr (·) < (1 + n)/r′ (kt+1) < 0. Then the expression in brackets on the

left-hand side of (*) is negative and requires therefore that ∆kt+1 < 0 in order to
comply with the positive right-hand side. This is a situation where self-fulfilling
expectations operate, a case to which we return. We shall explore this case in the
next sub-section.
Another feature of the transition curve is the following:

LEMMA 2 (the transition curve is nowhere flat) For all kt > 0 such that the
denominator, D(kt, kt+1), in (3.34) differs from nil, we have dkt+1/dkt 6= 0.

Proof. Since sw > 0 and w′(kt) > 0 always, the numerator in (3.34) is always
positive. �
The implication is that no part of the transition curve can be horizontal.17

When the transition curve crosses the 45◦ degree line for some kt > 0, as in
the example in Fig. 3.4, we have a steady state at this kt. Formally:

DEFINITION 4 An equilibrium path {(kt, c1t, c2t)}∞t=0 is in a steady state with
capital-labor ratio k∗ > 0 if the fundamental difference equation, (3.32), is satis-
fied with kt as well as kt+1 replaced by k∗.

This exemplifies the notion of a steady state as a stationary point in a dy-
namic process. Some economists use the term “dynamic equilibrium”instead of
“steady state”. In this text the term “equilibrium”refers to situations where the
constraints and decided actions of the market participants are mutually compat-
ible. So, an economy can be in “equilibrium”without being in a steady state.
We see a steady state as a special sequence of temporary equilibria with fulfilled
expectations, namely one with the property that the endogenous variable, here
k, entering the fundamental difference equation does not change over time.

EXAMPLE 2 (the log utility Cobb-Douglas case) Let u(c) = ln c and Y =
AKαL1−α, where A > 0 and 0 < α < 1. Since u(c) = ln c is the case θ = 1

17This would not generally hold if the utility function were not time-separable.
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in Example 1, by (3.15) we have sr = 0. Indeed, with logarithmic utility the sub-
stitution and income effects on st of a rise in the interest rate offset each other;
and, as discussed above, in the Diamond model there can be no wealth effect of
a rise in rt+1. Further, the equation (3.32) reduces to a transition function,

kt+1 =
(1− α)Akαt

(1 + n)(2 + ρ)
. (3.35)

The associated transition curve is shown in Fig. 3.4 and there is for k0 > 0 both
a unique equilibrium path and a unique steady state with capital-labor ratio

k∗ =

(
(1− α)A

(2 + ρ)(1 + n)

)1/(1−α)

> 0.

At kt = k∗, the slope of the transition curve is necessarily less than one. The
dynamics therefore lead to convergence to the steady state as illustrated in the
figure.18 In the steady state the interest rate is r∗ = f ′(k∗) − δ = α(1 + n)(2 +
ρ)/(1− α)− δ. Note that a higher n results in a lower k∗, hence a higher r∗. �
Because the Cobb-Douglas production function implies that capital is essen-

tial, (3.35) implies kt+1 = 0 if kt = 0. The state kt+1 = kt = 0 is thus a stationary
point of the difference equation (3.35) considered in isolation. This state is not,
however, an equilibrium path as defined above (not a steady state of an economic
system since there is no production). We may call it a trivial steady state in
contrast to the economically viable steady state kt+1 = kt = k∗ > 0 which is then
called a non-trivial steady state.
Theoretically, there may be more than one (non-trivial) steady state. Non-

existence of a steady state is also possible. But before considering these possibil-
ities, the next subsection (which may be skipped in a first reading) addresses an
even more defiant feature which is that for a given k0 there may exist more than
one equilibrium path.

The possibility of multiple equilibrium paths*

It turns out that a backward-bending transition curve like that in Fig. 3.5 is
possible within the model. Not only are there two steady states but for kt ∈ (k, k)
there are three temporary equilibria with self-fulfilling expectations. That is, for a
given kt in this interval, there are three different values of kt+1 that are consistent
with self-fulfilling expectations. Exercise 3.3 at the end of the chapter documents
this possibility by way of a numerical example.

18A formal proof can be based on the mean value theorem.
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Figure 3.5: A backward-bending transition curve leads to multiple temporary equilibria
with self-fulfilling expectations.

The theoretical possibility of multiple equilibria with self-fulfilling expecta-
tions requires that there is at least one interval on the horizontal axis where a
section of the transition curve has negative slope. What is the intuition behind
that in this situation multiple equilibria can arise? Consider the specific configu-
ration in Fig. 3.5 where k′, k′′, and k′′′ are the possible values of the capital-labor
ratio next period when kt ∈ (k, k). In a small neighborhood of the point P associ-
ated with the intermediate value, k′′, the slope of the transition curve is negative.
In the figure such a neighborhood is represented by the rectangle R. Within this
rectangle the fundamental difference equation (3.32) does indeed define kt+1 as
an implicit function of kt, the graph of which goes through the point P and has
negative slope.

Now, as we saw above, the negative slope requires not only that in this
neighborhood sr(wt, r(kt+1)) < 0, but that the stricter condition sr(wt, r(kt+1))
< (1 + n)/f ′′(k′′) holds (we take wt as given since kt is given and wt = w(kt)).
That the point P with coordinates (kt, k

′′) is on the transition curve indicates
that, given wt = w(kt) and an expected interest rate ret+1 = r(k′′), the induced
saving by the young, s(wt, r(k′′), will be such that kt+1 = k′′. Then the expec-
tation is fulfilled. But also the point (kt, k

′), where k′ > k′′, is on transition
curve and this reflects that also a lower interest rate, r(k′), can be self-fulfilling.
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By this is meant that if an interest rate at the level r(k′) is generally expected,
then this expectation induces more saving by the young, just enough more to
make kt+1 = k′ > k′′, thus confirming the expectation of the lower interest rate,
r(k′). What makes this possible is exactly the negative dependency of st on ret+1.
The fact that also the point (kt, k

′′′), satisfying the inequality k′′′ < k′′, is on the
transition curve has a similar interpretation. It is exactly sr < 0 that makes it
possible that less saving by the young than at the point P can be induced by an
expected higher interest rate, r(k′′′), than at P.

Recognizing the ambiguity arising from the possibility of multiple equilibrium
paths, we face an additional ambiguity, known as the “expectational coordination
problem”. The model presupposes that all the young agree in their expectations.
Only then will one of the three mentioned temporary equilibria appear. But the
model is silent about how the needed coordination of expectations is brought
about, and if it is, why this coordination ends up in one rather than another of
the three possible equilibria with self-fulfilling expectations. Each single young is
isolated in the market and will not know what the others will expect. The market
mechanism by itself provides no coordination of expectations.

As it stands, the model consequently cannot determine how the economy will
evolve in the present situation with a backward-bending transition curve. It is
not uncommon that macroeconomic analysis runs into such diffi culties. This kind
of diffi culties reflect the complexity of an economic system. At this stage we will
circumvent the indeterminacy problem by taking an ad-hoc approach. There are
at least three ways to try to rule out the possibility of multiple equilibrium paths.
One way is to discard the assumption of perfect foresight. Instead, some kind
of adaptive expectations may be assumed, for example in the form of myopic
foresight, also called static expectations. This means that the expectation formed
by the agents in the current period about the value of a variable next period
is that it will stay the same as in the current period. So here the assumption
would be that the young have the expectation ret+1 = rt. Then, given k0 > 0,
a unique sequence of temporary equilibria {(kt, c1t, c2t, wt, rt)}∞t=0 is generated by
the model. Oscillations in the sense of repetitive movements up and down of kt
are possible. Even chaotic trajectories are possible (see Exercise 3.6).

Outside steady state, when agents have static expectations, they will often ex-
perience that their expectations are systematically wrong. And the assumption
of myopic foresight rules out that learning occurs. This may be too simplistic,
although it can be argued that human beings to a certain extent have a psycho-
logical disposition to myopic foresight.

Another approach to the indeterminacy problem could be motivated by the
general observation that sometimes the possibility of multiple equilibria in a
model arises because of a “rough”time structure imposed on the model in ques-
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tion. In the present case, each period in the Diamond model corresponds to half
of an adult person’s lifetime. And in the first period of life there is no capital
income, in the second there is no labor income. This coarse notion of time may
artificially generate a multiplicity of equilibria or, with myopic foresight, oscilla-
tions. An expanded model where people live many periods may “smooth” the
responses of the system to the events impinging on it. Indeed, with working
life stretching over more than one period, wealth effects of changes in the inter-
est rate arise, thereby reducing the likelihood of a backward-bending transition
curve. In Chapter 12 we shall see an example of an overlapping-generations model
in continuous time where the indeterminacy problem never arises.
For now, our approach will be to stay with the rough time structure of the

Diamond model because of its analytical convenience and then make the best
of it by imposing conditions on the utility function, the production function,
and/or parameter values so as to rule out multiple equilibria. We stay with the
assumption of perfect foresight, but assume that circumstances are such that
multiple equilibria with self-fulfilling expectations do not arise. Fortunately, the
“circumstances”needed for this in the present model are not defying empirical
plausibility.

Conditions for uniqueness of the equilibrium path

Suffi cient for the equilibrium path to be unique is that preferences and technology
in combination are such that the slope of the transition curve is everywhere
positive. Hence we impose the Positive Slope Assumption that

sr(w(kt), r(kt+1)) >
1 + n

f ′′(kt+1)
(A2)

for all pairs (kt, kt+1) consistent with an equilibrium path. This condition is of
course always satisfied when sr ≥ 0 (reflecting an elasticity of marginal utility of
consumption not above one) and can be satisfied even if sr < 0 (as long as sr is
“small” in absolute value). Essentially, (A2) is an assumption that the income
effect on consumption as young of a rise in the interest rate does not dominate
the substitution effect “too much”.
Unfortunately, when stated as in (A2), this condition is not as informative

as we might wish. a condition like (A2) is not in itself very informative. This
is because it is expressed in terms of an endogenous variable, kt+1, for given kt.
A model assumption should preferably be stated in terms of what is given, also
called the “primitives” of the model; in this model the “primitives” comprise
the given preferences, demography, technology, and market form. We can state
suffi cient conditions, however, in terms of the “primitives”, such that (A2) is
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ensured. Here we state two such suffi cient conditions, both involving a CRRA
period utility function with parameter θ as defined in (3.14):

(a) If 0 < θ ≤ 1, then (A2) holds for all kt > 0 along an equilibrium path.

(b) If the production function is of CES-type with CRS,19 i.e., f(k) = A(αkγ +
1 − α)1/γ, A > 0, 0 < α < 1, −∞ < γ < 1, then (A2) holds along an
equilibrium path even for θ > 1, if the elasticity of substitution between
capital and labor, 1/(1− γ), is not “too small”, i.e., if

1

1− γ >
1− 1/θ

1 + (1 + ρ)−1/θ(1 + f ′(k)− δ)(1−θ)/θ (3.36)

for all k > 0. In turn, suffi cient for this is that (1− γ)−1 > 1− θ−1.

That (a) is suffi cient for (A2) is immediately visible in (3.15). The suffi ciency
of (b) is proved in Appendix D. The elasticity of substitution between capital and
labor is a concept analogue to the elasticity of intertemporal substitution in con-
sumption (Section 3.3). It is a measure of the sensitivity of the chosen k = K/L
with respect to the relative factor price. The next chapter goes more into detail
with the concept and shows, among other things, that the Cobb-Douglas produc-
tion function corresponds to γ = 0. So the Cobb-Douglas production function will
satisfy the inequality (1− γ)−1 > 1− θ−1 (since θ > 0), hence also the inequality
(3.36).
With these or other suffi cient conditions in the back of our mind we shall now

proceed imposing the Positive Slope Assumption (A2). To summarize:

PROPOSITION 3 (uniqueness of an equilibrium path) Suppose the No Fast and
Positive Slope assumptions, (A1) and (A2), apply. Then:
(i) if k0 > 0, there exists a unique equilibrium path;
(ii) if k0 = 0, an equilibrium path exists if and only if f(0) > 0 (i.e., capital not
essential).

When the conditions of Proposition 3 hold, the fundamental difference equa-
tion, (3.32), of the model defines kt+1 as an implicit function of kt,

kt+1 = ϕ(kt), (3.37)

for all kt > 0, where ϕ(kt) is called a transition function. The derivative of this
implicit function is given by (3.34) with kt+1 on the right-hand side replaced by
ϕ(kt), i.e.,

ϕ′(kt) =
sw (w (kt) , r (ϕ(kt)))w

′(kt)

1 + n− sr (w (kt) , r (ϕ(kt))) r′(ϕ(kt))
> 0. (3.38)

19CES stands for Constant Elasticity of Substitution. The CES production function was
briefly considered in Section 2.1 and is considered in detail in Chapter 4.
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The positivity for all kt > 0 is due to (A2). A specific transition function is shown
in Example 2 above.
By simple iteration for t = 0, 1, 2,. . . ,.a transition function gives us the evo-

lution of kt. Then we have in fact determined the evolution of “everything”
in the economy: the factor prices w(kt) and r(kt), the saving of the young st
= s(w(kt), r(kt+1)), and the consumption by both the young and the old. The
mechanism behind the evolution of the economy is the Walrasian (or Classical)
mechanism where prices, here wt and rt, always adjust so as to generate market
clearing as if there were a Walrasian auctioneer and where expectations always
adjust so as to be model consistent.

Existence and stability of a steady state?

Possibly the equilibrium path converges to a steady state. To address this issue,
we examine the possible configurations of the transition curve in more detail. In
addition to being positively sloped everywhere, the transition curve will always,
for kt > 0, be situated strictly below the solid curve, kt+1 = w(kt)/(1 +n), shown
in Fig. 3.6. In turn, the latter curve is always, for kt > 0, strictly below the
stippled curve, kt+1 = f(kt)/(1 + n), in the figure. To be precise:

LEMMA 3 (ceiling) Suppose the No Fast Assumption (A1) applies. Along an
equilibrium path, whenever kt > 0,

0 < kt+1 <
w(kt)

1 + n
<
f(kt)

1 + n
, t = 0, 1, . . . . (*)

Proof. From (iii) of Proposition 2, an equilibrium path has wt = w(kt) > 0 and
kt+1 > 0 for t = 0, 1, 2,. . . . Thus,

0 < kt+1 =
st

1 + n
<

wt
1 + n

=
w(kt)

1 + n
=
f(kt)− f ′(kt)kt

1 + n
<
f(kt)

1 + n
,

where the first equality comes from (3.32), the second inequality from Lemma
1 in Section 3.3, and the last inequality from the fact that f ′(kt)kt > 0 when
kt > 0. This proves (*). �
We will call the graph (kt, w(kt)/(1 + n)) in Fig. 3.6 a ceiling. It acts as a

ceiling on kt+1 simply because the saving of the young cannot exceed the income
of the young, w(kt). The stippled graph, (kt, f(kt)/(1+n)), in Fig. 3.6 represents
what we name the roof (“everything of interest” occurs below it). While the
ceiling is the key concept in the proof of Proposition 4 below, the roof is a more
straightforward construct since it is directly given by the production function and
is always strictly concave. The roof is always above the ceiling and so it appears
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as a convenient first “enclosure”of the transition curve. Let us therefore start
with a characterization of the roof:

LEMMA 4 The roof, R(k) ≡ f(k)/(1+n), has positive slope everywhere, crosses
the 45◦ line for at most one k > 0 and can only do that from above. A necessary
and suffi cient condition for the roof to be above the 45◦ line for small k is that
either limk→0 f

′(k) > 1 + n or f(0) > 0 (capital not essential).

Proof. Since f ′ > 0, the roof has positive slope. Since f ′′ < 0, it can only cross
the 45◦ line once and only from above. If and only if limk→0 f

′(k) > 1 + n, then
for small kt, the roof is steeper than the 45◦ line. Obviously, if f(0) > 0, then
close to the origin, the roof will be above the 45◦ line. �

Figure 3.6: A case where both the roof and the ceiling cross the 45◦ line, but the
transition curve does not (no steady state exists).

The ceiling is generally a more complex construct. It can have convex sections
and for instance cross the 45◦ line at more than one point if at all. While the
roof can be above the 45◦ line for all kt > 0, the ceiling cannot. Indeed, (ii) of
the next lemma implies that if for small kt the ceiling is above the 45◦ line, the
ceiling will necessarily cross the 45◦ line at least once for larger kt.

LEMMA 5 Given w(k) = f(k) − f ′(k)k for all k ≥ 0, where f(k) satisfies
f(0) ≥ 0, f ′ > 0, f ′′ < 0, the following holds:
(i) limk→∞w(k)/k = 0;
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(ii) the ceiling, C(k) ≡ w(k)/(1 + n), is positive and has positive slope for all
k > 0; moreover, there exists k̄ > 0 such that C(k) < k for all k > k̄.

Proof. (i) In view of f(0) ≥ 0 combined with f ′′ < 0, we have w(k) > 0 for
all k > 0. Hence, limk→∞w(k)/k ≥ 0 if this limit exists. Consider an arbitrary
k1 > 0. We have f ′(k1) > 0. For all k > k1, it holds that 0 < f ′(k) < f ′(k1), in
view of f ′ > 0 and f ′′ < 0, respectively. Hence, limk→∞ f

′(k) exists and

0 ≤ lim
k→∞

f ′(k) < f ′(k1). (3.39)

We have

lim
k→∞

w(k)

k
= lim

k→∞

f(k)

k
− lim

k→∞
f ′(k). (3.40)

There are two cases to consider. Case 1: f(k) has an upper bound. Then,
limk→∞ f(k)/k = 0 so that limk→∞w(k)/k = − limk→∞ f

′(k) = 0, by (3.40)
and (3.39), as w(k)/k > 0 for all k > 0. Case 2: limk→∞ f(k) = ∞. Then,
by L’Hôpital’s rule for “∞/∞”, limk→∞(f(k)/k) = limk→∞ f

′(k) so that (3.40)
implies limk→∞w(k)/k = 0.

(ii) As n > −1 and w(k) > 0 for all k > 0, C(k) > 0 for all k > 0. From
w′(k) = −kf ′′(k) > 0 follows C ′(k) = −kf ′′(k)/(1 + n) > 0 for all k > 0; that is,
the ceiling has positive slope everywhere. For k > 0, the inequality C(k) < k is
equivalent to w(k)/k < 1 +n. By (i) follows that for all ε > 0, there exists kε > 0
such that w(k)/k < ε for all k > kε. Now, letting ε = 1 + n and k̄ = kε proves
that there exists k̄ > 0 such that w(k)/k < 1 + n for all k > k̄. �

A necessary condition for existence of a (non-trivial) steady state is that
the roof is above the 450 line for small kt. But this is not suffi cient for also
the transition curve to be above the 450 line for small kt. Fig. 3.6 illustrates
this. Here the transition curve is in fact everywhere below the 450 line. In
this case no steady state exists and the dynamics imply convergence towards the
“catastrophic” point (0, 0). Given the rate of population growth, the saving of
the young is not suffi cient to avoid famine in the long run. This outcome will
occur if the technology implies so low productivity that even when all income
of the young were saved, we would have kt+1 < kt for all kt > 0, cf. Exercise
3.2. The Malthusian mechanism will be at work and bring down n (outside the
model). This exemplifies that even a trivial steady state (the point (0,0)) may
be of interest in so far as it may be the point the economy is heading to (though
never reaching it).
To help existence of a steady state we will impose the condition that either

capital is not essential or preferences and technology fit together in such a way
that the slope of the transition curve is larger than 1 for small kt. That is, we
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assume that either

(i) f(0) > 0 or (A3)

(ii) lim
k→0

ϕ′(k) > 1,

where ϕ′(k) is implicitly given in (3.38). Whether condition (i) of (A3) holds in
a given situation can be directly checked from the production function. If it does
not, we should check condition (ii). But this condition is less amenable because
the transition function ϕ is not one of the “primitives” of the model. There
exist cases, though, where we can find an explicit transition function and try out
whether (ii) holds (like in Example 2 above). But generally we can not. Then we
have to resort to suffi cient conditions for (ii) of (A3), expressed in terms of the
“primitives”. For example, if the period utility function belongs to the CRRA
class and the production function is Cobb-Douglas at least for small k, then (ii)
of (A3) holds (see Appendix E). Anyway, as (i) and (ii) of (A3) can be interpreted
as reflecting two different kinds of “early steepness”of the transition curve, we
shall call (A3) the Early Steepness Assumption.20

Before stating the proposition aimed at, we need a definition of the concept
of asymptotic stability.

DEFINITION 5 Consider a first-order autonomous difference equation xt+1 =
g(xt), t = 0, 1, 2, . . . . A steady state, x∗, is (locally) asymptotically stable if there
exists ε > 0 such that x0 ∈ (x∗ − ε, x∗ + ε) implies that xt → x∗ for t → ∞. A
steady state x∗ > 0 is globally asymptotically stable if for all feasible x0 > 0, it
holds that xt → x∗ for t→∞.
Applying this definition on our difference equation kt+1 = ϕ(kt), we have:

PROPOSITION 4 (existence and stability of a steady state) Assume that the
No Fast Assumption (A1) and the Positive Slope assumption (A2) apply as well
as the Early Steepness Assumption (A3). Then there exists at least one steady
state k∗1 > 0 that is asymptotically stable. If kt does not converge to k∗1, kt
converges to another steady state. If there is only one steady state, it is globally
asymptotically stable. Oscillations never arise.

Proof. By (A1), Lemma 3 applies. From Proposition 2 we know that if (i) of
(A3) holds, then kt+1 = st/(1 + n) > 0 even for kt = 0. Alternatively, (ii) of (A3)
is enough to ensure that the transition curve lies above the 45◦ line for small kt.
According to (ii) of Lemma 5, for large kt the ceiling is below the 45◦ line. Being
below the ceiling, cf. Lemma 3, the transition curve must therefore cross the 45◦

line at least once. Let k∗1 denote the smallest kt at which it crosses. Then k
∗
1 > 0

20In (i) of (A3), the “steepness”is at k = 0 rather a “hop”if we imagine k approaching zero
from below.
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is a steady state with the property 0 < ϕ′ (k∗1) < 1. By graphical inspection we
see that this steady state is asymptotically stable. If it is the only (non-trivial)
steady state, we see it is globally asymptotically stable. Otherwise, if kt does not
converge to k∗1, kt converges to one of the other steady states. Indeed, divergence
is ruled out since, by Lemma 5, there exists k̄ > 0 such that w(k)/(1 +n) < k for
all k > k̄ (Fig. 3.7 illustrates). For oscillations to come about there must exist a
steady state, k∗∗, with ϕ′ (k∗∗) < 0, but this is impossible in view of (A2). �

Figure 3.7: A case of multiple steady states (and capital being not essential).

From Proposition 4 we conclude that, given k0, the assumptions (A1) - (A3)
ensure existence and uniqueness of an equilibrium path; moreover, the equilibrium
path converges towards some steady state. Thus with these assumptions, for any
k0 > 0, sooner or later the system settles down at some steady state k∗ > 0. For
the factor prices we therefore have

rt = f ′(kt)− δ → f ′(k∗)− δ ≡ r∗, and

wt = f(kt)− ktf ′(kt)→ f(k∗)− k∗f ′(k∗) ≡ w∗,

for t → ∞. But there may be more than one steady state and therefore only
local stability is guaranteed. This can be shown by examples, where the utility
function, the production function, and parameters are specified in accordance
with the assumptions (A1) - (A3) (see Exercise 3.5 and ...).
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Fig. 3.7 illustrates such a case (with f(0) > 0 so that capital is not essential).
Moving West-East in the figure, the first steady state, k∗1, is stable, the second,
k∗2, unstable, and the third, k

∗
3, stable. In which of the two stable steady states

the economy ends up depends on the initial capital-labor ratio, k0. The lower
steady state, k∗1, is known as a poverty trap. If 0 < k0 < k∗2, the economy is
caught in the trap and converges to the low steady state. But with high enough
k0 (k0 > k∗2), perhaps obtained by foreign aid, the economy avoids the trap and
converges to the high steady state. Looking back at Fig. 3.6, we can interpret
that figure’s scenario as exhibiting an inescapable poverty trap.
It turns out that CRRA utility combined with a Cobb-Douglas production

function ensures both that (A1) - (A3) hold and that a unique (non-trivial)
steady state exists. So in this case global asymptotic stability of the steady state
is ensured.21 Example 2 and Fig. 3.4 above display a special case of this, the
case θ = 1.
This is of course a convenient case for the analyst. A Diamond economy

satisfying assumptions (A1) - (A3) and featuring a unique steady state is called
a well-behaved Diamond economy.
We end this section with the question: Is it possible that aggregate consump-

tion, along an equilibrium path, for some periods exceeds aggregate income? We
shall see that this is indeed the case in this model if K0 (wealth of the old in the
initial period) is large enough. Indeed, from national accounting we have:

C10 + C20 = F (K0, L0)− I0 > F (K0, L0)⇔ I0 < 0

⇔ K1 < (1− δ)K0 ⇔ K0 −K1 > δK0.

So aggregate consumption in period 0 being greater than aggregate income is
equivalent to a fall in the capital stock from period 0 to period 1 greater than
the capital depreciation in period 0. Consider the log utility Cobb-Douglas case
in Fig. 3.4 and suppose δ < 1 and Lt = L0 = 1, i.e., n = 0. Then kt = Kt for all
t and by (3.35), Kt+1 = (1−α)A

2+ρ
Kα
t . Thus K1 < (1− δ)K0 for

K0 >

(
(1− α)A

(2 + ρ)(1− δ)

)1/(1−α)

.

As initial K is arbitrary, this situation is possible. When it occurs, it reflects
that the financial wealth of the old is so large that their consumption (recall
they consume all their financial wealth as well as the interest on this wealth)
exceeds what is left of current aggregate production after subtracting the amount
consumed by the young. So aggregate gross investment in the economy will be
negative. Of course this is only feasible if capital goods can be “eaten”or at least

21See last section of Appendix E.
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be immediately (without further resources) converted into consumption goods.
As it stands, the model has implicitly assumed this to be the case. And this is in
line with the general setup since the output good is assumed homogeneous and
can either be consumed or piled up as capital.
We now turn to effi ciency problems.

3.6 The golden rule and dynamic ineffi ciency

An economy described by the Diamond model has the property that even though
there is perfect competition and no externalities, the outcome brought about
by the market mechanism may not be Pareto optimal.22 Indeed, the economy
may overaccumulate forever and thus suffer from a distinctive form of production
ineffi ciency.
A key element in understanding the concept of overaccumulation is the con-

cept of a golden-rule capital-labor ratio. Overaccumulation occurs when aggregate
saving maintains a capital-labor ratio above the golden-rule value forever. Let us
consider these concepts in detail.
In the present section generally the period length is arbitrary except when

we relate to the Diamond model and the period length therefore is half of adult
lifetime.

The golden-rule capital-labor ratio

The golden rule is a concept that in itself relates to technically feasible paths
only. It does not involve the market form.
Consider the economy-wide resource constraint Ct = Yt − St = F (Kt, Lt) −

(Kt+1−Kt+δKt), where we assume that F is neoclassical with CRS. Accordingly,
aggregate consumption per unit of labor can be written

ct ≡
Ct
Lt

=
F (Kt, Lt)− (Kt+1 −Kt + δKt)

Lt
= f(kt) + (1− δ)kt − (1 + n)kt+1,

(3.41)
where k is the capital-labor ratioK/L. Note that Ct will generally be greater than
the workers’consumption. One should simply think of Ct as the flow of produced
consumption goods in the economy and ct as this flow divided by aggregate em-
ployment, including the labor that in period t produces investment goods. How

22Recall that a Pareto optimal path is a technically feasible path with the property that
no other technically feasible path will make at least one individual better off without making
someone else worse off. A technically feasible path which is not Pareto optimal is called Pareto
inferior.
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the consumption goods are distributed to different members of society is not our
concern here.

DEFINITION 6 By the golden-rule capital-labor ratio, kGR, is meant that value
of the capital-labor ratio k, which results in the highest possible sustainable level
of consumption per unit of labor.

Sustainability requires replicability forever. We therefore consider a steady
state. In a steady state kt+1 = kt = k so that (3.41) simplifies to

c = f(k)− (δ + n)k ≡ c(k). (3.42)

Maximizing gives the first-order condition

c′(k) = f ′(k)− (δ + n) = 0. (3.43)

In view of c′′(k) = f ′′(k) < 0, the condition (3.43) is both necessary and suffi cient
for an interior maximum. Let us assume that δ + n > 0 and that f satisfies the
condition

lim
k→∞

f ′(k) < δ + n < lim
k→0

f ′(k).

Then (3.43) has a solution in k, and it is unique because c′′(k) < 0. The solution
is called kGR so that

f ′(kGR)− δ = n.

That is:

PROPOSITION 5 (the golden rule) The highest sustainable consumption level
per unit of labor in society is obtained when in steady state the net marginal
productivity of capital equals the growth rate of the economy.

It follows that if a society aims at the highest sustainable level of consumption
and initially has k0 < kGR, society should increase its capital-labor ratio up to
the point where the extra output obtainable by a further small increase is exactly
offset by the extra gross investment needed to maintain the capital-labor ratio
at that level. The intuition is visible from (3.42). The golden-rule capital-labor
ratio, kGR, strikes the right balance in the trade-off between high output per unit
of labor and a not too high investment requirement. Although a steady state
with k > kGR would imply higher output per unit of labor, it would also imply
that a large part of that output is set aside for investment (namely the amount
(δ + n)k per unit of labor) to counterbalance capital depreciation and growth in
the labor force; without this investment the high capital-labor ratio k∗ would not
be maintained. With k > kGR this feature would dominate the first effect so that
consumption per unit of labor ends up low. Fig. 3.8 illustrates.
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Figure 3.8: A steady state with overaccumulation.

The name golden rule hints at the golden rule from the Bible: “Do unto others
as you would have them to do unto you.”We imagine that God asks the newly
born generation: “What capital-labor ratio would you prefer to be presented
with, given that you must hand over the same capital-labor ratio to the next
generation?”The appropriate answer is: the golden-rule capital-labor ratio.

The possibility of overaccumulation in a competitive market economy

The equilibrium path in the Diamond model with perfect competition implies an
interest rate r∗ = f ′(k∗)− δ in a steady state. As an implication,

r∗ T n⇔ f ′(k∗)− δ T n⇔ k∗ S kGR, respectively,

in view of f ′′ < 0. Hence, a long-run interest rate below the growth rate of the
economy indicates that k∗ > kGR. This amounts to a Pareto-inferior state of
affairs. Indeed, everyone can be made better off if by a coordinated reduction of
saving and investment, k is reduced. A formal demonstration of this is given in
connection with Proposition 6 in the next subsection. Here we give an account
in more intuitive terms.
Consider Fig. 3.8. Let k be gradually reduced to the level kGR by refrain-

ing from investment in period t0 and forward until this level is reached. When
this happens, let k be maintained at the level kGR forever by providing for the
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needed investment per young, (δ+ n)kGR. Then there would be higher aggregate
consumption in period t0 and every future period. Both the immediate reduction
of saving and a resulting lower capital-labor ratio to be maintained contribute to
this result. There is thus scope for both young and old to consume more in every
future period.
In the Diamond model a simple policy implementing such a Pareto improve-

ment in the case where k∗ > kGR (i.e., r∗ < n) is to incur a lump-sum tax on
the young, the revenue of which is immediately transferred lump sum to the old,
hence, fully consumed. Suppose this amounts to a transfer of one good from each
young to the old. Since there are 1 + n young people for each old person, every
old receives in this way 1 + n goods in the same period. Let this transfer be
repeated every future period. By decreasing their saving by one unit, the young
can maintain unchanged consumption in their youth, and when becoming old,
they receive 1 + n goods from the next period’s young and so on. In effect, the
“return”on the tax payment by the young is 1 + n next period. This is more
than the 1 + r∗ that could be obtained via the market through own saving.23

A proof that k∗ > kGR is indeed theoretically possible in the Diamond model
can be based on the log utility-Cobb-Douglas case from Example 2 in Section
3.5.3. As indicated by the formula for r∗ in that example, the outcome r∗ < n,
which is equivalent to k∗ > kGR, can always be obtained by making the parameter
α ∈ (0, 1) in the Cobb-Douglas function small enough. The intuition is that a
small α implies a large 1−α and so a large wage income, wL = (1−α)KαL−α ·L
= (1 − α)Y. This leads to high saving by the young, since sw > 0. The result is
a high kt+1 which generates a high real wage also next period and may in this
manner be sustained forever.
An intuitive understanding of the fact that the perfectly competitive market

mechanism may thus lead to overaccumulation, can be based on the following
argument. Assume, first, that sr < 0. In this case, if the young in period t
expects the rate of return on their saving to end up small (less than n), the
decided saving will be large in order to provide for consumption after retirement.
But the aggregate result of this behavior is a high kt+1 and therefore a low f ′(kt+1).
In this way the expectation of a low rt+1 is confirmed by the actual events. The
young persons each do the best they can as atomistic individuals, taking the
market conditions as given. Yet the aggregate outcome is an equilibrium with
overaccumulation, hence a Pareto-inferior outcome.

23In this model with no utility of leisure, a tax on wage income, or a mandatory pay-as-you-go
pension contribution (see Chapter 5), would act like a lump-sum tax on the young.
The described tax-transfers policy will affect the equilibrium interest rate negatively. By

choosing an appropriate size of the tax this policy, combined with competitive markets, will
under certain conditions (see Chapter 5.1) bring the economy to the golden-rule steady state
where overaccumulation has ceased and r∗ = n.
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Looking at the issue more closely, we see that sr < 0 is not crucial for this
outcome. Suppose sr = 0 (the log utility case) and that in the current period,
kt is, for some historical reason, at least temporarily considerably above kGR.
Thus, current wages are high, hence, st is relatively high (there is in this case no
offsetting effect on st from the relatively low expected rt+1). Again, the aggregate
result is a high kt+1 and thus the expectation is confirmed. Consequently, the
situation in the next period is the same and so on. By continuity, even if sr > 0,
the argument goes through as long as sr is not too large.

Dynamic ineffi ciency and the double infinity

The overaccumulation phenomenon is an example of dynamic ineffi ciency.

DEFINITION 7 A technically feasible path {(ct, kt)}∞t=0 with the property that
there does not exist another technically feasible path with higher ct in some
periods without smaller ct in other periods is called dynamically effi cient. A
technically feasible path {(ct, kt)}∞t=0 which is not dynamically effi cient is called
dynamically ineffi cient.

PROPOSITION 6 A technically feasible path {(ct, kt)}∞t=0 with the property that
for t→∞, kt → k∗ > kGR, is dynamically ineffi cient.

Proof. Let k∗ > kGR. Then there exists an ε > 0 such that k ∈ (k∗ − 2ε, k∗ + 2ε)
implies f ′(k)− δ < n since f ′′ < 0. By concavity of f,

f(k)− f(k − ε) ≤ f ′(k − ε)ε. (3.44)

Consider a technically feasible path {(ct, kt)}∞t=0 with kt → k∗ for t → ∞ (the
reference path). Then there exists a t0 such that for t ≥ t0, kt ∈ (k∗ − ε, k∗ + ε),
f ′(kt) − δ < n and f ′(kt − ε) − δ < n. Consider an alternative feasible path{

(ĉt, k̂t)
}∞
t=0

, where a) for t = t0 consumption is increased relative to the reference

path such that k̂t0+1 = kt0 − ε; and b) for all t > t0, consumption is such that
k̂t+1 = kt− ε.We now show that after period t0, ĉt > ct. Indeed, for all t > t0, by
(3.41),

ĉt = f(k̂t) + (1− δ)k̂t − (1 + n)k̂t+1

= f(kt − ε) + (1− δ)(kt − ε)− (1 + n)(kt+1 − ε)
≥ f(kt)− f ′(kt − ε)ε+ (1− δ)(kt − ε)− (1 + n)(kt+1 − ε) (by (3.44))

> f(kt)− (δ + n)ε+ (1− δ)kt − (1 + n)kt+1 + (δ + n)ε

= f(kt) + (1− δ)kt − (1 + n)kt+1 = ct,

by (3.41). �
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Moreover, it can be shown24 that:

PROPOSITION 7 A technically feasible path {(ct, kt)}∞t=0 such that for t→∞,
kt → k∗ ≤ kGR, is dynamically effi cient.

Accordingly, a steady state with k∗ < kGR is never dynamically ineffi cient.
This is because increasing k from this level always has its price in terms of a
decrease in current consumption; and at the same time decreasing k from this
level always has its price in terms of lost future consumption. But a steady state
with k∗ > kGR is always dynamically ineffi cient. Intuitively, staying forever with
k = k∗ > kGR, implies that society never enjoys its great capacity for producing
consumption goods.
The fact that k∗ > kGR − and therefore dynamic ineffi ciency− cannot be ruled

out might seem to contradict the First Welfare Theorem from the microeconomic
theory of general equilibrium. This is the theorem saying that under certain
conditions, market equilibria are Pareto optimal. Included in these conditions
are that increasing returns to scale are absent, there are no missing markets,
markets are competitive, no goods are of public good character, and there are no
externalities. An additional (but not always underlined) condition for the First
Welfare Theorem is that there is a finite number of periods or, if the number of
periods is infinite, a finite number of agents. In contrast, in the OLG model there
is a double infinity: an infinite number of periods and agents. Hence, the First
Welfare Theorem breaks down. Indeed, the case r∗ < n, i.e., k∗ > kGR, can arise
under laissez-faire. Then, as we have seen, everyone can be made better off by a
coordinated intervention by some social arrangement (a government for instance)
such that k is reduced.
The essence of the matter is that the double infinity opens up for technically

feasible reallocations which are definitely beneficial when r∗ < n and which a
central authority can accomplish but the market can not. That nobody need
loose by the described kind of redistribution is due to the double infinity: the
economy goes on forever and there is no last generation. Nonetheless, some kind
of centralized coordination is required to accomplish a solution.
There is an analogy in “Gamow’s bed problem”: There are an infinite number

of inns along the road, each with one bed. On a certain rainy night all innkeepers
have committed their beds. A late guest comes to the first inn and asks for a
bed. “Sorry, full up!”But the minister of welfare hears about it and suggests
that from each inn one incumbent guest moves down the road one inn.25

Whether the theoretical possibility of overaccumulation should be a matter of
practical concern is an empirical question about the relative size of rates of return
24Cass (1972).
25George Gamow (1904-1968) was a Russian physicist. The problem is also known as Hilbert’s

hotel problem, after the German mathematician David Hilbert (1862-1943).
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and economic growth. To answer the question meaningfully, we need an extension
of the criterion for overaccumulation so that the presence of technological progress
and rising per capita consumption in the long run can be taken into account. This
is one of the topics of the next chapter. At any rate, we can already here reveal
that there exists no indication that overaccumulation has historically been an
actual problem in industrialized market economies.
A final remark before concluding. Proposition 5 about the golden rule can be

generalized to the case where instead of one there are n different capital goods in
the economy. Essentially the generalization says that assuming CRS-neoclassical
production functions with n different capital goods as inputs, one consumption
good, no technological change, and perfectly competitive markets, a steady state
in which per-unit-of labor consumption is maximized has interest rate equal to
the growth rate of the labor force when technological progress is ignored (see,
e.g., Mas-Colell, 1989).

3.7 Concluding remarks

There exist several basic long-run models in macroeconomics. Diamonds OLG
model is one of them. Its strengths include:

• The life-cycle aspect of human behavior is taken into account. Although the
economy is infinitely-lived, the individual agents are not. During lifetime
one’s working capacity, income, and needs change and this is reflected in the
individual labor supply and saving behavior. The aggregate implications of
the life-cycle behavior of coexisting individual agents at different stages in
their life is at the centre of attention.

• The model takes elementary forms of heterogeneity in the population into
account − there are “old”and “young”, there are the currently-alive people
and the future generations whose preferences are not reflected in current
market transactions. Questions relating to the distribution of income and
wealth across generations can be studied. The possibility of coordination
failure on a grand scale is laid bare.

Regarding analytical tractability, comparing with the basic representative
agent model (the Ramsey model of Chapter 10), the complexity in the OLG
model, implied by having in every period two different coexisting generations, is
in some respects more than compensated by the fact that the finite time horizon
of the households make the dynamics of the model one-dimensional : we end up
with a first-order difference equation in the capital-labor ratio, kt. In contrast,
the dynamics of the basic representative agent model is two-dimensional (owing
to the assumed infinite horizon of the households).
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3.8 Literature notes

1. The Nobel Laureate Paul A. Samuelson (1915-2009) is one of the pioneers
of OLG models. Building on the French economist and Nobel laureate Maurice
Allais (1911-2010), a famous article by Samuelson, from 1958, is concerned with
a missing market problem. Imagine a two-period OLG economy where, as in the
Diamond model, only the young have an income (by Samuelson simplifying con-
sidered an exogenous endowment of consumption goods from heaven). Contrary
to the Diamond model, however, there is no capital. Also other potential stores of
value are absent. Then, in the laissez-faire market economy the old have to starve
because they can no longer work and had no possibility of saving - transferring
income - as young.
The allocation of resources in the economy is Pareto-inferior. Indeed, if each

member of the young generation hands over to the old generation one unit of
consumption, and this is next period repeated by the new young generation and
so on in the future, everyone will be better off. Since for every old there are 1 +n
young, the implied rate of return would be n, the population growth rate. Such
transfers do not arise under laissez-faire. A kind of social contract is required. As
Samuelson pointed out, a government could in period 0 issue paper money and
transfer these money notes to the members of the old generation who would then
use them to buy goods from the young. Provided the young believed the notes
to be valuable in the next period, they would accept them in exchange for some
of their goods in order to use them in the next period for buying from the new
young generation etc.
We have here an example of how a social institution can solve a coordination

problem.26

2. Diamond (1965) extended Samuelson’s contribution by adding capital ac-
cumulation. Because of its antecedents Diamonds OLGmodel is sometimes called
the Samuelson-Diamond model or the Allais-Samuelson-Diamond model. In our
exposition we have drawn upon clarifications by Galor and Ryder (1989) and
de la Croix and Michel (2002). The last mentioned contribution is an extensive
exploration of discrete-time OLG models and their applications. An advanced
and thorough treatment from a microeconomic general equilibrium perspective is
contained in Bewley (2007).
3. The life-cycle saving hypothesis was put forward by Franco Modigliani

(1918-2003) and associates in the 1950s. See for example Modigliani and Brum-
berg (1954). Numerous extensions of the framework, relating to the motives (b)
- (e) in the list of Section 3.1, see for instance de la Croix and Michel (2002).

26To just give a flavor of Samuelson’s contribution we have here ignored several aspects,
including that Samuelson assumed three periods of life.
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4. A review of the empirics of life-cycle behavior and attempts at refining
life-cycle models are given in Browning and Crossley (2001).
5. Regarding the dynamic effi ciency issue, both the propositions 6 and 7 were

shown in a stronger form by the American economist David Cass (1937-2008).
Cass established the general necessary and suffi cient condition for a feasible path
{(ct, kt)}∞t=0 to be dynamically effi cient (Cass 1972). Our propositions 6 and 7 are
more restrictive in that they are limited to paths that converge. Partly intuitive
expositions of the deeper aspects of the theory are given by Shell (1971) and
Burmeister (1980).
6. Diamond has also contributed to other fields of economics, including search

theory for labor markets. In 2010 Diamond, together with Dale Mortensen and
Christopher Pissarides, was awarded the Nobel price in economics.
7. The fact that multiple self-fulfilling equilibrium paths are in several con-

texts theoretically possible has attracted considerable attention in certain busi-
ness cycle theories. “Optimism”may result in economic booms and “pessimism”
in economic busts, see, e.g., Farmer (2010), which gives an introduction for gen-
eral readers. We shall have more to say about this literature in Part VI.
From here very incomplete:
The two-period structure of Diamonds OLG model leaves little room for con-

sidering, e.g., education and dissaving in the early years of life. This kind of issues
is taken up in three-period extensions of the Diamond model, see de la Croix and
Michell (2002).
Dynamic ineffi ciency, see also Burmeister (1980).
Bewley 1977, 1980.
Two-sector OLG: Galor (1992). Galor’s book on difference equations.
On the golden rule in a general setup, see Mas-Colell (1989).

3.9 Appendix

A. On CRRA utility

Derivation of the CRRA function Consider a utility function u(c), defined
for all c > 0 and satisfying u′(c) > 0, u′′(c) < 0. Let the absolute value of
the elasticity of marginal utility be denoted θ(c), that is, θ(c) ≡ −cu′′(c)/u′(c)
> 0. We claim that if θ(c) is a positive constant, θ, then, up to a positive linear
transformation, u(c) must be of the form

u(c) =

{
c1−θ

1−θ , when θ 6= 1,

ln c, when θ = 1,
(*)

i.e., of CRRA form.
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Proof. Suppose θ(c) = θ > 0. Then, u′′(c)/u′(c) = −θ/c. By integration, lnu′(c)
= −θ ln c+A, where A is an arbitrary constant. Take the antilogarithm function
on both sides to get u′(c) = eAe−θ ln c = eAc−θ. By integration we get

u(c) =

{
eA c

1−θ

1−θ +B, when θ 6= 1,

eA ln c+B, when θ = 1,

where B is an arbitrary constant. This proves the claim. Letting A = B = 0, we
get (*). �
When we want to make the kinship between the members of the “CRRA

family”transparent, we maintain A = 0 and for θ = 1 also B = 0, whereas for
θ 6= 1 we set B = −1/(1 − θ). In this way we achieve that all members of the
CRRA family will be represented by curves going through the same point as the
log function, namely the point (1, 0), cf. Fig. 3.2. For a particular θ > 0, θ 6= 1,
we have u(c) = (c1−θ − 1)/(1 − θ), which makes up the CRRA utility function
in normalized form. Given θ, the transformation to normalized form is of no
consequence for the economic behavior since adding or subtracting a constant
does not affect marginal rates of substitution.

The domain of the CRRA function From an economic point of view it is
desirable that the domain of our utility functions include c = 0. Starvation is
a real-life possibility. Right away, if θ ≥ 1, the CRRA function, whether in the
form u(c) = (c1−θ−1)/(1− θ) or in the form (*), is defined only for c > 0. This is
because for c→ 0 we get u(c)→ −∞. In this case we simply define u(0) = −∞.
This is a natural extension since the CRRA function anyway has the property
that u′(c) → ∞, when c → 0 (whether θ is larger or smaller than one). The
marginal utility thus becomes very large as c becomes very small, that is, the No
Fast Assumption is satisfied. This will ensure that the chosen c is strictly positive
whenever there is a positive budget. And the case of a zero budget, leading to
zero consumption, is not ruled out. So throughout this book we define the domain
of the CRRA function to be [0,∞) .

The range of the CRRA function Considering the CRRA function u(c) ≡(
c1−θ − 1

)
(1− θ)−1 for c ∈ [0,∞) , we have:

for 0 < θ < 1, the range of u(c) is
[
−(1− θ)−1,∞

)
,

for θ = 1, the range of u(c) is [−∞,∞) ,

for θ > 1, the range of u(c) is [−∞,−(1− θ)−1).

Thus, in the latter case u(c) is bounded from above and so allows asymptotic
“satiation”to occur.
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B. Deriving the elasticity of intertemporal substitution in consumption

Referring to Section 3.3, we here show that the definition of σ(c1, c2) in (3.17)
gives the result (3.18). Let x ≡ c2/c1 and β ≡ (1 + ρ)−1. Then the first-order
condition (3.16) and the equation describing the considered indifference curve
constitute a system of two equations

u′(c1) = βu′(xc1)R,

u(c1) + βu(xc1) = Ū .

For a fixed utility level U = Ū these equations define c1 and x as implicit functions
of R, c1 = c(R) and x = x(R). We calculate the total derivative with respect to
R in both equations and get, after ordering,

[u′′(c1)− βRu′′(xc1)x] c′(R)− βRu′′(xc1)c1x
′(R)

= βu′(xc1), (3.45)

[u′(c1) + βu′(xc1)x] c′(R) = −βu′(xc1)c1x
′(R). (3.46)

Substituting c′(R) from (3.46) into (3.45) and ordering now yields

−
[
x
c1u
′′(c1)

u′(c1)
+R

xc1u
′′(xc1)

u′(xc1)

]
R

x
x′(R) = x+R.

Since −cu′′(c)/u′(c) ≡ θ(c), this can be written

R

x
x′(R) =

x+R

xθ(c1) +Rθ(xc1)
.

Finally, in view of xc1 = c2 and the definition of σ(c1, c2), this gives (3.18).

C. Walras’law

In the proof of Proposition 1 we referred to Walras’law. Here is how Walras’law
works in each period in a model like this. We consider period t, but for simplicity
we skip the time index t on the variables. There are three markets, a market
for capital services, a market for labor services, and a market for output goods.
Suppose a “Walrasian auctioneer”calls out the price vector (r̂, w, 1), where r̂ > 0
and w > 0, and asks all agents, i.e., the young, the old, and the representative
firm, to declare their supplies and demands.
The supplies of capital and labor are by assumption inelastic and equal to K

units of capital services and L units of labor services. But the demand for capital
and labor services depends on the announced r̂ and w. Let the potential pure
profit of the representative firm be denoted Π. If r̂ and w are so that Π < 0, the
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firm declares Kd = 0 and Ld = 0. If on the other hand at the announced r̂ and
w, Π = 0 (as when r̂ = r(k) + δ and w = w(k)), the desired capital-labor ratio is
given as kd = f ′−1(r̂) from (3.20), but the firm is indifferent with respect to the
absolute level of the factor inputs. In this situation the auctioneer tells the firm
to declare Ld = L (recall L is the given labor supply) and Kd = kdLd which is
certainly acceptable for the firm. Finally, if Π > 0, the firm is tempted to declare
infinite factor demands, but to avoid that, the auctioneer imposes the rule that
the maximum allowed demands for capital and labor are 2K and 2L, respectively.
Within these constraints the factor demands will be uniquely determined by r̂
and w and we have

Π = Π(r̂, w, 1) = F (Kd, Ld)− r̂Kd − wLd. (3.47)

The owners of both the capital stock K and the representative firm must be
those who saved in the previous period, namely the currently old. These elderly
will together declare the consumption c2L−1 = (1 + r̂ − δ)K + Π and the net
investment −K (which amounts to disinvestment). The young will declare the
consumption c1L = wL− s(w, re+1)L and the net investment sL = s(w, re+1)L. So
aggregate declared consumption will be C = (1 + r̂− δ)K + Π +wL− s(w, re+1)L
and aggregate net investment I − δK = s(w, re+1)L − K. It follows that C + I
= wL + r̂K + Π. The aggregate declared supply of output is Y s = F (Kd, Ld).
The values of excess demands in the three markets now add to

Z(r̂, w, 1) ≡ w(Ld − L) + r̂(Kd −K) + C + I − Y s

= wLd − wL+ r̂Kd − r̂K + wL+ r̂K + Π− F (Kd, Ld)

= wLd + r̂Kd + Π− F (Kd, Ld) = 0,

by (3.47).
This is a manifestation of Walras’law for each period: whatever the announced

price vector for the period is, the aggregate value of excess demands in the period
is zero. The reason is the following. When each household satisfies its budget
constraint and each firm pays out its ex ante profit,27 then the economy as a
whole has to satisfy an aggregate budget constraint for the period considered.
The budget constraints, demands, and supplies operating in this thought ex-

periment (and in Walras’law in general) are the Walrasian budget constraints,
demands, and supplies. Outside equilibrium these are somewhat artificial con-
structs. A Walrasian budget constraint is based on the assumption that the
desired actions can be realized. This assumption will be wrong unless r̂ and w
are already at their equilibrium levels. But the assumption that desired actions

27By ex ante profit is meant the hypothetical profit calculated on the basis of firms’desired
supply evaluated at the announced price vector, (r̂, w, 1).
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can be realized is never falsified because the thought experiment does not allow
trades to take place outside Walrasian equilibrium. Similarly, the Walrasian con-
sumption demand by the worker is rather hypothetical outside equilibrium. This
demand is based on the income the worker would get if fully employed at the
announced real wage, not on the actual employment (or unemployment) at that
real wage.
These ambiguities notwithstanding, the important message of Walras’ law

goes through, namely that when two of the three markets clear (in the sense of
the Walrasian excess demands being nil), so does the third.

D. Proof of (i) and (ii) of Proposition 2

For convenience we repeat the fundamental difference equation characterizing an
equilibrium path:

kt+1 =
s (w (kt) , r (kt+1))

1 + n
,

where w(k) ≡ f(k)− f ′(k)k > 0 for all k > 0 and r(k) ≡ f ′(k)− δ > −1 for all
k ≥ 0. The key to the proof of Proposition 2 about existence of an equilibrium
path is the following lemma.

LEMMA D1 Suppose the No Fast Assumption (A1) applies and let w > 0 and
n > −1 be given. Then the equation

s (w, r (k))

k
= 1 + n. (3.48)

has at least one solution k > 0.

Proof. Note that 1 + n > 0. From Lemma 1 in Section 3.3 follows that for all
possible values of r(k), 0 < s(w, r(k)) < w. Hence, for any k > 0,

0 <
s (w, r (k))

k
<
w

k
.

Letting k → ∞ we then have s (w, r (k)) /k → 0 since s (w, r (k)) /k is squeezed
between 0 and 0 (as indicated in the two graphs in Fig. 3.9).
Next we consider k → 0. There are two cases.
Case 1: limk→0 s (w, r (k)) > 0.28 Then obviously limk→0 s (w, r (k)) /k =∞.

28If the limit does not exist, the proof applies to the limit inferior of s (w, r (k)) for k → 0.
The limit inferior for i→∞ of a sequence {xi}∞i=0 is defined as limi→∞ inf {xj | j = i, i+1, . . . } ,
where inf of a set Si = {xj | j = i, i+ 1, . . . } is defined as the greatest lower bound for Si.
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Figure 3.9: Existence of a solution to equation (3.48).

Case 2: limk→0 s (w, r (k)) = 0.29 In this case we have

lim
k→0

r (k) =∞. (3.49)

Indeed, since f ′(k) rises monotonically as k → 0, the only alternative would be
that limk→0 r (k) exists and is <∞; then, by Lemma 1 in Section 3.3, we would
be in case 1 rather than case 2. By the second-period budget constraint, with
r = r(k), consumption as old is c2 = s (w, r (k)) (1 + r(k)) ≡ c(w, k) > 0 so that

s (w, r (k))

k
=

c(w, k)

[1 + r(k)] k
.

The right-hand side of this equation goes to∞ for k → 0 since limk→0 [1 + r(k)] k =
0 by Technical Remark in Section 3.4 and limk→0 c(w, k) = ∞; this latter fact
follows from the first-order condition (3.8), which can be written

0 ≤ u′(c(w, k)) = (1 + ρ)
u′(w − s(w, r(k))

1 + r(k)
≤ (1 + ρ)

u′(w)

1 + r(k)
.

Taking limits on both sides gives

lim
k→0

u′(c(w, k)) = (1 + ρ) lim
k→0

u′(w − s (w, r (k)))

1 + r(k)
= (1 + ρ) lim

k→0

u′(w)

1 + r(k)
= 0,

where the second equality comes from the fact that we are in case 2 and the
third comes from (3.49). But since u′(c) > 0 and u′′(c) < 0 for all c > 0,
limk→0 u

′(c(w, k)) = 0 requires limk→0 c(w, k) =∞, as was to be shown.
In both Case 1 and Case 2 we thus have that k → 0 implies s (w, r (k)) /k →

∞. Since s (w, r (k)) /k is a continuous function of k, there must be at least one
k > 0 such that (3.48) holds (as illustrated by the two graphs in Fig. 3.14). �
29If the limit does not exist, the proof applies to the limit inferior of s (w, r (k)) for k → 0.
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Now, to prove (i) of Proposition 2, consider an arbitrary kt > 0. We have
w(kt) > 0. In (3.48), let w = w(kt). By Lemma C1, (3.48) has a solution k > 0.
Set kt+1 = k. Starting with t = 0, from a given k0 > 0 we thus find a k1 > 0 and
letting t = 1, from the now given k1 we find a k2 and so on. The resulting infinite
sequence {kt}∞t=0 is an equilibrium path. In this way we have proved existence of
an equilibrium path if k0 > 0. Thereby (i) of Proposition 2 is proved.
But what if k0 = 0? Then, if f(0) = 0, no temporary equilibrium is possible in

period 0, in view of (ii) of Proposition 1; hence there can be no equilibrium path.
Suppose f(0) > 0. Then w(k0) = w(0) = f(0) > 0, as explained in Technical
Remark in Section 3.4. Let w in equation (3.48) be equal to f(0). By Lemma
C1 this equation has a solution k > 0. Set k1 = k. Letting period 1 be the new
initial period, we are back in the case with initial capital positive. This proves
(ii) of Proposition 2.

E. Suffi cient conditions for certain properties of the transition curve

Positive slope everywhere For convenience we repeat here the condition
(3.36):

1

1− γ >
1− σ

1 + (1 + ρ)−σ(1 + f ′(k)− δ)σ−1
, (*)

where we have substituted σ ≡ 1/θ. In Section 3.5.3 we claimed that in the
CRRA-CES case this condition is suffi cient for the transition curve to be posi-
tively sloped everywhere. We here prove the claim.
Consider an arbitrary kt > 0 and let w ≡ w(kt) > 0. Knowing that w′(kt) > 0

for all kt > 0, we can regard kt+1 as directly linked to w. With k representing
kt+1, k must satisfy the equation k = s(w, r(k))/(1 + n). A suffi cient condition
for this equation to implicitly define k as an increasing function of w is also a
suffi cient condition for the transition curve to be positively sloped for all kt > 0.
When u(c) belongs to the CRRA class, by (3.15) with σ ≡ 1/θ, we have

s(w, r(k)) = [1 + (1 + ρ)σ(1 + r(k))1−σ]
−1
w. The equation k = s(w, r(k))/(1+n)

then implies
w

1 + n
= k

[
1 + (1 + ρ)σR(k)1−σ] ≡ h(k), (3.50)

where R(k) ≡ 1 + r(k) ≡ 1 + f ′(k)− δ > 0 for all k > 0. It remains to provide a
suffi cient condition for obtaining h′(k) > 0 for all k > 0. We have

h′(k) = 1 + (1 + ρ)σR(k)1−σ [1− (1− σ)η(k)] , (3.51)

since η(k) ≡ −kR′(k)/R(k) > 0, the sign being due to R′(k) = f ′′(k) < 0. So
h′(k) > 0 if and only if 1−(1−σ)η(k) > −(1+ρ)−σR(k)σ−1, a condition equivalent
to

1

η(k)
>

1− σ
1 + (1 + ρ)−σR(k)σ−1

. (3.52)
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To make this condition more concrete, consider the CES production function

f(k) = A(αkγ + 1− α), A > 0, 0 < α < 1, γ < 1. (3.53)

Then f ′(k) = αAγ(f(k)/k)1−γ and defining π(k) ≡ f ′(k)k/f(k) we find

η(k) = (1− γ)
(1− π(k))f ′(k)

1− δ + f ′(k)
≤ (1− γ)(1− π(k)) < 1− γ, (3.54)

where the first inequality is due to 0 ≤ δ ≤ 1 and the second to 0 < π(k) < 1,
which is an implication of strict concavity of f combined with f(0) ≥ 0. Thus,
η(k)−1 > (1 − γ)−1 so that if (*) holds for all k > 0, then so does (3.52), i.e.,
h′(k) > 0 for all k > 0. We have hereby shown that (*) is suffi cient for the
transition curve to be positively sloped everywhere.

Transition curve steep for k small Here we specialize further and consider
the CRRA-Cobb-Douglas case: u(c) = (c1−θ−1)/(1−θ), θ > 0, and f(k) = Akα,
A > 0, 0 < α < 1. In the prelude to Proposition 4 in Section 3.5 it was claimed
that if this combined utility and technology condition holds at least for small k,
then (ii) of (A3) is satisfied. We now show this.
Letting γ → 0 in (3.53) gives the Cobb-Douglas function f(k) = Akα (this

is proved in the appendix to Chapter 4). With γ = 0, clearly (1 − γ)−1 = 1
> 1 − σ, where σ ≡ θ−1 > 0. This inequality implies that (*) above holds and
so the transition curve is positively sloped everywhere. As an implication there
is a transition function, ϕ, such that kt+1 = ϕ(kt), ϕ

′(kt) > 0. Moreover, since
f(0) = 0, we have, by Lemma 5, limkt→0 ϕ(kt) = 0.
Given the imposed CRRA utility, the fundamental difference equation of the

model is

kt+1 =
w(kt)

(1 + n) [1 + (1 + ρ)σR(kt+1)1−σ]
(3.55)

or, equivalently,

h(kt+1) =
w(kt)

1 + n
,

where h(kt+t) is defined as in (3.50). By implicit differentiation we find h′(kt+1)ϕ′(kt)
= w′(kt)/(1 + n), i.e.,

ϕ′(kt) =
w′(kt)

(1 + n)h′(kt+1)
> 0.

If k∗ > 0 is a steady-state value of kt, (3.55) implies

1 + (1 + ρ)σR(k∗)1−σ =
w(k∗)

(1 + n)k∗
, (3.56)
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and the slope of the transition curve at the steady state will be

ϕ′(k∗) =
w′(k∗)

(1 + n)h′(k∗)
> 0. (3.57)

If we can show that such a k∗ > 0 exists, is unique, and implies ϕ′(k∗) < 1, then
the transition curve crosses the 45◦ line from above, and so (ii) of (A3) follows in
view of limkt→0 = 0.
Defining x(k) ≡ f(k)/k = Akα−1, where x′(k) = (α− 1)Akα−2 < 0, and using

that f(k) = Akα, we have R(k) = 1 + αx(k) − δ and w(k)/k = (1 − α)x(k).
Hence, (3.56) can be written

1 + (1 + ρ)σ(1 + αx∗ − δ)1−σ =
1− α
1 + n

x∗, (3.58)

where x∗ = x(k∗). It is easy to show graphically that this equation has a unique
solution x∗ > 0 whether σ < 1, σ = 1, or σ > 1. Then k∗ = (x∗/A)1/(α−1) > 0 is
also unique.
By (3.51) and (3.58),

h′(k∗) = 1 + (
1− α
1 + n

x∗ − 1) [1− (1− σ)η(k∗)] > 1 + (
1− α
1 + n

x∗ − 1)(1− η(k∗))

≥ 1 + (
1− α
1 + n

x∗ − 1)α,

where the first inequality is due to σ > 0 and the second to the fact that η(k) ≤
1− α in view of (3.54) with γ = 0 and π(k) = α. Substituting this together with
w′(k∗) = (1− α)αx∗ into (3.57) gives

0 < ϕ′(k∗) <
αx∗

1 + n+ αx∗
< 1, (3.59)

as was to be shown.

The CRRA-Cobb-Douglas case is well-behaved For the case of CRRA
utility and Cobb-Douglas technology with CRS, existence and uniqueness of a
steady state has just been proved. Asymptotic stability follows from (3.59). So
the CRRA-Cobb-Douglas case is well-behaved.

3.10 Exercises

3.1 The dynamic accounting relation for a closed economy is

Kt+1 = Kt + SN (*)
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where Kt is the aggregate capital stock and SNt is aggregate net saving. In the
Diamond model, let S1t be aggregate net saving of the young in period t and
S2t aggregate net saving of the old in the same period. On the basis of (*)
give a direct proof that the link between two successive periods takes the form
kt+1 = st/(1+n), where st is the saving of each young, n is the population growth
rate, and kt+1 is the capital/labor ratio at the beginning of period t + 1. Hint:
by definition, the increase in financial wealth is the same as net saving (ignoring
gifts).

3.2 Suppose the production function in Diamond’s OLG model is Y = A(αKγ +
(1−α)Lγ)1/γ, A > 0, 0 < α < 1, γ < 0, and Aα1/γ < 1+n. a) Given k ≡ K/L, find
the equilibrium real wage, w(k). b) Show that w(k) < (1+n)k for all k > 0. Hint:
consider the roof. c) Comment on the implication for the long-run evolution of
the economy. Hint: consider the ceiling.

3.3 (multiple temporary equilibria with self-fulfilling expectations) Fig. 3.10
shows the transition curve for a Diamond OLG model with u(c) = c1−θ/(1− θ),
θ = 8, ρ = 0.4, n = 0.2, δ = 0.6, f(k) = A(bkp + 1 − b)1/p, A = 7, b = 0.33,
p = −0.4.

a) Let t = 0. For a given k0 slightly below 1, how many temporary equilibria
with self-fulfilling expectations are there?

b) Suppose the young in period 0 expect the real interest rate on their saving
to be relatively low. Describe by words the resulting equilibrium path in
this case. Comment (what is the economic intuition behind the path?).

c) In the first sentence under b), replace “low”by “high”. How is the answer
to b) affected? What kind of diffi culty arises?

3.4 (plotting the transition curve by MATLAB) This exercise requires compu-
tation on a computer. You may use MATLAB OLG program.30

a) Enter the model specification from Exercise 3.3 and plot the transition
curve.

b) Plot examples for two other values of the substitution parameter: p = −1.0
and p = 0.5. Comment.

c) Find the approximate largest lower bound for p such that higher values of
p eliminates multiple equilibria.

30Made by Marc P. B. Klemp and available at the address:
http://www.econ.ku.dk/okocg/Computation/.
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Figure 3.10: Transition curve for Diamond’s OLG model in the case described in Ex-
ercise 3.3.

d) In continuation of c), what is the corresponding elasticity of factor substi-
tution, ψ? Hint: as shown in §4.4, the formula is ψ = 1/(1− p).

e) The empirical evidence for industrialized countries suggests that 0.4 < ψ <
1.0. Is your ψ from d) empirically realistic? Comment.

3.5 (one stable and one unstable steady state) Consider the following Diamond
model: u(c) = ln c, ρ = 2.3, n = 2.097, δ = 1.0, f(k) = A(bkp + 1− b)1/p, A = 20,
b = 0.5, p = −1.0.

a) Plot the transition curve of the model. Hint: you may use either a program
like MATLAB OLG Program (available on the course website) or first a
little algebra and then Excel (or similar simple software).

b) Comment on the result you get. Will there exist a poverty trap? Why or
why not?

c) At the stable steady state calculate numerically the output-capital ratio,
the aggregate saving-income ratio, the real interest rate, and the capital
income share of gross national income.
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d) Briefly discuss how your results in c) comply with your knowledge of cor-
responding empirical magnitudes in industrialized Western countries?

e) There is one feature which this model, as a long-run model, ought to incor-
porate, but does not. Extend the model, taking this feature into account,
and write down the fundamental difference equation for the extended model
in algebraic form.

f) Plot the new transition curve. Hint: given the model specification, this
should be straightforward if you use Excel (or similar); and if you use MAT-
LAB OLG Program, note that by a simple “trick”you can transform your
new model into the “old”form.

g) The current version of the MATLAB OLG Program is not adapted to this
question. So at least here you need another approach, for instance based on
a little algebra and then Excel (or similar simple software). Given k0 = 10,
calculate numerically the time path of kt and plot the time profile of kt, i.e.,
the graph (t, kt) in the tk-plane. Next, do the same for k0 = 1. Comment.

3.6 (dynamics under myopic foresight)
(incomplete) Show the possibility of a chaotic trajectory.

3.7 Given the period utility function is CRRA, derive the saving function of the
young in Diamond’s OLG model. Hint: substitute the period budget constraints
into the Euler equation.

3.8 Short questions a) A steady-state capital-labor ratio can be in the “dy-
namically effi cient” region or in the “dynamically ineffi cient” region. How are
the two mentioned regions defined? b) Give a simple characterization of the two
regions. c) The First Welfare Theorem states that, given certain conditions, any
competitive equilibrium (≡Walrasian equilibrium) is Pareto optimal. Give a list
of circumstances that each tend to obstruct Pareto optimality of a competitive
equilibrium.

3.9 Consider a Diamond OLG model for a closed economy. Let the utility
discount rate be denoted ρ and let the period utility function be specified as
u (c) = ln c.

a) Derive the saving function of the young. Comment.

b) Let the aggregate production function be a neoclassical production function
with CRS and ignore technological progress. Let Lt denote the number of
young in period t. Derive the fundamental difference equation of the model.

c© Groth, Lecture notes in macroeconomics, (mimeo) 2017.



3.10. Exercises 125

From now, assume that the production function is Y = αL+ βKL/(K + L),
where α > 0 and β > 0 (as in Problem 2.4).

c) Draw a transition diagram illustrating the dynamics of the economy. Make
sure that you draw the diagram so as to exhibit consistency with the pro-
duction function.

d) Given the above information, can we be sure that there exists a unique and
globally asymptotically stable steady state? Why or why not?

e) Suppose the economy is in a steady state up to and including period t0 > 0.
Then, at the shift from period t0 to period t0 + 1, a negative technology
shock occurs such that the technology level in period t0 + 1 is below that of
period t0. Illustrate by a transition diagram the evolution of the economy
from period t0 onward. Comment.

f) Let k ≡ K/L. In the (t, ln k) plane, draw a graph of ln kt such that the
qualitative features of the time path of ln k before and after the shock,
including the long run, are exhibited.

g) How, if at all, is the real interest rate in the long run affected by the shock?

h) How, if at all, is the real wage in the long run affected by the shock?

i) How, if at all, is the labor income share of national income in the long run
affected by the shock?

j) Explain by words the economic intuition behind your results in h) and i).

3.10
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Chapter 4

A growing economy

In the previous chapter we ignored technological progress. An incontestable fact
of real life in industrialized countries is, however, the presence of a persistent rise
in GDP per capita − on average between 1.5 and 2.5 percent per year since 1870
in many developed economies. In regard to UK, USA, and Japan, see Fig. 4.1;
and in regard to Denmark, see Fig. 4.2. In spite of the somewhat dubious quality
of the data from before the Second World War, this observation should be taken
into account in a model which, like the Diamond model, aims at dealing with
long-run issues. For example, in relation to the question of dynamic ineffi ciency,
cf. Chapter 3, the cut-offvalue of the steady-state interest rate is the steady-state
GDP growth rate of the economy and this growth rate increases one-to-one with
the rate of technological progress. We shall therefore now introduce technological
progress.

On the basis of a summary of “stylized facts”about growth, Section 4.1 mo-
tivates the assumption that technological progress at the aggregate level takes
the Harrod-neutral form. In Section 4.2 we extend the Diamond OLG model by
incorporating this form of technological progress. Section 4.3 extends the con-
cept of the golden rule to allow for the existence of technological progress. In
Section 4.4 we address what is known as the marginal productivity theory of the
functional income distribution and apply an expedient analytical tool, the elas-
ticity of factor substitution. The next section defines the concept of elasticity
of factor substitution at the general level. Section 4.6 then goes into detail with
the special case of a constant elasticity of factor substitution (the CES produc-
tion function). Finally, Section 4.7 concludes with some general considerations
regarding the concept of economic growth.
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128 CHAPTER 4. A GROWING ECONOMYGDP per capita in United States, United Kingdom and Japan (1870-2010) 

 

 

Sources: Bolt, J. and J. L. van Zanden (2013): The First Update of the Maddison Project; Re-Estimating 

Growth Before 1820. Maddison Project Working Paper 4. 

  

Figure 4.1: GDP per capita in USA, UK, and Japan 1870-2010. Source: Bolt and van
Zanden (2013).

4.1 Harrod-neutrality and Kaldor’s stylized facts

To allow for technological change, we may write aggregate production this way

Yt = F̃ (Kt, Lt, t), (4.1)

where Yt, Kt, and Lt stand for output, capital input, and labor input, respectively.
Changes in technology are here represented by the dependency of the production
function F̃ on time, t. For fixed t, the production function may still be for in-
stance neoclassical with respect to the role of the factor inputs, the first two
arguments. Often we assume that F̃ depends in a smooth way on time such that
the partial derivative, ∂F̃t/∂t, exists and is a continuous function of (Kt, Lt, t).
When ∂F̃t/∂t > 0, technological change amounts to technological progress: for
Kt and Lt held constant, output increases with t.
A particular form of the time-dependency of the production function has

attracted the attention of macroeconomists. This is known as Harrod-neutral
technological progress and is present when we can rewrite F̃ such that

Yt = F (Kt, TtLt), (4.2)

where the “level of technology” is represented by a coeffi cient, Tt, on the la-
bor input, and this coeffi cient is rising over time. An alternative name for this
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GDP and GDP per capita in Denmark (1870-2010) 

 

Sources: Bolt, J. and J. L. van Zanden (2013): The First Update of the Maddison Project; Re-Estimating 

Growth Before 1820. Maddison Project Working Paper 4, Maddison (2010): Statistics on World Population, 

GDP and Per Capita GDP, 1-2008 AD, and The Conference Board Total Economy Database (2013). 

Figure 4.2: GDP and GDP per capita. Denmark 1870-2006. Sources: Bolt and van
Zanden (2013); Maddison (2010); The Conference Board Total Economy Database
(2013).

in the literature is labor-augmenting technological progress. The name “labor-
augmenting”may sound as if more labor is required to reach a given output level
for given capital. In fact, the opposite is the case, namely that Tt has risen so
that less labor input is required. The idea is that the technological change − a
certain percentage increase in T − affects the output level as if the labor input
had been increased exactly by this percentage, and nothing else had happened.

The interpretation of Harrod neutrality is not that something miraculous hap-
pens to the labor input. The content of (4.2) is just that technological innovations
are assumed to predominantly be such that not only do labor and capital in com-
bination become more productive, but this happens to manifest itself in the
form (4.2), that is, as if an improvement in the quality of the labor input had
occurred.1

1As is usual in simple macroeconomic models, in both (4.1) and (4.2) it is simplifying assumed
that technological progress is disembodied. This means that new technical and organizational
knowledge increases the combined productivity of capital and workers independently of when
the first were constructed and the latter educated, cf. Chapter 2.2.
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130 CHAPTER 4. A GROWING ECONOMY

Kaldor’s stylized facts

The reason that macroeconomists often assume that technological change at the
aggregate level takes the Harrod-neutral form, as in (4.2), and not for example the
form Yt = F (XtKt, TtLt) (where bothX and T are changing over time, at least one
of them growing), is the following. You want the long-run properties of the model
to comply with Kaldor’s list of “stylized facts”(Kaldor 1961) concerning the long-
run evolution of certain “Great Ratios”of industrialized economies. Abstracting
from short-run fluctuations, Kaldor’s “stylized facts”are:

1. K/L and Y/L are growing over time and have roughly constant growth
rates;

2. the output-capital ratio, Y/K, the income share of labor, wL/Y, and the
economy-wide “rate of return”, (Y − wL − δK)/K,2 are roughly constant
over time;

3. the growth rate of Y/L can vary substantially across countries for quite
long time.

Ignoring the conceptual difference between the path of Y/L and that of Y
per capita (a difference not so important in this context), the figures 4.1 and
4.2 illustrate Kaldor’s “fact 1”about the long-run property of the Y/L path for
the more developed countries. Japan had an extraordinarily high growth rate of
GDP per capita for a couple of decades after World War II, usually explained
by fast technology transfer from the most developed countries (the catching-up
process which can only last until the technology gap is eliminated). Fig. 4.3
gives rough support for a part of Kaldor’s “fact 2”, namely the claim about long-
run constancy of the labor income share of national income. “Fact 3” about
large diversity across countries regarding the growth rate of Y/L over long time
intervals is well documented empirically.3

It is fair to add, however, that the claimed regularities 1 and 2 do not fit all
developed countries equally well. While Solow’s famous growth model (Solow,
1956) can be seen as the first successful attempt at building a model consistent
with Kaldor’s “stylized facts”, Solow himself once remarked about them: “There
is no doubt that they are stylized, though it is possible to question whether
they are facts”(Solow, 1970). Recently, many empiricists (see Literature notes)
have questioned the methods which standard national income accounting applies

2In this formula w is the real wage and δ is the capital depreciation rate. Land is ignored. For
countries where land is a quantitatively important production factor, the denominator should
be replaced by K + pJJ , where J is land and pJ is the real price of land, J.

3For a summary, see Pritchett (1997).
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Figure 4.3: Labor’s share of GDP in USA (1950-2011) and Denmark (1970-2011).
Source: Feenstra, Inklaar and Timmer (2013), www.ggdc.net/pwt.

to separate the income of entrepreneurs, sole proprietors, and unincorporated
businesses into labor and capital income. It is claimed that these methods obscure
a tendency of the labor income share to fall in recent decades.
Notwithstanding these ambiguities, it is definitely a fact that many long-run

models are constructed so a to comply with Kaldor’s stylized facts. Let us briefly
take a look at the Solow model (in discrete time) and check its consistency with
Kaldor’s “stylized facts”. The point of departure of the Solow model and many
other growth models is the dynamic resource constraint for a closed economy:

Kt+1 −Kt = It − δKt = St − δKt ≡ Yt − Ct − δKt, K0 > 0 given, (4.3)

where It is gross investment, which in a closed economy equals gross saving, St

≡ Yt − Ct; δ is a constant capital depreciation rate, 0 ≤ δ ≤ 1.

The Solow model and Kaldor’s stylized facts

As is well-known, the Solow model postulates a constant aggregate saving-income
ratio, ŝ, so that St = ŝYt, 0 < ŝ < 1.4 Further, the model assumes that the aggre-
gate production function is neoclassical and features Harrod-neutral technological
progress. So, let F in (4.2) be Solow’s production function. To this Solow adds
assumptions of CRS and exogenous geometric growth in both the technology

4Note that ŝ is a ratio while the s in the Diamond model stands for the saving per young.
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132 CHAPTER 4. A GROWING ECONOMY

level T and the labour force L, i.e., Tt = T0(1 + g)t, g ≥ 0, and Lt = L0(1 + n)t,
n > −1. In view of CRS, we have Y = F (K,AL) = TLF (k̃, 1) ≡ TLf(k̃), where
k̃ ≡ K/(TL) is the effective capital-labor ratio while f ′ > 0 and f ′′ < 0.
Substituting St = ŝYt into Kt+1 −Kt = St − δKt, dividing through by Tt(1 +

g)Lt(1 + n) and rearranging gives the “law of motion”of the Solow economy:

k̃t+1 =
ŝf(k̃t) + (1− δ)k̃t

(1 + g)(1 + n)
≡ ϕ(k̃t). (4.4)

Defining G ≡ (1 + g)(1 + n), we have ϕ′(k̃) = (ŝf ′(k̃) + 1− δ)/G > 0 and ϕ′′(k̃)
= ŝf ′′(k̃)/G < 0. If G > 1 − δ and f satisfies the Inada conditions limk̃→0 f

′(k̃)
=∞ and limk̃→∞ f

′(k̃) = 0, there is a unique and globally asymptotically stable
steady state k̃∗ > 0. The transition diagram looks entirely as in Fig. 3.4 of the
previous chapter (ignoring the tildes).5 The convergence of k̃ to k̃∗ implies that
in the long run we have K/L = k̃∗T and Y/L = f(k̃∗)T. Both K/L and Y/L are
consequently growing at the same constant rate as T, the rate g. And constancy of
k̃ implies that Y/K = f(k̃)/k̃ is constant and so is the labor income share, wL/Y
= (f(k̃)−k̃f ′(k̃))/f(k̃), and hence also the net rate of return, (1−wL/Y )Y/K−δ.
It follows that the Solow model complies with the stylized facts 1 and 2 above.

Many different models aim at doing that. What these models must then have in
common is a capability of generating balanced growth.

Balanced growth

With Kt, Yt, and Ct denoting aggregate capital, output, and consumption as
above, we define a balanced growth path the following way:

DEFINITION 1 A balanced growth path, BGP, is a path {(Kt, Yt, Ct)}∞t=0 along
which the variables Kt, Yt, and Ct are positive and grow at constant rates (not
necessarily positive).

At least for a closed economy there is a general equivalence relationship be-
tween balanced growth and constancy of certain key ratios like Y/K and C/Y .
This relationship is an implication of accounting based on the above aggregate
dynamic resource constraint (4.3).
For an arbitrary variable xt ∈ R++, we define ∆xt ≡ xt − xt−1. Whenever

xt−1 > 0, the growth rate of x from t − 1 to t, denoted gx(t), is defined by gx(t)

5What makes the Solow model so easily tractable compared to the Diamond OLG model
is the constant saving-income ratio which makes the transition function essentially dependent
only on the production function in intensive form. Owing to dimishing marginal productivity
of capital, this is a strictly concave function. Anyway, the Solow model emerges as a special
case of the Diamond model, see Exercise IV.??.
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4.1. Harrod-neutrality and Kaldor’s stylized facts 133

≡ ∆xt/xt−1. When there is no risk of confusion, we suppress the explicit dating
and write gx ≡ ∆x/x.

PROPOSITION 1 (the balanced growth equivalence theorem). Let P ≡ {(Kt, Yt, Ct)}∞t=0

be a path along whichKt, Yt, Ct, and St ≡ Yt−Ct are positive for all t = 0, 1, 2, . . . .
Then, given the dynamic resource constraint for a closed economy, (4.3), the fol-
lowing holds:
(i) If P is a BGP, then gY = gK = gC and the ratios Y/K and C/Y are constant.
(ii) If Y/K and C/Y are constant, then P is a BGP with gY = gK = gC , i.e.,
not only is balanced growth present but the constant growth rates of Y, K, and
C are the same.

Proof Consider a path {(Kt, Yt, Ct)}∞t=0 along which K, Y, C, and St ≡ Y − Ct
are positive for all t = 0, 1, 2, . . . .
(i) Suppose the path is a balanced growth path. Then, by definition, gY , gK ,

and gC are constant. Hence, by (4.3), S/K = gK + δ must be constant, implying6

gS = gK . (*)

By (4.3), Y ≡ C + S, and so

gY =
∆Y

Y
=

∆C

Y
+

∆S

Y
=
C

Y
gC +

S

Y
gS =

C

Y
gC +

S

Y
gK (by (*))

=
C

Y
gC +

Y − C
Y

gK =
C

Y
(gC − gK) + gK . (**)

Let us provisionally assume that gC 6= gK . Then (**) gives

C

Y
=
gY − gK
gC − gK

, (***)

a constant since gY , gK , and gC are constant. Constancy of C/Y requires gC = gY ,
hence, by (***), C/Y = 1, i.e., C = Y. In view of Y ≡ C + S, however, this
implication contradicts the given condition that S > 0. Hence, our provisional
assumption and its implication (***) are falsified. Instead we have gC = gK . By
(**), this implies gY = gK = gC , but now without the condition C/Y = 1 being
implied. It follows that Y/K and C/Y are constant.
(ii) Suppose Y/K and C/Y are positive constants. Applying that the ratio

between two variables is constant if and only if the variables have the same (not
necessarily constant or positive) growth rate, we can conclude that gY = gK = gC .

6The ratio between two positive variables is constant if and only if the variables have the
same growth rate (not necessarily constant or positive). For this and similar simple growth-
arithmetic rules, see Appendix A.
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134 CHAPTER 4. A GROWING ECONOMY

By constancy of C/Y follows that S/Y ≡ 1−C/Y is constant. So gS = gY = gK ,
which in turn implies that S/K is constant. By (4.3),

S

K
=

∆K + δK

K
= gK + δ,

so that also gK is constant. This, together with constancy of Y/K and C/Y,
implies that also gY and gC are constant. �
Remark. It is part (i) of the proposition which requires the assumption S > 0 for
all t ≥ 0. If S = 0, we would have gK = −δ and C ≡ Y − S = Y, hence gC = gY
for all t ≥ 0. Then there would be balanced growth if the common value of C
and Y had a constant growth rate. This growth rate, however, could easily differ
from that of K. Suppose Y = AKαL1−α, 0 < α < 1, gA = γ and gL = n, where γ
and n are constants. By the product and power function rule (see Appendix A),
we would then have 1 + gC = 1 + gY = (1 + γ)(1 − δ)α(1 + n)1−α, which could
easily be larger than 1 and thereby different from 1 + gK = 1− δ ≤ 1 so that (i)
no longer holds. Example: If δ = n = 0 < γ, then 1 + gY = 1 + γ > 1 = 1 + gK .
It is part (ii) of the proposition which requires the assumption of a closed

economy. In an open economy we do not necessarily have I = S, hence constancy
of S/K no longer implies constancy of gK = I/K − δ. �
For many long-run closed-economymodels, including the Diamond OLGmodel,

it holds that if and only if the dynamic system implied by the model is in a steady
state, will the economy feature balanced growth, cf. Proposition 4 below. There
exist cases, however, where this equivalence between steady state and balanced
growth does not hold (some open economy models and some models with em-
bodied technological change). Hence, we shall maintain a distinction between the
two concepts.
Note that Proposition 1 pertains to any model for which (4.3) is valid. No

assumption about market form and economic agents’behavior are involved. And
except for the assumed constancy of the capital depreciation rate δ, no assumption
about the technology is involved, not even that constant returns to scale is present.
Proposition 1 suggests that if one accepts Kaldor’s stylized facts as a rough

description of more than a century’s growth experience and therefore wants the
model to be consistent with them, one should construct the model so that it can
generate balanced growth.

Balanced growth requires Harrod-neutrality

Our next proposition states that for a model to be capable of generating balanced
growth, technological progress must take the Harrod-neutral form (i.e., be labor-
augmenting). Also this proposition holds in a fairly general setting, but not as
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4.1. Harrod-neutrality and Kaldor’s stylized facts 135

general as that of Proposition 1. Constant returns to scale and a constant growth
rate in the labor force, two aspects about which Proposition 1 is silent, will now
have a role to play.7

Consider an aggregate production function

Yt = F̃ (Kt, BLt, t), B > 0, F̃ ′2 ≥ 0, F̃ ′3 > 0, (4.5)

where B is a constant that depends on measurement units, and the function F̃
is homogeneous of degree one with respect to the first two arguments (CRS) and
is non-decreasing in its second argument and increasing in the third, time. The
latter property represents technological progress: as time proceeds, unchanged
inputs of capital and labor result in more and more output. Note that F̃ need
not be neoclassical.
Let the labor force change at a constant rate:

Lt = L0(1 + n)t, n > −1, (4.6)

where L0 > 0. The Japanese economist Hirofumi Uzawa (1928-) is famous for
several contributions, not least his balanced growth theorem (Uzawa 1961).

PROPOSITION 2 (Uzawa’s balanced growth theorem). Let P ≡ {(Kt, Yt, Ct)}∞t=0

be a path along whichKt, Yt, Ct, and St ≡ Yt−Ct are positive for all t = 0, 1, 2,. . . ,
and satisfy the dynamic resource constraint for a closed economy, (4.3), given the
production function (4.5) and the labor force (4.6). Then:
(i) A necessary condition for the path P to be a BGP is that along P it holds
that

Yt = F̃ (Kt, TtLt, 0), (4.7)

where Tt = T0(1 + g)t with T0 = B and 1 + g ≡ (1 + gY )/(1 + n) > 1, gY being
the constant growth rate of output along the BGP.
(ii) Assume (1 + g)(1 + n) > 1 − δ. Then, for any g ≥ 0 such that there is a
q > (1 + g)(1 + n) − (1 − δ) with the property that the production function F̃
in (4.5) allows an output-capital ratio equal to q at t = 0 (i.e., F̃ (1, k̃−1, 0) = q
for some real number k̃ > 0), a suffi cient condition for F̃ to be compatible with
a BGP with output-capital ratio equal to q is that F̃ can be written as in (4.7)
with Tt = B(1 + g)t.

Proof (i) Suppose the given path {(Kt, Yt, Ct)}∞t=0 is a BGP. By definition, gK
and gY are then constant so that Kt = K0(1 + gK)t and Yt = Y0(1 + gY )t. With
t = 0 in (4.5) we then have

Yt(1 + gY )−t = Y0 = F̃ (K0, BL0, 0) = F̃ (Kt(1 + gK)−t, BLt(1 + n)−t, 0). (4.8)

7On the other hand we do not imply that CRS is always necessary for a balanced growth
path (see Exercise 4.??).
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In view of the assumption that St ≡ Yt−Ct > 0, we know from (i) of Proposition
1, that Y/K is constant so that gY = gK . By CRS, (4.8) then implies

F̃ (Kt, B(1 + gY )t(1 + n)−tLt, 0) = (1 + gY )tY0 = Yt.

As 1 + g ≡ (1 + gY )/(1 + n), this implies

Yt = F̃ (Kt, B(1 + g)tLt, 0) = F̃ (Kt, BLt, t),

where the last equality comes from combining the first equality with (4.5). Now,
the first equality shows that (4.7) holds for Tt = B(1 + g)t = T0(1 + g)t. By F̃ ′3
(= ∂F̃ /∂t) > 0 follows that for Kt and Lt fixed over time, Yt is rising over time.
For this to be consistent with the first equality, we must have g > 0.
(ii) See Appendix B. �
The form (4.7) indicates that along a BGP, technological progress must be

Harrod-neutral, and we can interpret the variable T as the “technology level”.
By defining a new CRS production function F by F (Kt, TtLt) ≡ F̃ (Kt, TtLt, 0),
we see that (i) of the proposition implies that at least along the BGP, we can
rewrite the original production function this way:

Yt = F̃ (Kt, BLt, t) = F̃ (Kt, TtLt, 0) ≡ F (Kt, TtLt). (4.9)

where F has CRS, and Tt = T0(1+g)t, with T0 = B and 1+g ≡ (1+gY )/(1+n).
What is the intuition behind the Uzawa result that for balanced growth to

be possible, technological progress must at the aggregate level have the purely
labor-augmenting form? We may first note that there is an asymmetry between
capital and labor. Capital is an accumulated amount of non-consumed output
and has thus at least a “tendency”to inherit the trend in output. In contrast,
labor is a non-produced production factor. The labor force grows in an exogenous
way and does not inherit the trend in output. Indeed, the ratio Lt/Yt is free to
adjust as t proceeds.
More specifically, consider the point of departure, the original production

function (4.5). Because of CRS, it must satisfy

1 = F̃ (
Kt

Yt
,
BLt
Yt

, t). (4.10)

We know from Proposition 1 that along a BGP, Kt/Yt is constant. The assump-
tion F̃ ′3 (= ∂F̃ /∂t) > 0 implies that technological progress is present. Along a
BGP, this progress must manifest itself in the form of a compensating change
in Lt/Yt in (4.10) as t proceeds, because otherwise the right-hand side of (4.10)
would increase, which would contradict the constancy of the left-hand side. As
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we have in (4.5) assumed ∂F̃ /∂L ≥ 0, the needed change in Lt/Yt is a fall . The
fall in Lt/Yt must exactly offset the effect on F̃ of the rising t, when there is a
fixed capital-output ratio and the left-hand side of (4.10) remains unchanged. It
follows that along the considered BGP, Lt/Yt is a decreasing function of t. The
inverse, Yt/Lt, is thus an increasing function of t. If we denote this function Tt,
we end up with (4.9).
The generality of Uzawa’s theorem is noteworthy. Like Proposition 1, Uzawa’s

theorem is about technically feasible paths, while economic institutions, market
forms, and agents’behavior are not involved. The theorem presupposes CRS,
but does not need that the technology has neoclassical properties not to speak of
satisfying the Inada conditions. And the theorem holds for exogenous as well as
endogenous technological progress.
A simple implication of the theorem is the following. Let yt denote “labor

productivity”in the sense of Yt/Lt, kt denote the capital-labor ratio, Kt/Lt, and
ct the consumption-labor ratio, Ct/Lt. We have:

COROLLARY Consider an economy with labor force satisfying (4.6) and a CRS-
production function Yt = F (Kt, TtLt), F

′
2 > 0. Along a BGP with positive gross

saving and the technology level T growing at a constant rate g ≥ 0, output grows
at the rate (1+g)(1+n)−1 (≈ g+n for g and n “small”) while labor productivity,
y, capital-labor ratio, k, and consumption-labor ratio, c, all grow at the rate g.

Proof That gY = (1 + g)(1 + n) − 1 follows from (i) of Proposition 2. As to gy
we have

yt ≡
Yt
Lt

=
Y0(1 + gY )t

L0(1 + n)t
= y0(1 + g)t,

since 1 + g = (1 + gY )/(1 + n). This shows that y grows at the rate g. Moreover,
y/k = Y/K, which is constant along a BGP, by (i) of Proposition 1. Hence k
grows at the same rate as y. Finally, also c/y ≡ C/Y is constant along a BGP,
implying that also c grows at the same rate as y. �

Factor income shares

There is one facet of Kaldor’s stylized facts which we have not yet related to
Harrod-neutral technological progress, namely the claimed long-run “approxi-
mate” constancy of both the income share of labor and the rate of return on
capital. It turns out that, if we assume (a) neoclassical technology, (b) profit
maximizing firms, and (c) perfect competition in the output and factor markets,
then these constancies are inherent in the combination of constant returns to
scale and balanced growth.
To see this, let the aggregate production function be

Yt = F (Kt, TtLt), (4.11)
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where F is neoclassical and has CRS. In view of perfect competition, the repre-
sentative firm chooses inputs such that

∂Yt
∂Kt

= F1(Kt, TtLt) = rt + δ, and, (4.12)

∂Yt
∂Lt

= F2(Kt, TtLt)Tt = wt, (4.13)

where the right-hand sides indicate the factor prices, rt being the interest rate, δ
the depreciation rate, and wt the real wage.
In equilibrium the labor income share will be

wtLt
Yt

=
∂Yt
∂Lt

Lt

Yt
=
F2(Kt, TtLt)TtLt

Yt
. (4.14)

Since land as a production factor is ignored, gross capital income equals non-labor
income, Yt − wtLt. Denoting the gross capital income share by αt, we thus have

αt =
Yt − wtLt

Yt
=
F (Kt, TtLt)− F2(Kt, TtLt)TtLt

Yt

=
F1(Kt, TtLt)Kt

Yt
=

∂Yt
∂Kt

Kt

Yt
= (rt + δ)

Kt

Yt
, (4.15)

where we have used (4.13), Euler’s theorem,8 and then (4.12). Finally, when the
capital good is nothing but a non-consumed output good, it has price equal to 1,
and so the economy-wide rate of return on capital can be written

Yt − wtLt − δKt

1 ·Kt

=
Yt − wtLt

Yt
· Yt
Kt

− δ = αt ·
Yt
Kt

− δ = rt, (4.16)

where the last equality comes from (4.15).

PROPOSITION 3 (factor income shares under perfect competition) Let the
dynamic resource constraint for a closed economy be given as in (4.3). Assume
F is neoclassical with CRS, and that the economy is competitive. Let the path
P = {(Kt, Yt, Ct)}∞t=0 be BGP with positive gross saving. Then, along the path
P :
(i) The gross capital income share equals some constant α ∈ (0, 1), and the labor
income then equals 1− α.
(ii) The rate of return on capital is αq− δ, where q is the constant output-capital
ratio along the BGP.

8Indeed, from Euler’s theorem follows that F1K+F2TL= F (K,TL), when F is homogeneous
of degree one.
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Proof In view of CRS, Yt = F (Kt, TtLt) = TtLtF (k̃t, 1) ≡ TtLtf(k̃t), where
k̃t ≡ Kt/(TtLt), and f ′ > 0, f ′′ < 0. From Proposition 1 follows that along the
given path P, which is a BGP, Yt/Kt is some constant, say q, equal to f(k̃t)/k̃t.
Hence, k̃t is constant, say equal to k̃∗. Consequently, along P , ∂Yt/∂Kt = f ′(k̃∗) =
rt +δ. From this follows that rt is a constant, r. (i) From (4.15) now follows that
αt = f ′(k̃∗)/q ≡ α. Moreover, 0 < α < 1, since 0 < α is implied by f ′ > 0, and
α < 1 is implied by the fact that f ′(k̃∗) < f(k̃∗)/k̃∗ = Y/K = q, where “<”is
due to f ′′ < 0 and f(0) ≥ 0 (draw the graph of f(k̃)). By the first equality in
(4.15), the labor income share can be written wtLt/Yt = 1 − αt = 1 − α. (ii)
Consequently, by (4.16), the rate of return on capital equals rt (= r) = αq − δ.
�

What this proposition amounts to is that a BGP in this economy exhibits
both the first and the second “Kaldor fact”(point 1 and 2, respectively, in the
list at the beginning of the chapter).
Although the proposition implies constancy of the factor income shares under

balanced growth, it does not determine them. The proposition expresses the
factor income shares in terms of the unknown constants α and q. These constants
will generally depend on the effective capital-labor ratio in steady state, k̃∗, which
will generally be an unknown as long as we have not formulated a theory of saving.
This takes us back to Diamond’s OLG model which provides such a theory.

4.2 The Diamond OLGmodel with Harrod-neutral
technological progress

Recall from the previous chapter that in the Diamond OLG model people live in
two periods, as young and as old. Only the young work and each young supplies
one unit of labor inelastically. The period utility function, u(c), satisfies the No
Fast Assumption. The saving function of the young is st = s(wt, rt+1). We now
include Harrod-neutral technological progress in the Diamond model.
Let (4.11) be the aggregate production function in the economy and assume,

as before, that F is neoclassical with CRS. The technology level Tt grows at a
constant exogenous rate:

Tt = T0(1 + g)t, g ≥ 0. (4.17)

The initial level of technology, T0, is historically given. The employment level
Lt equals the number of young and thus grows at the constant exogenous rate
n > −1.
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Suppressing for a while the explicit dating of the variables, in view of CRS
with respect to K and TL, we have

ỹ ≡ Y

TL
= F (

K

TL
, 1) = F (k̃, 1) ≡ f(k̃), f ′ > 0, f ′′ < 0,

where TL is labor input in effi ciency units; k̃ ≡ K/(TL) is known as the effective
or technology-corrected capital-labor ratio - also sometimes just called the “capital
intensity”. There is perfect competition in all markets. In each period the repre-
sentative firm maximizes profit, Π = F (K,TL) − r̂K − wL. Given the constant
capital depreciation rate δ ∈ [0, 1], this leads to the first-order conditions

∂Y

∂K
=
∂
[
TLf(k̃)

]
∂K

= f ′(k̃) = r + δ, (4.18)

and

∂Y

∂L
=
∂
[
TLf(k̃)

]
∂L

=
[
f(k̃)− f ′(k̃)k̃

]
T = w. (4.19)

In view of f ′′ < 0, a k̃ satisfying (4.18) is unique. We let its value in period t
be denoted k̃dt . Assuming equilibrium in the factor markets, this desired effective
capital-labor ratio equals the effective capital-labor ratio from the supply side,
k̃t ≡ Kt/(TtLt) ≡ kt/Tt, which is predetermined in every period. The equilibrium
interest rate and real wage in period t are thus determined by

rt = f ′(k̃t)− δ ≡ r(k̃t), where r′(k̃t) = f ′′(k̃t) < 0, (4.20)

wt =
[
f(k̃t)− f ′(k̃t)k̃

]
Tt ≡ w̃(k̃t)Tt, where w̃′(k̃t) = −k̃tf ′′(k̃t) > 0. (4.21)

Here, w̃(k̃t) = wt/Tt is known as the technology-corrected real wage.

The equilibrium path

The aggregate capital stock at the beginning of period t+ 1 must still be owned
by the old generation in that period and thus equal the aggregate saving these
people had as young in the previous period. Hence, as before, Kt+1 = stLt
= s(wt, rt+1)Lt. In view of Kt+1 ≡ k̃t+1Tt+1Lt+1 = k̃t+1Tt(1+g)Lt(1+n), together
with (4.20) and (4.21), we get

k̃t+1 =
s(w̃(k̃t)Tt, r(k̃t+1))

Tt(1 + g)(1 + n)
. (4.22)

This is the general version of the law of motion of the Diamond OLG model with
Harrod-neutral technological progress.
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For the model to comply with Kaldor’s “stylized facts”, the model should be
capable of generating balanced growth. Essentially, this capability is equivalent
to being able to generate a steady state. In the presence of technological progress
this latter capability requires a restriction on the lifetime utility function, U. In-
deed, we see from (4.22) that the model is consistent with existence of a steady
state only if the time-dependent technology level, Tt, in the numerator and de-
nominator cancels out. This requires that the saving function is homogeneous of
degree one in its first argument such that s(w̃(k̃t)Tt, r(k̃t+1)) = s(w̃(k̃t), r(k̃t+1))Tt.
In turn, this is so if and only if the lifetime utility function of the young is ho-
mothetic. So, in addition to the No Fast Assumption from Chapter 3, we impose
the Homotheticity Assumption:

the lifetime utility function U is homothetic. (A4)

This property entails that if the value of the “endowment”, here the human wealth
wt, is multiplied by an arbitrary constant λ > 0, then the chosen c1t and c2t+1 will
also be multiplied by this factor (see Appendix C). It then follows from the period
budget constraints, c1t + st = wt and c2t+1 = (1 + rt+1)st, that st is multiplied by
λ as well. Letting λ = 1/(w̃(k̃t)Tt), (A4) thus allows us to write

st = s(1, r(k̃t+1))w̃(k̃t)Tt ≡ ŝ(r(k̃t+1))w̃(k̃t)Tt, (4.23)

where ŝ(r(k̃t+1)) is the saving-wealth ratio of the young. The distinctive feature
is that the homothetic lifetime utility function U allows a decomposition of the
young’s saving into two factors, where one is the saving-wealth ratio, which de-
pends only on the interest rate, and the other is the human wealth. By (4.22),
the law of motion of the economy reduces to

k̃t+1 =
ŝ(r(k̃t+1))

(1 + g)(1 + n)
w̃(k̃t). (4.24)

The equilibrium path of the economy can be analyzed in a similar way as in
the case of no technological progress. In the assumptions (A2) and (A3) from
Chapter 3 we replace k by k̃ and 1 + n by (1 + g)(1 + n). As a generalization
of Proposition 4 from Chapter 3, these generalized versions of (A2) and (A3),
together with the No Fast Assumption (A1) and the Homotheticity Assumption
(A4), guarantee that kt over time converges to some steady state value k̃∗ > 0.

Let an economy that can be described by the Diamond model be called a
Diamond economy. Our conclusion is then that a Diamond economy will sooner
or later settle down in a steady state. The convergence of k̃ implies convergence
of many key variables, for instance the interest rate and the technology-corrected
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real wage. In view of (4.20) and (4.21), respectively, we get, for t→∞,

rt = f ′(k̃t)− δ → f ′(k̃∗)− δ ≡ r∗, and
wt
Tt

= f(k̃t)− k̃tf ′(k̃t)→ f(k∗)− k∗f ′(k∗) ≡ w̃(k̃∗).

Moreover, for instance the labor income share converges to a constant:

wtLt
Yt

=
wt/Tt

Yt/(TtLt)
=
f(k̃t)− k̃tf ′(k̃t)

f(k̃t)
→ 1− k∗f ′(k∗)

f(k∗)
≡ 1− α∗ for t→∞.

The prediction from the model is thus that a Diamond economy will in the
long run behave in accordance with Kaldor’s stylized facts. The background for
this is that convergence to a steady state is, in this and many other models,
equivalent to “convergence”to a BGP. This equivalence follows from:

PROPOSITION 4 Consider a Diamond economy with Harrod-neutral techno-
logical progress at the constant rate g ≥ 0 and positive gross saving for all t.
(i) If the economy features balanced growth, then it is in a steady state.
(ii) If the economy is in a steady state, then it features balanced growth.

Proof (i) Suppose the economy features balanced growth. Then, by Proposition
1, Y/K is constant. As Y/K = ỹ/k̃ = f(k̃)/k̃, also k̃ is constant. Thereby the
economy is in a steady state. (ii) Suppose the economy is in a steady state, i.e.,
for some k̃∗ > 0, (4.24) holds for k̃t = k̃t+1 = k̃∗. The constancy of k̃ ≡ K/(TL)
and ỹ ≡ Y/(TL) = f(k̃) implies that both gK and gY equal the constant gTL
= (1 + g)(1 + n) − 1 > 0. As S ≡ Y − C, constancy of gK implies constancy of
S/K = (∆K+ δK)/K = gK + δ, so that also S grows at the rate gK and thereby
at the same rate as output. Hence S/Y, and thereby also C/Y ≡ 1 − S/Y, is
constant. Hence, also C grows at the constant rate gY . All criteria for a BGP are
thus satisfied. �
Let us portray the dynamics by a transition diagram. Fig. 4.4 shows a “well-

behaved”case in the sense that there is only one steady state and it is globally
asymptotically stable. In the figure the initial effective capital-labor ratio, k̃0, is
assumed to be relatively large. This need not be interpreted as if the economy
is highly developed and has a high initial capital-labor ratio, K0/L0. Indeed, the
reason that k̃0 ≡ K0/(T0L0) is large relative to its steady-steady value may be
that the economy is “backward”in the sense of having a relatively low initial level
of technology. Growing at a given rate g, the technology will in this situation
grow faster than the capital-labor ratio, K/L, so that the effective capital-labor
ratio declines over time. The process continues until the steady state is essentially
reached with a real interest rate r∗ = f ′(k̃∗)− δ. This is to remind ourselves that
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Figure 4.4: Transition curve for a “well-behaved”Diamond OLG model with Harrod-
neutral technical progress.

from an empirical point of view, the adjustment towards a steady state can be
from above as well as from below.
The output growth rate in steady state, (1+g)(1+n)−1, is sometimes called

the “natural rate of growth”. Since (1 + g)(1 + n)− 1 = g + n+ gn ≈ g + n for
g and n “small”, the natural rate of growth approximately equals the sum of the
rate of technological progress and the growth rate of the labor force.
Warning: When measured on an annual basis, the growth rates of technology

and labor force, ḡ and n̄, do indeed tend to be “small”, say ḡ = 0.02 and n̄ = 0.005,
so that ḡ + n̄+ ḡn̄ = 0.0251 ≈ 0.0250 = ḡ + n̄. But in the context of models like
Diamond’s, the period length is, say, 30 years. Then the corresponding g and n
will satisfy the equations 1+g = (1+ ḡ)30 = 1.0230 = 1.8114 and 1+n = (1+ n̄)30

= 1.00530 = 1.1614, respectively. We get g+n = 0.973, which is about 10 percent
smaller than the true output growth rate over 30 years, which is g+n+gn = 1.104.

We end our account of Diamond’s OLGmodel with some remarks on a popular
special case of a homothetic utility function.

Example: CRRA utility

An example of a homothetic lifetime utility function is obtained by letting the
period utility function take the CRRA form introduced in the previous chapter.
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Then

U(c1, c2) =
c1−θ

1 − 1

1− θ + (1 + ρ)−1 c
1−θ
2 − 1

1− θ , θ > 0. (4.25)

Recall that the CRRA utility function with parameter θ has the property that
the (absolute) elasticity of marginal utility of consumption equals the constant
θ > 0 for all c > 0. Up to a positive linear transformation it is, in fact, the only
period utility function having this property. A proof that the utility function
(4.25) is indeed homothetic is given in Appendix C.

One of the reasons that the CRRA function is popular in macroeconomics is
that in representative agent models, the period utility function must have this
form to obtain consistency with balanced growth and Kaldor’s stylized facts (this
is shown in Chapter 7). In contrast, a model with heterogeneous agents, like the
Diamond model, does not need CRRA utility to comply with the Kaldor facts.
CRRA utility is just a convenient special case leading to homothetic lifetime
utility. And this is what is needed for a BGP to exist and thereby for compatibility
with Kaldor’s stylized facts.

Given the CRRA assumption in (4.25), the saving-wealth ratio of the young
becomes

ŝ(r) =
1

1 + (1 + ρ)
(

1+r
1+ρ

)(θ−1)/θ
. (4.26)

It follows that ŝ′(r) R 0 for θ Q 1.

When θ = 1 (the case u(c) = ln c), ŝ(r) = 1/(2 + ρ) ≡ ŝ, a constant, and the
law of motion (4.24) thus simplifies to

k̃t+1 =
1

(1 + g)(1 + n)(2 + ρ)
w̃(k̃t).

We see that in the θ = 1 case, whatever the production function, k̃t+1 enters
only at the left-hand side of the fundamental difference equation, which thereby
reduces to a simple transition function. Since w̃′(k̃) > 0, the transition curve
is positively sloped everywhere. If the production function is Cobb-Douglas, Yt
= Kα

t (TtLt)
1−α, then w̃(k̃t) = (1 − α)k̃αt . Combining this with θ = 1 yields a

“well-behaved”Diamond model (thus having a unique and globally asymptoti-
cally stable steady state), cf. Fig. 4.4 above. In fact, as noted in Chapter 3,
in combination with Cobb-Douglas technology, CRRA utility results in “well-
behavedness”whatever the value of θ > 0.
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4.3 The golden rule under Harrod-neutral tech-
nological progress

Given that there is technological progress, consumption per unit of labor is likely
to grow over time. Therefore the definition of the golden-rule capital-labor ratio
from Chapter 3 has to be generalized to cover the case of growing consumption
per unit of labor. To allow existence of steady states and BGPs, we maintain the
assumption that technological progress is Harrod-neutral, that is, we maintain
the production function (4.11) where the technology level, T, grows at a constant
rate g > 0. We also maintain the assumption that the labor force, Lt, is fully
employed and grows at a constant rate, n ≥ 0.
Since we need not have a Diamond economy in mind, we can consider an

arbitrary period length. It could be one year for instance. Consumption per unit
of labor is

ct ≡
Ct
Lt

=
F (Kt, TtLt)− St

Lt
=
f(k̃t)TtLt − (Kt+1 −Kt + δKt)

Lt

= f(k̃t)Tt − (1 + g)Tt(1 + n)k̃t+1 + (1− δ)Ttk̃t
=

[
f(k̃t) + (1− δ)k̃t − (1 + g)(1 + n)k̃t+1

]
Tt.

DEFINITION 2 The golden-rule capital intensity, k̃GR, is that level of k̃ ≡
K/(TL) which gives the highest sustainable path for consumption per unit of
labor in the economy.

To comply with the sustainability requirement, we consider a steady state. So
k̃t+1 = k̃t = k̃ and therefore

ct =
[
f(k̃) + (1− δ)k̃ − (1 + g)(1 + n)k̃

]
Tt ≡ c̃(k̃)Tt, (4.27)

where c̃(k̃) is the “technology-corrected” level of consumption per unit of labor
in the steady state. We see that in steady state, consumption per unit of labor
will grow at the same rate as the technology. Thus,

ln ct = ln c̃(k̃) + lnT0 + t ln(1 + g).

Fig. 4.5 illustrates.
Since the evolution of the technology level Tt in (4.27) is exogenous, the highest

possible path of ct is found by maximizing c̃(k̃). This gives the first-order condition

c̃′(k̃) = f́ ′(k̃) + (1− δ)− (1 + g)(1 + n) = 0. (4.28)
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When n ≥ 0, we have (1 + g)(1 + n) − (1 − δ) > 0 in view of g > 0. Then, by
continuity, the equation (4.28) necessarily has a unique solution in k̃ > 0, if the
production function satisfies the condition

lim
k̃→0

f ′(k̃) > (1 + g)(1 + n)− (1− δ) > lim
k̃→∞

f ′(k̃),

which we assume. This is a milder condition than the Inada conditions. Consid-
ering the second-order condition c̃′′(k̃) = f ′′(k̃) < 0, the k̃ satisfying (4.28) does
indeed maximize c̃(k̃). By definition, this k̃ is the golden-rule capital intensity,
k̃GR. Thus

f́ ′(k̃GR)− δ = (1 + g)(1 + n)− 1 ≈ g + n, (4.29)

where the right-hand side is the “natural rate of growth”. This says that the
golden-rule capital intensity is that level of the capital intensity at which the net
marginal productivity of capital equals the output growth rate in steady state.

Figure 4.5: The highest sustainable path of consumption is where k̃∗ = k̃GR.

Has dynamic ineffi ciency been a problem in practice? As in the Dia-
mond model without technological progress, it is theoretically possible that the
economy ends up in a steady state with k̃∗ > k̃GR.

9 If this happens, the economy
is dynamically ineffi cient and r∗ < (1 + g)(1 + n)− 1 ≈ g + n. To check whether
dynamic ineffi ciency is a realistic outcome in an industrialized economy or not,
we should compare the observed average GDP growth rate over a long stretch of
time to the average real interest rate or rate of return in the economy. For the
period after the Second World War the average GDP growth rate (≈ g + n) in
Western countries is typically about 3 percent per year. But what interest rate

9The proof is analogue to that in Chapter 3 for the case g = 0.
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should one choose? In simple macro models, like the Diamond model, there is
no uncertainty and no need for money to carry out trades. In such models all
assets earn the same rate of return, r, in equilibrium. In the real world there is a
spectrum of interest rates, reflecting the different risk and liquidity properties of
the different assets. The expected real rate of return on a short-term government
bond is typically less than 3 percent per year (a relatively safe and liquid asset).
This is much lower than the expected real rate of return on corporate stock, say
10 percent per year. Our model cannot tell which rate of return we should choose,
but the conclusion hinges on that choice.
Abel et al. (1989) study the problem on the basis of a model with uncer-

tainty. They show that a suffi cient condition for dynamic effi ciency is that gross
investment, I, does not exceed the gross capital income in the long run, that is
I ≤ Y − ∂Y/∂L ≈ Y − wL. They find that for the U.S. and six other major
OECD nations this seems to hold. Indeed, for the period 1929-85 the U.S. has,
on average, I/Y = 0.15 and (Y − wL)/Y = 0.29. A quite similar difference is
found for other industrialized countries, suggesting that they do not suffer from
dynamic ineffi ciency. At least in these countries, therefore, the potential coordi-
nation failure laid bare by OLG models does not seem to have been operative in
practice.

4.4 The functional income distribution

By the functional income distribution is meant the distribution of national income
on the different basic income categories: income to providers of labor, capital,
and land (including other natural resources). Theory of the functional income
distribution is thus theory about the determination and evolution of factor income
shares.
The simplest theory about the functional income distribution is the neoclassi-

cal theory of the functional income distribution. It relies on competitive markets
and an aggregate production function,

Y = F (K,L, J),

where K and L have the usual meaning, but the new symbol J measures the
input of land. The production function is assumed to be neoclassical with CRS.
Until further notice, we ignore technological change. When the representative
firm maximizes profit and the factor markets clear, the equilibrium factor prices
must satisfy:

r̂ = FK(K,L, J), w = FL(K,L, J), z = FJ(K,L, J),
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where z denotes land rent (the charge for the use of land per unit of land), and,
as usual, r̂ is the rental rate per unit of capital, and w is the real wage per
unit of labor. If in the given period, the supply of three production factors is
predetermined, the three equations determine the three factor prices, and the
factor income shares are determined as

r̂K

Y
=
FK(K,L, J)K

F (K,L, J)
,

wL

Y
=
FL(K,L, J)L

F (K,L, J)
,

zJ

Y
=
FJ(K,L, J)J

F (K,L, J)
.

The theory is also called the marginal productivity theory of the functional
income distribution.
In advanced economies the role of land is relatively minor.10 In fact many

theoretical models completely ignore land. Below we follow that tradition, while
considering the question: How is the direction of movement of the labor and
capital income shares, respectively, determined during the adjustment process
from arbitrary initial conditions toward steady state?

(currently here a gap in the manuscript)

How the labor income share depends on the capital-labor ratio

Ignoring, to begin with, technological progress, we write aggregate output as Y
= F (K,L), where F is neoclassical with CRS. From Euler’s theorem follows that
F (K,L) = F1K+F2L = f ′(k)K+(f(k)−kf ′(k))L, where k ≡ K/L and f is the
production function in intensive form. In equilibrium under perfect competition
we have

Y = r̂K + wL,

where r̂ = r + δ = f ′(k) ≡ r̂(k) and w = f(k)− kf ′(k) ≡ w(k).
The labor income share is

wL

Y
=
f(k)− kf ′(k)

f(k)
≡ w(k)

f(k)
≡ SL(k) =

wL

r̂K + wL
=

w/r̂
k

1 + w/r̂
k

, (4.30)

where the function SL(·) is the income share of labor function, w/r̂ is the factor
price ratio, and (w/r̂)/k = w/(r̂k) is the factor income ratio. As r̂′(k) = f ′′(k) < 0
and w′(k) = −kf ′′(k) > 0, the relative factor price w/r̂ is an increasing function
of k.
10In 1750 land rent made up 20 percent of national income in England, in 1850 8 percent,

and in 2010 less than 0.1 percent (Jones and Vollrath, 2013). The approximative numbers often
used for the labor income share and capital income share in advanced economies are 2/3 and
1/3, respectively.
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Suppose that capital tends to grow faster than labor so that k rises over time.
Unless the production function is Cobb-Douglas, this will under perfect competi-
tion affect the labor income share. But apriori it is not obvious in what direction.
By (4.30) we see that the labor income share moves in the same direction as the
factor income ratio, (w/r̂)/k. The latter goes up (down) depending on whether
the percentage rise in the factor price ratio w/r̂ is greater (smaller) than the
percentage rise in k. So, if we let E`xg(x) denote the elasticity of a function g(x)
w.r.t. x, that is, xg′(x)/g(x)), we can only say that

SL′(k) R 0 for E`k
w

r̂
R 1, (4.31)

respectively. In words: if the production function is such that the ratio of the
marginal productivities of the two production factors is strongly (weakly) sensitive
to the capital-labor ratio, then the labor income share rises (falls) along with a
rise in K/L.
Usually, however, the inverse elasticity is considered, namely E`w/r̂k (= 1/E`k wr̂ ).

This elasticity indicates how sensitive the cost minimizing capital-labor ratio, k,
is to a given factor price ratio w/r̂. Under perfect competition E`w/r̂k coincides
with what is known as the elasticity of factor substitution (for a general defin-
ition, see below). The latter is often denoted σ. In the CRS case, σ will be a
function of only k so that we can write E`w/r̂k = σ(k). By (4.31), we therefore
have

SL′(k) R 0 for σ(k) Q 1,

respectively.
The size of the elasticity of factor substitution is a property of the production

function, hence of the technology. In special cases the elasticity of factor substi-
tution is a constant, i.e., independent of k. For instance, if F is Cobb-Douglas,
i.e., Y = KαL1−α, 0 < α < 1, we have σ(k) ≡ 1, as we will see in Section 4.6.
In this case variation in k does not change the labor income share under per-
fect competition. Empirically there is not agreement about the “normal”size of
the elasticity of factor substitution for industrialized economies, but the bulk of
studies seems to conclude with σ(k) < 1 (see below).

Adding Harrod-neutral technical progress We now add Harrod-neutral
technical progress. We write aggregate output as Y = F (K,TL), where F is
neoclassical with CRS, and T = Tt = T0(1 + g)t, g ≥ 0. Then the labor income
share is

wL

Y
=

w/T

Y/(TL)
≡ w̃

ỹ
.
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The above formulas still hold if we replace k by k̃ ≡ K/(TL) and w by w̃ ≡ w/T.
We get

SL′(k̃) R 0 for σ(k̃) Q 1,

respectively. We see that if σ(k̃) < 1 in the relevant range for k̃, then market
forces tend to increase the income share of the factor that is becoming relatively
more scarce. This factor is effi ciency-adjusted labor, TL, if k̃ is increasing, which
k̃ will be during the transitional dynamics in a well-behaved Diamond model
if k̃0 < k̃∗. And if instead σ(k̃) > 1 in the relevant range for k̃, then market
forces tend to decrease the income share of the factor that is becoming relatively
more scarce. This factor is K, if k̃ is decreasing, which k̃ will be during the
transitional dynamics in a well-behaved Diamond model if k̃0 > k̃∗, cf. Fig. 4
above. Note that, given the production function in intensive form, f, the elasticity
of substitution between capital and labor does not depend on whether g = 0 or
g > 0, but only on the function f itself and the level of K/(TL). This follows
from Section 4.6.
While k empirically is clearly growing, k̃ ≡ k/T is not necessarily so because

also T is increasing. Indeed, according to Kaldor’s “stylized facts”, apart from
short- and medium-term fluctuations, k̃ − and therefore also r̂ and the labor
income share − tend to be more or less constant over time. This can happen
whatever the sign of σ(k̃∗) − 1, where k̃∗ is the long-run value of the effective
capital-labor ratio k̃.
As alluded to earlier, there are empiricists who reject Kaldor’s “facts” as a

general tendency. For instance Piketty (2014) essentially claims that in the very
long run the effective capital-labor ratio k̃ has an upward trend, temporarily
braked by two world wars and the Great Depression in the 1930s. If so, the sign
of σ(k̃) − 1 becomes decisive for in what direction wL/Y will move. Piketty
interprets the econometric literature as favoring σ(k̃) > 1, which means there
should be downward pressure on wL/Y . This particular source behind a falling
wL/Y can be questioned, however. Indeed, σ(k̃) > 1 contradicts the more general
empirical view.

Immigration*

The phenomenon of migration provides another example that illustrates how the
size of σ(k̃) matters. Consider a competitive economy with perfect competition,
a given aggregate capital stock K, and a given technology level T (entering the
production function in the labor-augmenting way as above). Suppose that due
to immigration an upward shift in aggregate labor supply, L, occurs. Full em-
ployment is maintained by the needed downward real wage adjustment. Given
the present model, in what direction will aggregate labor income wL = w̃(k̃)TL

c© Groth, Lecture notes in macroeconomics, (mimeo) 2017.



4.5. The elasticity of factor substitution 151

then change? The effect of the larger L is to some extent offset by a lower
w brought about by the lower effective capital-labor ratio. Indeed, in view of
dw̃/dk̃ = −k̃f ′′(k̃) > 0, we have k̃ ↓ implies w ↓ for fixed T. So we cannot apriori
sign the change in wL. The following relationship can be shown (Exercise ??),
however:

∂(wL)

∂L
= (1− α(k̃)

σ(k̃)
)w R 0 for σ(k̃) R α(k̃), (4.32)

respectively, where a(k̃) ≡ k̃f ′(k̃)/f(k̃) is the output elasticity w.r.t. capital
which under perfect competition equals the gross capital income share. It follows
that the larger L will not be fully offset by the lower w as long as the elasticity
of factor substitution, σ(k̃), exceeds the gross capital income share, α(k̃). This
condition seems confirmed by most of the empirical evidence, see next section.
The next section describes the concept of elasticity of factor substitution at a

more general level. The subsequent section introduces the special case known as
the CES production function.

4.5 The elasticity of factor substitution

We shall here discuss the concept of elasticity of factor substitution at a more
general level. Fig. 4.6 depicts an isoquant, F (K,L) = Ȳ , for a given neoclassical
production function, F (K,L), which need not have CRS. Let MRS denote the
marginal rate of substitution of K for L, i.e.,

MRS = −dK
dL |Y=Ȳ

= FL(K,L)/FK(K,L).

MRS thus measures how much extra of K is needed to compensate for a reduc-
tion in L by one unit?11 At a given point (K,L) on the isoquant curve, MRS
is given by the absolute value of the slope of the tangent to the isoquant at
that point. This tangent coincides with that isocost line which, given the fac-
tor prices, has minimal intercept with the vertical axis while at the same time
touching the isoquant. In view of F (·) being neoclassical, the isoquants are by
definition strictly convex to the origin. Consequently, MRS is rising along the
curve when L decreases and thereby K increases. Conversely, we can letMRS be
the independent variable and consider the corresponding point on the indifference
curve, and thereby the ratio K/L, as a function of MRS. If we let MRS rise
along the given isoquant, the corresponding value of the ratio K/L will also rise.

11When there is no risk of confusion as to what is up and what is down, we use MRS as a
shorthand for the more precise notation MRSKL.
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Figure 4.6: Substitution of capital for labor as the marginal rate of substitution in-
creases from MRS to MRS′.

The elasticity of substitution between capital and labor, denoted σ̂(K,L),
measures how sensitive K/L is vis-a-vis a rise in MRS. More precisely, σ̂(K,L)
is defined as the elasticity of the ratio K/L with respect to MRS when moving
along a given isoquant, evaluated at the point (K,L). Thus,

σ̂(K,L) ≡ E`MRSK/L =
MRS

K/L

d(K/L)

dMRS |Y=Ȳ
≈

∆(K/L)
K/L

∆MRS
MRS |Y=Ȳ

. (4.33)

Although the elasticity of factor substitution is a characteristic of the tech-
nology as such and is here defined without reference to markets and factor prices,
it helps the intuition to refer to factor prices. At a cost-minimizing point, MRS
equals the factor price ratio w/r̂. Thus, the elasticity of factor substitution will
under cost minimization coincide with the percentage increase in the ratio of the
cost-minimizing factor ratio induced by a one percentage increase in the inverse
factor price ratio, holding the output level unchanged.12 The elasticity of factor
substitution is thus a positive number and reflects how sensitive the capital-labor
ratio K/L is under cost minimization to a one percentage increase in the factor
price ratio w/r̂ for a given output level. The less curvature the isoquant has, the
greater is the elasticity of factor substitution. In an analogue way, in consumer
theory one considers the elasticity of substitution between two consumption goods
or between consumption today and consumption tomorrow, cf. Chapter 3. In that
context the role of the given isoquant is taken over by an indifference curve. That

12This characterization is equivalent to interpreting the elasticity of substitution as the per-
centage decrease in the factor ratio (when moving along a given isoquant) induced by a one-
percentage increase in the corresponding factor price ratio.
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is also the case when we consider the intertemporal elasticity of substitution in
labor supply, cf. the next chapter.
Calculating the elasticity of substitution betweenK and L at the point (K,L),

we get

σ̂(K,L) = − FKFL(FKK + FLL)

KL [(FL)2FKK − 2FKFLFKL + (FK)2FLL]
, (4.34)

where all the derivatives are evaluated at the point (K,L). When F (K,L) has
CRS, the formula (4.34) simplifies to

σ̂(K,L) =
FK(K,L)FL(K,L)

FKL(K,L)F (K,L)
= −f

′(k) (f(k)− f ′(k)k)

f ′′(k)kf(k)
≡ σ(k), (4.35)

where k ≡ K/L.13 We see that under CRS, the elasticity of substitution depends
only on the capital-labor ratio k, not on the output level.
There is an alternative way of interpreting the substitution elasticity formula

(4.33). This is based on the fact that any elasticity of a function y = ϕ(x) can
be written as a “double-log derivative”: E`xy ≡ (x/y)dy/dx = d ln y/d lnx.14

So, we can rewrite (4.33) as σ̂(K,L) = d ln(K/L)/d lnMRS, which is a simple
derivative when the data for K/L and MRS are given in logs.
We will now consider the case where the elasticity of substitution is indepen-

dent also of the capital-labor ratio.

4.6 The CES production function

It can be shown15 that if a neoclassical production function with CRS has a
constant elasticity of factor substitution different from one, it must be of the
form

Y = A
[
αKβ + (1− α)Lβ

] 1
β , (4.36)

where A, α, and β are parameters satisfying A > 0, 0 < α < 1, and β < 1,
β 6= 0. This function has been used intensively in empirical studies and is called
a CES production function (CES for Constant Elasticity of Substitution). For a
given choice of measurement units, the parameter A reflects effi ciency (or what

13The formulas (4.34) and (4.35) are derived in Appendix D.
14To see this, let X ≡ lnx and Y ≡ ln y. Then, by the chain rule,

d ln y

d lnx
=
dY

dX
=
dY

dy

dy

dx

dx

dX
=

1

y

dy

dx
eX =

x

y

dy

dx
= E`xy,

where the third equal sign comes from the fact that x = eln x so that X ≡ lnx ⇒ x = eX

⇒ dx/dX = eX .
15See, e.g., Arrow et al. (1961).
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is known as total factor productivity) and is thus called the effi ciency parameter.
The parameters α and β are called the distribution parameter and the substitution
parameter, respectively. The restriction β < 1 ensures that the isoquants are
strictly convex to the origin. Note that if β < 0, the right-hand side of (4.36)
is not defined when either K or L (or both) equal 0. We can circumvent this
problem by extending the domain of the CES function and assign the function
value 0 to these points when β < 0. Continuity is maintained in the extended
domain (see Appendix E).
By taking partial derivatives in (4.36) and substituting back we get

∂Y

∂K
= αAβ

(
Y

K

)1−β

and
∂Y

∂L
= (1− α)Aβ

(
Y

L

)1−β

, (4.37)

where Y/K = A
[
α + (1− α)k−β

] 1
β and Y/L = A

[
αkβ + 1− α

] 1
β .16 The mar-

ginal rate of substitution of K for L therefore is

MRS =
∂Y/∂L

∂Y/∂K
=

1− α
α

k1−β > 0.

Consequently,
dMRS

dk
=

1− α
α

(1− β)k−β,

where the inverse of the right-hand side is the value of dk/dMRS. Substituting
these expressions into (4.33) gives

σ̂(K,L) (= σ(k)) =
1

1− β ≡ σ, (4.38)

confirming the constancy of the elasticity of substitution. Since β < 1, σ > 0
always. A higher substitution parameter, β, results in a higher elasticity of factor
substitution, σ. And σ ≶ 1 for β ≶ 0, respectively.
Since β = 0 is not allowed in (4.36), at first sight we cannot get σ = 1 from

this formula. Yet, σ = 1 can be introduced as the limiting case of (4.36) when
β → 0, which turns out to be the Cobb-Douglas function. Indeed, one can show17

that, for fixed K and L,

A
[
αKβ + (1− α)Lβ

] 1
β → AKαL1−α, for β → 0 (so that σ → 1).

By a similar procedure as above we find that a Cobb-Douglas function always
has elasticity of substitution equal to 1; this is exactly the value taken by σ in

16The calculations are slightly simplified if we start from the transformation Y β =
Aβ
[
αKβ + (1− α)Lβ

]
.

17Proofs of this and the further claims below are in Appendix E.
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(4.38) when β = 0. In addition, the Cobb-Douglas function is the only production
function that has unit elasticity of substitution whatever the capital-labor ratio.
Another interesting limiting case of the CES function appears when, for fixed

K and L, we let β → −∞ so that σ → 0. We get

A
[
αKβ + (1− α)Lβ

] 1
β → Amin(K,L), for β → −∞ (so that σ → 0). (4.39)

So in this case the CES function approaches a Leontief production function, the
isoquants of which form a right angle, cf. Fig. 4.7. In the limit there is no
possibility of substitution between capital and labor. In accordance with this the
elasticity of substitution calculated from (4.38) approaches zero when β goes to
−∞.
Finally, let us consider the “opposite”transition. For fixed K and L we let

the substitution parameter rise towards 1 and get

A
[
αKβ + (1− α)Lβ

] 1
β → A [αK + (1− α)L] , for β → 1 (so that σ →∞).

Here the elasticity of substitution calculated from (4.38) tends to ∞ and the
isoquants tend to straight lines with slope−(1−α)/α. In the limit, the production
function thus becomes linear and capital and labor become perfect substitutes.
Fig. 4.7 depicts isoquants for alternative CES production functions and their

limiting cases. In the Cobb-Douglas case, σ = 1, the horizontal and vertical
asymptotes of the isoquant coincide with the coordinate axes. When σ < 1, the
horizontal and vertical asymptotes of the isoquant belong to the interior of the
positive quadrant. This implies that both capital and labor are essential inputs.
When σ > 1, the isoquant terminates in points on the coordinate axes. Then
neither capital, nor labor are essential inputs. Empirically there is not complete
agreement about the “normal” size of the elasticity of factor substitution for
industrialized economies. The elasticity also differs across the production sectors.
A thorough econometric study (Antràs, 2004) of U.S. data indicate the aggregate
elasticity of substitution to be in the interval (0.5, 1.0). The survey by Chirinko
(2008) concludes with the interval (0.4, 0.6). Starting from micro data, a recent
study by Oberfield and Raval (2014) finds that the elasticity of factor substitution
for the US manufacturing sector as a whole has been stable since 1970 at about
0.7.

The CES production function in intensive form

Dividing through by L on both sides of (4.36), we obtain the CES production
function in intensive form,

y ≡ Y

L
= A(αkβ + 1− α)

1
β , (4.40)
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Figure 4.7: Isoquants for the CES function for alternative values of σ (A = 1.5, Ȳ = 2,
and α = 0.42).

where k ≡ K/L. The marginal productivity of capital can be written

MPK =
dy

dk
= αA

[
α + (1− α)k−β

] 1−β
β = αAβ

(y
k

)1−β
,

which of course equals ∂Y/∂K in (4.37). We see that the CES function violates
either the lower or the upper Inada condition forMPK, depending on the sign of
β. Indeed, when β < 0 (i.e., σ < 1), then for k → 0 both y/k and dy/dk approach
an upper bound equal to Aα1/β < ∞, thus violating the lower Inada condition
for MPK (see the left-hand panel of Fig. 4.8). It is also noteworthy that in this
case, for k →∞, y approaches an upper bound equal to A(1−α)1/β <∞. These
features reflect the low degree of substitutability when β < 0.
When instead β > 0, there is a high degree of substitutability (σ > 1). Then,

for k → ∞ both y/k and dy/dk → Aα1/β > 0, thus violating the upper Inada
condition for MPK (see right-hand panel of Fig. 4.8). It is also noteworthy that
for k → 0, y approaches a positive lower bound equal to A(1− α)1/β > 0. Thus,
when σ > 1, capital is not essential. At the same time dy/dk →∞ for k → 0 (so
the lower Inada condition for the marginal productivity of capital holds). Details
are in Appendix E.
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The marginal productivity of labor is

MPL =
∂Y

∂L
= (1− α)Aβy1−β = (1− α)A(αkβ + 1− α)(1−β)/β ≡ w(k),

from (4.37). Under perfect competition, the equilibrium labor income share is
thus

wL

Y
=

(1− α)(αkβ + 1− α)1/β−1

(αkβ + 1− α)
1
β

=
1− α

αkβ + 1− α.

Since (4.36) is symmetric in K and L, we get a series of symmetric results by
considering output per unit of capital as x ≡ Y/K = A

[
α + (1− α)(L/K)β

]1/β
.

In total, therefore, when there is low substitutability (σ < 1), for fixed input
of either of the production factors, there is an upper bound for how much an
unlimited input of the other production factor can increase output. And when
there is high substitutability (σ > 1), there is no such bound and an unlimited
input of either production factor take output to infinity.
The Cobb-Douglas case, i.e., the limiting case for β → 0, constitutes in several

respects an intermediate case in that all four Inada conditions are satisfied and
we have y → 0 for k → 0, and y →∞ for k →∞.

0 5 10
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1
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∆x ·Aα
1
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∆x

a) The case of σ < 1.
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y

Figure 4.8: The CES production function in intensive form, σ = 1/(1− β), β < 1.

Returning to the general CES function, in case of Harrod-neutral technological
progress, (4.36) and (4.40) are replaced by

Y = A
[
αKβ + (1− α)(TL)β

] 1
β

and

ỹ ≡ Y

TL
= A(αk̃β + 1− α)

1
β ,

respectively, where T is the technology level, and k̃ ≡ K/(TL).
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Generalizations*

The CES production functions considered above have CRS. By adding an elas-
ticity of scale parameter, γ, we get the generalized form (the case without tech-
nological progress):

Y = A
[
αKβ + (1− α)Lβ

] γ
β , γ > 0. (4.41)

In this form the CES function is homogeneous of degree γ. For 0 < γ < 1, there are
DRS, for γ = 1 CRS, and for γ > 1 IRS. If γ 6= 1, it may be convenient to consider
Q ≡ Y 1/γ = A1/γ

[
αKβ + (1− α)Lβ

]1/β
and q ≡ Q/L = A1/γ(αkβ + 1− α)1/β.

The elasticity of substitution between K and L is σ = 1/(1−β) whatever the
value of γ. So including the limiting cases as well as non-constant returns to scale
in the “family”of production functions with constant elasticity of substitution,
we have the simple classification displayed in Table 4.1.

Table 4.1 The family of production functions
with constant elasticity of substitution.

σ = 0 0 < σ < 1 σ = 1 σ > 1
Leontief CES Cobb-Douglas CES

Note that only for γ ≤ 1 is (4.41) a neoclassical production function. This
is because, when γ > 1, the conditions FKK < 0 and FNN < 0 do not hold
everywhere.
We may generalize further by assuming there are n inputs, in the amounts

X1, X2, ..., Xn. Then the CES production function takes the form

Y = A
[
α1X1

β + α2X2
β + ...αnXn

β
] γ
β , αi > 0 for all i,

∑
i

αi = 1, γ > 0.

(4.42)
In analogy with (4.33), for an n-factor production function the partial elasticity
of substitution between factor i and factor j is defined as

σij =
MRSij
Xi/Xj

d(Xi/Xj)

dMRSij |Y=Ȳ

,

where it is understood that not only the output level but also all Xk, k 6= i, j,
are kept constant. Note that σji = σij. In the CES case considered in (4.42), all
the partial elasticities of substitution take the same value, 1/(1− β).
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4.7 Concluding remarks

(incomplete)
When speaking of “sustained growth”in variables like K, Y, and C, we do not

mean growth in a narrow physical sense. Given limited natural resources (matter
and energy), sustained exponential growth in a physical sense is not possible. But
sustained exponential growth in terms of economic value is not ruled out. We
should for instance understand K broadly as “produced means of production”
of rising quality and falling material intensity (think of the rising effi ciency of
microprocessors). Similarly, C must be seen as a composite of consumer goods
and services with declining material intensity over time. This accords with the
empirical fact that as income rises, the share of consumption expenditures devoted
to agricultural and industrial products declines and the share devoted to services,
hobbies, and amusement increases. Although “economic development”is a more
appropriate term (suggesting qualitative and structural change), we will in this
book retain standard terminology and speak of “economic growth”.
A further remark about terminology. In the branch of economics called eco-

nomic growth theory, the term “economic growth”is used primarily for growth
of productivity and income per capita rather than just growth of GDP.

4.8 Literature notes

1. We introduced the assumption that at the macroeconomic level the “direc-
tion”of technological progress tends to be Harrod-neutral. Otherwise the model
will not be consistent with Kaldor’s stylized facts. The Harrod-neutrality of the
“direction”of technological progress is in the present model just an exogenous
feature. This raises the question whether there are mechanisms tending to gen-
erate Harrod-neutrality. Fortunately new growth theory provides clues as to the
sources of the speed as well as the direction of technological change. A facet
of this theory is that the direction of technological change is linked to the same
economic forces as the speed, namely profit incentives. See Acemoglu (2003) and
Jones (2006).
2. Recent literature discussing Kaldor’s “stylized facts” includes Rognlie

(2015), Gollin (2002), Elsby et al. (2013), and Karabarbounis and Neiman (2014).
The latter three references conclude with serious scepticism. Attfield and Temple
(2010) and others, however, find support for the Kaldor “facts”considering the
US and UK based on time-series econometrics. This means an observed evolu-
tion roughly obeying balanced growth in terms of aggregate variables. Structural
change is not ruled out by this. A changing sectorial composition of the economy
is under certain conditions compatible with balanced growth (in a generalized
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sense) at the aggregate level, cf. the “Kuznets facts” (see Kongsamut et al.,
2001, and Acemoglu, 2009).
3. In Section 4.2 we claimed that from an empirical point of view, the adjust-

ment towards a steady state can be from above as well as from below. Indeed,
Cho and Graham (1996), based on the Penn World Table, find that “on average,
countries with a lower income per adult are above their steady-state positions,
while countries with a higher income are below their steady-state positions”.
4. As to the assessment of whether dynamic ineffi ciency is —or at least has

been —part of reality, in addition to Abel et al. (1989) other useful sources include
Ball et al. (1998), Blanchard and Weil (2001), and Barbie, Hagedorn, and Kaul
(2004). A survey is given in Weil (2008).
5. In the Diamond OLG model as well as in many other models, a steady

state and a balanced growth path imply each other. Indeed, they are two sides of
the same process. There exist cases, however, where this equivalence does not
hold (some open economy models and some models with embodied technological
change, see Groth et al., 2010). Therefore, it is recommendable always to maintain
a terminological distinction between the two concepts.
6. On the declining material intensity of consumer goods and services as

technology develops, see Fagnart and Germain (2011).
From here incomplete:
The term “Great Ratios”of the economy was coined by Klein and Kosubud

(1961).
La Grandville (1989): normalization of the CES function. La Grandville

(2009) contains a lot about analytical aspects linked to the CES production func-
tion and the concept of elasticity of factor substitution.
Piketty (2014), Zucman ( ).
According to Summers (2014), Piketty’s interpretation of data relevant for

estimation of the elasticity of factor substitution relies on conflating gross and
net returns to capital. Krusell and Smith (2015) and Ronglie (2015).
Demange and Laroque (1999, 2000) extend Diamond’s OLG model to uncer-

tain environments.
For expositions in depth of OLG modeling and dynamics in discrete time, see

Azariadis (1993), de la Croix and Michel (2002), and Bewley (2007).
Dynamic ineffi ciency, see also Burmeister (1980).
Uzawa’s theorem: Uzawa (1961), Schlicht (2006).
The way the intuition behind the Uzawa theorem was presented in Section

4.1 draws upon Jones and Scrimgeour (2008).
For more general and flexible production functions applied in econometric

work, see, e.g., Nadiri (1982).
Other aspects of life cycle behavior: education. OLG where people live three
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periods. Also Eggertsson and Mehrotra (2015).

4.9 Appendix

A. Growth and interest arithmetic in discrete time

Let t = 0,±1,±2, . . . , and consider the variables zt, xt, and yt, assumed positive
for all t. Define ∆zt = zt − zt−1 and ∆xt and ∆yt similarly. These ∆’s need not
be positive. The growth rate of xt from period t− 1 to period t is defined as the
relative rate of increase in x, i.e., ∆xt/xt−1 ≡ xt/xt−1. And the growth factor for
xt from period t− 1 to period t is defined as 1 + xt/xt−1.
As we are here interested not in the time evolution of growth rates, we simplify

notation by suppressing the t’s. So we write the growth rate of x as gx ≡ ∆x/x−1

and similarly for y and z.

PRODUCT RULE If z = xy, then 1 + gz = (1 + gx)(1 + gy) and gz ≈ gx + gy,
when gx and gy are “small”.

Proof. By definition, z = xy, which implies z−1 + ∆z = (x−1 + ∆x)(y−1 +
∆y). Dividing by z−1 = x−1y−1 gives 1 + ∆z/z−1 = (1 + ∆x/x−1)(1 + ∆y/y−1)
as claimed. By carrying out the multiplication on the right-hand side of this
equation, we get 1 + ∆z/z−1 = 1 + ∆x/x−1 + ∆y/y−1 + (∆x/x−1)(∆y/y−1) ≈
1 + ∆x/x−1 + ∆y/y1 when ∆x/x−1 and ∆y/y−1 are “small”. Subtracting 1 on
both sides gives the stated approximation. �
So the product of two positive variables will grow at a rate approximately

equal to the sum of the growth rates of the two variables.

QUOTIENT RULE If z = x/y, then 1 + gz = (1 + gx)/(1 + gy) and gz ≈ gx− gy,
when gx and gy are “small”.

Proof. By interchanging z and x in Product Rule and rearranging, we get 1 +
∆z/z−1 = 1+∆x/x−1

1+∆y/y−1
, as stated in the first part of the claim. Subtracting 1 on

both sides gives ∆z/z−1 = ∆x/x−1−∆y/y−1

1+∆y/y−1
≈ ∆x/x−1 − ∆y/y−1, when ∆x/x−1

and ∆y/y−1 are “small”. This proves the stated approximation. �
So the ratio between two positive variables will grow at a rate approximately

equal to the excess of the growth rate of the numerator over that of the denomina-
tor. An implication of the first part of Claim 2 is: the ratio between two positive
variables is constant if and only if the variables have the same growth rate (not
necessarily constant or positive).

POWER FUNCTION RULE If z = xα, then 1 + gz = (1 + gx)
α.

Proof. 1 + gz ≡ z/z−1 = (x/x−1)α ≡ (1 + gx)
α. �
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Given a time series x0, x1, ..., xn, by the average growth rate per period, or
more precisely, the average compound growth rate, is meant a g which satisfies
xn = x0(1 + g)n. The solution for g is g = (xn/x0)1/n − 1.
Finally, the following approximation may be useful (for intuition) if used with

caution:

THE GROWTH FACTOR With n denoting a positive integer above 1 but “not
too large”, the growth factor (1 + g)n can be approximated by 1 + ng when g is
“small”. For g 6= 0, the approximation error is larger the larger is n.

Proof. (i) We prove the claim by induction. Suppose the claim holds for a fixed
n ≥ 2, i.e., (1 + g)n ≈ 1 + ng for g “small”. Then (1 + g)n+1 = (1 + g)n(1 + g)
≈ (1 + ng)(1 + g) = 1 + ng + g + ng2 ≈ 1 + (n + 1)g since g “small”implies g2

“very small”and therefore ng2 “small”if n is not “too”large. So the claim holds
also for n+ 1. Since (1 + g)2 = 1 + 2g+ g2 ≈ 1 + 2g, for g “small”, the claim does
indeed hold for n = 2. �
THE EFFECTIVE ANNUAL RATE OF INTEREST Suppose interest on a
loan is charged n times a year at the rate r/n per year. Then the effective annual
interest rate is (1 + r/n)n − 1.

B. Proof of the suffi ciency part of Uzawa’s theorem

For convenience we restate the full theorem here:

PROPOSITION 2. Let P ≡ {(Kt, Yt, Ct)}∞t=0 be a path along which Yt, Kt, Ct,
and St ≡ Yt − Ct are positive for all t = 0, 1, 2,. . . , and satisfy the dynamic
resource constraint for a closed economy, (4.3), given the production function
(4.5) and the labor force (4.6). Then:
(i) A necessary condition for the path P to be a BGP is that along P it holds
that

Yt = F̃ (Kt, TtLt, 0), (*)

where Tt = T0(1 + g)t with T0 = B and 1 + g ≡ (1 + gY )/(1 + n) > 1, gY being
the constant growth rate of output along the BGP.
(ii) Assume (1 + g)(1 + n) > 1 − δ. Then, for any g ≥ 0 such that there is a
q > (1 + g)(1 + n) − (1 − δ) with the property that the production function F̃
in (4.5) allows an output-capital ratio equal to q at t = 0 (i.e., F̃ (1, k̃−1, 0) = q
for some real number k̃ > 0), a suffi cient condition for F̃ to be compatible with
a BGP with output-capital ratio equal to q is that F̃ can be written as in (4.7)
with Tt = B(1 + g)t.

Proof (i) See Section 4.1. (ii) Suppose (*) holds with Tt = B(1 + g)t. Let g ≥ 0
be given such that there is a q > (1 + g)(1 + n)− (1− δ) > 0 with the property
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that
F̃ (1, k̃−1, 0) = q (**)

for some constant k̃ > 0. Our strategy is to prove the claim by constructing a path
P = (Yt, Kt, Ct)

∞
t=0 which satisfies it. We let P be such that the saving-income

ratio is a constant ŝ ≡ [(1 + g)(1 + n)− (1− δ)] /q ∈ (0, 1), i.e., Yt − Ct ≡ St
= ŝYt for all t = 0, 1, 2, . . . . Inserting this, together with Yt = f(k̃t)TtLt, where
f(k̃t) ≡ F̃ (k̃t, 1, 0) and k̃t ≡ Kt/(TtLt), into (4.3), rearranging gives the Solow
equation (4.4), which we may rewrite as

k̃t+1 − k̃t =
ŝf(k̃t)− [(1 + g)(1 + n)− (1− δ)] k̃t

(1 + g)(1 + n)
.

We see that k̃t is constant if and only if k̃t satisfies the equation f(k̃t)/k̃t =
[(1 + g)(1 + n)− (1− δ)] /ŝ ≡ q. By (**) and the definition of f, the required
value of k̃t is k̃, which is thus the steady state for the constructed Solow model.
Letting K0 satisfy K0 = k̃BL0, where B = T0, we thus have k̃0 = K0/(T0L0) = k̃.
So that the initial value of k̃t equals the steady-state value. It follows that k̃t = k̃
for all t = 0, 1, 2, . . . , and so Yt/Kt = f(k̃t)/k̃t = f(k̃)/k̃ = q for all t ≥ 0. In
addition, Ct = (1− ŝ)Yt, so that Ct/Yt is constant along the path P. As both Y/K
and C/Y are thus constant along the path P , by (ii) of Proposition 1 follows that
P is a BGP. �
It is noteworthy that the proof of the suffi ciency part of the theorem is con-

structive. It provides a method for constructing a BGP with a given technology
growth rate and a given output-capital ratio.

C. Homothetic utility functions

Generalities A set C in Rn is called a cone if x ∈ C and λ > 0 implies λx ∈ C.
A function f(x) = f(x1,. . . ,xn) is homothetic in the cone C if for all x,y ∈ C
and all λ > 0, f(x) = f(y) implies f(λx) = f(λy).
Consider the continuous utility function U(x1, x2), defined in R2

+. Suppose U
is homothetic and that the consumption bundles (x1, x2) and (y1, y2) belong to
the same indifference curve, i.e., U(x1, x2) = U(y1, y2). Then for any λ > 0 we
have U(λx1, λx2) = U(λy1, λy2), meaning that also the bundles (λx1, λx2) and
(λy1, λy2) belong to the same indifference curve.

CLAIM C1. Let U(x1, x2) be a continuous two-good utility function, increasing
in each of its arguments (as is the life time utility function of the Diamond model).
Then: U is homothetic if and only if U can be written U(x1, x2) ≡ F (f(x1, x2))
where the function f is homogeneous of degree one and F is an increasing function.
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Proof. The “if” part is easily shown. Indeed, if U(x1, x2) = U(y1, y2), then
F (f(x1, x2)) = F (f(y1, y2)). Since F is increasing, this implies f(x1, x2) = f(y1, y2).
Because f is homogeneous of degree one, if λ > 0, then f(λx1, λx2) = λf(x1, x2)
and f(λy1, λy2) = λf(y1, y2) so that U(λx1, λx2) = F (f(λx1, λx2)) = F (f(λy1, λy2))
= U(λy1, λy2), which shows that U is homothetic. As to the “only if”part, see
Sydsæter et al. (2002). �

Using differentiability of our homothetic time utility function U(x1, x2) ≡
F (f(x1, x2)), we find the marginal rate of substitution of good 2 for good 1 to be

MRS =
dx2

dx1 |U=Ū

=
∂U/∂x1

∂U/∂x2

=
F ′f1(x1, x2)

F ′f2(x1, x2)
=
f1(1, x2

x1
)

f2(1, x2

x1
)
. (4.43)

The last equality is due to Euler’s theorem saying that when f is homogeneous of
degree 1, then the first-order partial derivatives of f are homogeneous of degree
0. Now, (4.43) implies that for a given MRS, in optimum reflecting a given
relative price of the two goods, the same consumption ratio, x2/x1, will be chosen
whatever the budget. For a given relative price, a rising budget (rising wealth)
will change the position of the budget line, but not its slope. So MRS will not
change, which implies that the chosen pair, (x1, x2), will move outward along a
given ray in R2

+. Indeed, as the intercepts with the axes rise proportionately with
the budget (the wealth), so will x1 and x2.

Proof that the utility function in (4.25) is homothetic In Section 4.2 we
claimed that (4.25) is a homothetic utility function. Based on Claim C1, this can
be proved in the following way. There are two cases to consider. Case 1: θ > 0,
θ 6= 1. We rewrite (4.25) as

U(c1, c2) =
1

1− θ
[
(c1−θ

1 + βc1−θ
2 )1/(1−θ)]1−θ − 1 + β

1− θ ,

where β ≡ (1 + ρ)−1. The function x = g(c1, c2) ≡ (c1−θ
1 + βc1−θ

2 )1/(1−θ) is
homogeneous of degree one and the function G(x) ≡ (1/(1 − θ))x1−θ − (1 +
β)/(1− θ) is an increasing function, given θ > 0, θ 6= 1. Case 2: θ = 1. Here we
start from U(c1, c2) = ln c1 + β ln c2. This can be written

U(c1, c2) = (1 + β) ln
[
(c1c

β
2 )1/(1+β)

]
,

where x = g(c1, c2) = (c1c
β
2 )1/(1+β) is homogeneous of degree one and G(x) ≡

(1 + β) lnx is an increasing function. �
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D. General formulas for the elasticity of factor substitution

We here prove (4.34) and (4.35). Given the neoclassical production function
F (K,L), the slope of the isoquant F (K,L) = Ȳ at the point (K̄, L̄) is

dK

dL |Y=Ȳ
= −MRS = −FL(K̄, L̄)

FK(K̄, L̄)
. (4.44)

We consider this slope as a function of the value of k ≡ K/L as we move along
the isoquant. The derivative of this function is

−dMRS

dk |Y=Ȳ
= −dMRS

dL |Y=Ȳ

dL

dk |Y=Ȳ

= −(FL)2FKK − 2FKFLFKL + (FK)2FLL
F 3
K

dL

dk |Y=Ȳ
(4.45)

by (2.53) of Chapter 2. In view of L ≡ K/k we have

dL

dk |Y=Ȳ
=
k dK
dk |Y=Ȳ

−K

k2
=
k dK
dL |Y=Ȳ

dL
dk |Y=Ȳ

−K

k2
=
−kMRS dL

dk |Y=Ȳ
−K

k2
.

From this we find
dL

dk |Y=Ȳ
= − K

(k +MRS)k
,

to be substituted into (4.45). Finally, we substitute the inverse of (4.45) together
with (4.44) into the definition of the elasticity of factor substitution:

σ(K,L) ≡ MRS

k

dk

dMRS |Y=Ȳ

= −FL/FK
k

(k + FL/FK)k

K

F 3
K

[(FL)2FKK − 2FKFLFKL + (FK)2FLL]

= − FKFL(FKK + FLL)

KL [(FL)2FKK − 2FKFLFKL + (FK)2FLL]
,

which is the same as (4.34).
Under CRS, this reduces to

σ(K,L) = − FKFLF (K,L)

KL [(FL)2FKK − 2FKFLFKL + (FK)2FLL]
(from (2.54) with h = 1)

= − FKFLF (K,L)

KLFKL [−(FL)2L/K − 2FKFL − (FK)2K/L]
(from (2.60))

=
FKFLF (K,L)

FKL(FLL+ FKK)2
=

FKFL
FKLF (K,L)

, (using (2.54) with h = 1)

which proves the first part of (4.35). The second part is an implication of rewriting
the formula in terms of the production in intensive form.
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E. Properties of the CES production function

The generalized CES production function is

Y = A
[
αKβ + (1− α)Lβ

] γ
β , (4.46)

where A, α, and β are parameters satisfying A > 0, 0 < α < 1, and β < 1,
β 6= 0, γ > 0. If γ < 1, there is DRS, if γ = 1, CRS, and if γ > 1, IRS. The
elasticity of substitution is always σ = 1/(1 − β). Throughout below, k means
K/L.

The limiting functional forms We claimed in the text that, for fixed K > 0
and L > 0, (4.46) implies:

lim
β→0

Y = A(KαL1−α)γ = ALγkαγ, (*)

lim
β→−∞

Y = Amin(Kγ, Lγ) = ALγ min(kγ, 1). (**)

Proof. Let q ≡ Y/(ALγ). Then q = (αkβ + 1− α)γ/β so that

ln q =
γ ln(αkβ + 1− α)

β
≡ m(β)

β
, (4.47)

where

m′(β) =
γαkβ ln k

αkβ + 1− α =
γα ln k

α + (1− α)k−β
. (4.48)

Hence, by L’Hôpital’s rule for “0/0”,

lim
β→0

ln q = lim
β→0

m′(β)

1
= γα ln k = ln kγα,

so that limβ→0 q = kγα. In view of Y = ALγq, limβ→0 Y = ALγ limβ→0 q =
ALγkγα. This proves (*).
As to (**), note that

lim
β→−∞

kβ = lim
β→−∞

1

k−β
→


0 for k > 1,
1 for k = 1,
∞ for k < 1.

Hence, by (4.47),

lim
β→−∞

ln q =

{
0 for k ≥ 1,

limβ→−∞
m′(β)

1
= γ ln k = ln kγ for k < 1,
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where the result for k < 1 is based on L’Hôpital’s rule for “∞/-∞”. Consequently,

lim
β→−∞

q =

{
1 for k ≥ 1,
kγ for k < 1.

In view of Y = ALγq, limβ→−∞ Y = ALγ limβ→−∞ q = ALγ min(kγ, 1). This
proves (**). �

Properties of the isoquants of the CES function The absolute value of
the slope of an isoquant for (4.46) in the (L,K) plane is

MRSKL =
∂Y/∂L

∂Y/∂K
=

1− α
α

k1−β →
{

0 for k → 0,
∞ for k →∞. (*)

This holds whether β < 0 or 0 < β < 1.
Concerning the asymptotes and terminal points, if any, of the isoquant Y = Ȳ

we have from (4.46) Ȳ β/γ = A
[
αKβ + (1− α)Lβ

]
. Hence,

K =

(
Ȳ

β
γ

Aα
− 1− α

α
Lβ

) 1
β

,

L =

(
Ȳ

β
γ

A(1− α)
− α

1− αK
β

) 1
β

.

From these two equations follows, when β < 0 (i.e., 0 < σ < 1), that

K → (Aα)−
1
β Ȳ

1
γ for L→∞,

L → [A(1− α)]−
1
β Ȳ

1
γ for K →∞.

When instead β > 0 (i.e., σ > 1), the same limiting formulas obtain for L → 0
and K → 0, respectively.

Properties of the CES function in intensive form Given γ = 1, i.e., CRS,
we have y ≡ Y/L = A(αkβ + 1− α)1/β from (4.46). Then

dy

dk
= A

1

β
(αkβ + 1− α)

1
β
−1αβkβ−1 = Aα

[
α + (1− α)k−β

] 1−β
β .

Hence, when β < 0 (i.e., 0 < σ < 1),

y =
A

(akβ + 1− α)−1/β
→
{

0 for k → 0,
A(1− α)1/β for k →∞.

dy

dk
=

Aα

[α + (1− α)k−β](β−1)/β
→
{
Aα1/β for k → 0,

0 for k →∞.
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If instead β > 0 (i.e., σ > 1),

y →
{
A(1− α)1/β for k → 0,
∞ for k →∞.

dy

dk
→

{
∞ for k → 0,

Aα1/β for k →∞.

The output-capital ratio is y/k = A
[
α + (1− α)k−β

] 1
β and has the same limiting

values as dy/dk, when β > 0.

Continuity at the boundary of R2
+. When 0 < β < 1, the right-hand side

of (4.46) is defined and continuous also on the boundary of R2
+. Indeed, we get

Y = F (K,L) = A
[
αKβ + (1− α)Lβ

] γ
β →

{
Aα

γ
βKγ for L→+ 0,

A(1− α)
γ
βLγ for K →+ 0.

When β < 0, however, the right-hand side is not defined on the boundary. We
circumvent this problem by redefining the CES function in the following way
when β < 0:

Y = F (K,L) =

{
A
[
αKβ + (1− α)Lβ

] γ
β when K > 0 and L > 0,

0 when K or L equals 0.
(4.49)

We now show that continuity holds in the extended domain. When K > 0 and
L > 0, we have

Y
β
γ = A

β
γ
[
αKβ + (1− α)Lβ

]
≡ A

β
γG(K,L). (4.50)

Let β < 0 and (K,L) → (0, 0). Then, G(K,L) → ∞, and so Y β/γ → ∞. Since
β/γ < 0, this implies Y → 0 = F (0, 0), where the equality follows from the
definition in (4.49). Next, consider a fixed L > 0 and rewrite (4.50) as

Y
1
γ = A

1
γ
[
αKβ + (1− α)Lβ

] 1
β = A

1
γL(αkβ + 1− α)

1
β

=
A

1
γL

(akβ + 1− α)−1/β
→ 0 for k → 0,

when β < 0. Since 1/γ > 0, this implies Y → 0 = F (0, L), from (4.49). Finally,
consider a fixed K > 0 and let L/K → 0. Then, by an analogue argument we get
Y → 0 = F (K, 0), (4.49). So continuity is maintained in the extended domain.

c© Groth, Lecture notes in macroeconomics, (mimeo) 2017.



4.10. Exercises 169

4.10 Exercises

4.1 (the aggregate saving rate in steady state)

a) In a well-behaved Diamond OLG model let n be the rate of population
growth and k∗ the steady state capital-labor ratio (until further notice, we
ignore technological progress). Derive a formula for the long-run aggregate
net saving rate, SN/Y, in terms of n and k∗. Hint: use that for a closed
economy SN = Kt+1 −Kt.

b) In the Solow growth model without technological change a similar relation
holds, but with a different interpretation of the causality. Explain.

c) Compare your result in a) with the formula for SN/Y in steady state one
gets in any model with the same CRS-production function and no techno-
logical change. Comment.

d) Assume that n = 0. What does the formula from a) tell you about the level
of net aggregate savings in this case? Give the intuition behind the result in
terms of the aggregate saving by any generation in two consecutive periods.
One might think that people’s rate of impatience (in Diamond’s model the
rate of time preference ρ) affect SN/Y in steady state. Does it in this case?
Why or why not?

e) Suppose there is Harrod-neutral technological progress at the constant rate
g > 0. Derive a formula for the aggregate net saving rate in the long run in
a well-behaved Diamond model in this case.

f) Answer d) with “from a)”replaced by “from e)”. Comment.

g) Consider the statement: “In Diamond’s OLG model any generation saves
as much when young as it dissaves when old.”True or false? Why?

4.2 (increasing returns to scale and balanced growth)
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