Chapter 8

Optimal capital accumulation

In Barro’s dynasty model of the previous chapter, coordination across genera-
tions is brought about through a competitive market mechanism and bequests
induced by parental altruism. We will now study resource allocation in a con-
text where we imagine that the coordination across generations is brought about
by a benevolent and omniscient social planner discounting the utility of future
generations at a certain rate. The study of such problems was initiated already
by the British mathematician and economist Frank P. Ramsey (1903-1930). The
modeling framework is therefore sometimes referred to as Ramsey’s optimal sav-
ing problem. While the original contribution by Ramsey was in continuous time,
here we take a discrete time approach and leave the continuous-time formulation
for Chapter 10.

The coordination across generations leads to the social planner’s modified
golden rule. Whether the planning horizon is finite or infinite, the associated
time path of the economy features a distinctive stability attribute, known as the
turnpike property.

In the first section below, to solve the social planner’s dynamic optimization
problem, we use the simple substitution method. In Section 8.2 the more general
and advanced mathematical tool called optimal control theory is applied (in its
discrete time version). The questions of existence, uniqueness, and convergence
over time of the solution are examined in Section 8.3. Optimal control theory
is also applicable to cases where other optimality criteria than maximization are
needed. This is the topic of Section 8.4. The sections 8.2, 8.3, and 8.4 are
relatively technical and can be skipped in a first reading. Hence their headings
are marked by an asterisk.
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308 CHAPTER 8. OPTIMAL CAPITAL ACCUMULATION

8.1 Command optimum

As to demography, technology, and individual preferences the framework is as
in the Diamond OLG model with Harrod-neutral technological progress and the
notation is the same. Chapter 3 concluded that a competitive market economy
in this framework may suffer from dynamic inefficiency, hence absence of Pareto
optimality. In addition to this problem, however, one should be aware that even
if resource allocation is Pareto optimal, it may not be satisfactory from a societal
point of view. Pareto optimality is a weak optimality criterion. For example, if in
a Diamond economy each young generation has very high impatience, they save
very little for their old age and the economy may gradually shrink to the detriment
of future generations. Nevertheless, this can easily be a Pareto optimal resource
allocation. Similarly, if the queen of Denmark received almost all consumption
goods (and satiation were impossible), while the rest of the population received
just what is needed for subsistence, that would be a Pareto optimum.

Pareto optimality should be seen as only a minimum requirement of social
organization. A more ample optimality criterion is based on a social welfare
function, that is, an objective function which aggregates the welfare levels of the
various members of society, possibly including the as yet unborn members, into
an index of “social welfare”. How can a social welfare function be constructed in
a democratic society with conflicting interests? As is well-known from Arrow’s
Impossibility Theorem (see, e.g., Mas-Colell et al., 1995, Chapter 21), no definite
answer satisfying a series of “natural” minimal requirements, including Pareto-
optimality and independence of irrelevant alternatives, can be given. The theory
of public economics can help clarify achievable and, according to well-defined
criteria, desirable properties of a social welfare function. But in the last instance
a social welfare function relies on ethics and political choice.

8.1.1 A social planner

Consider a hypothetical centrally planned economy with a benevolent and omni-
scient social planner who can dictate every aspect of production and distribution
within the constraints given by technology and initial resources. The demography
and individual preferences are as in the Diamond OLG model of Chapter 3. It is
assumed that the social planner

e knows and respects the individual preferences as to the distribution of in-
dividual consumption over own lifetime;

e discounts the utility of future generations at a constant effective rate R,
which may deviate from the effective intergenerational discount rate of the
individuals.

© Groth, Lecture notes in macroeconomics, (mimeo) 2017.



8.1. Command optimum 309

Technically feasible paths

The number of young is L; = Lo(1 + n)*, where Ly > 0 and n > —1. As in both
the Diamond and the Barro model, the aggregate production function is

Y, = F(K,, T,L,) = T.L.f (ky), (8.1)

where F' has constant returns to scale and is neoclassical so that f* > 0 and
f" < 0. The technology level 7; grows at a constant exogenous rate g > 0. To save
notation we chose measurement units such that 7y = 1, whereby 7; = (1 + g).!
Only the young work and they all supply one unit of labor per period (the social
planner ensures full employment). The dynamic resource constraint is

KtJr]_ - Kt + }/t - Ct - (SKt, KO > O, O S 5 S 1 (82)
Aggregate consumption C} satisfies
Ct = Ltclt + Lt(l -+ n)*lcgt. (83)

Dividing through by L, isolating ¢;; and using (8.2) and (8.1) yields
cu=eyT = | fk)+Q=0)k—Q+n) 1+ k| T — (14n) ey, (84)

where ko > 0 is given. Essentially, this is just an aggregate book-keeping relation
saying that consumption by each young equals what is available per young minus
what is used for investment and consumption by the old.

Let the historically given initial effective capital-labor ratio be 20 > 0. Then

- T-1
a technically feasible path from time 0 to time 7' is a sequence {(l{:t, Cit, 02,5)}
t=0

such that kg = ko and for ¢ = 0,1,2,...,7 — 1, the non-negativity constraints
ciy > 0,9 > 0, and l;;tﬂ > 0 hold and the equation (8.4) is satisfied. A technically
feasible path with infinite horizon is defined similarly for 7" — oc.

To begin with our social planner is assumed to have a finite planning horizon.
For many practical planning problems this is certainly the realistic case. A plan-
ner often has inadequate information about available resources and technology in
the far future and may consequently refrain from very-long horizon planning, be
it infinite or finite.

'In this chapter we use 7 to denote the technology level, whereas T will be an integer
representing the planning horizon.
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310 CHAPTER 8. OPTIMAL CAPITAL ACCUMULATION

Finite planning horizon

The social planner’s problem with a finite planning horizon, 7 is to select from
the set of technically feasible paths the best one according to a criterion function
and possibly a specific terminal constraint, see below. If such a member of the
set of technically feasible paths exists, it is called an optimal path or - in casual
jargon - a command optimum.

In the present context the criterion function, also known as a social welfare
function, is:

T—2
Wo = (14 p) tuley) + Z 14+ R) ™" Du(ey) + (14 p) ulcarss)]
t=0

+(1+ R) T u(err-1). (8.5)

The private rate of time preference is p (> —1), there is no utility from leisure,
and v > 0, v” < 0. To avoid corner solutions (where, for some t, ¢;; = 0 or
cor = 0), we impose the usual No Fast Assumption

lim u'(c) = oc. (A1)

c—0

The social planner’s effective intergenerational discount rate, R, is defined by
1+R)1'=0+R)"(1+n), (8.6)

where R is the pure intergenerational discount rate which enters the utility dis-
count factor by which the social planner translates the lifetime utility of a member
of a given generation into equivalent utility units for a member of the previous
generation. Until further notice, nothing is assumed about R (except of course
the conceptual restriction R > —1) and so, similarly, R > —1. If R = 0, we have
(1+ R)™! = 1+ n, implying that the social planner weighs the per capita lifetime
utility obtained by each generation according to the size of that generation. If
R > 0, we have (1 + R)™* < 1+ n, and so future generations get less weight,
while R < 0 implies that future generations get more weight.

The dynasty criterion function as formulated in the Barro model, cf. Chapter
7, viewed the stream of present and future utilities from the perspective of the
young parent who in a market economy takes the welfare of the descendents into
account. The social welfare function (8.5) is slightly more inclusive in that it
takes into account that also in the first period, period 0, there is a trade-off
between utilities of two coexisting generations, the young and the old. Possibly
the allocation preferred by the social planner involves a transfer from the currently
young to the currently old. That kind of transfer would never happen in the
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Barro model where parents’ utility did not enter children’s utility function and
children were exempted from responsibility for parental debts (in accordance with
a normal legal system of a market economy).

It is important that the social planner faces a historically given kg. When
studying the golden rule problem in Chapter 3, we just asked: what is the highest
sustainable path of consumption? We did not ask: given we are at some arbitrary
ko today, where should we go and how fast? But this is what a planning problem is
about. Given a criterion function, which may involve discounting and diminishing
marginal utility, the problem is to find an optimal route to follow, starting from
a historically given initial condition.

In spite of the finite planning horizon, the planner may give some weight to
what happens after period T'— 1. We therefore introduce the terminal constraint,

for > for, (8.7)

where lzT > 0.

Solving the social planner’s problem

. T—2 .
The planner’s problem is: choose a plan (020, {(c1s; e2e41) }1—g ,C1T_1) to maxi-

mize Wy subject to the constraints (8.4), (8.7), and non-negativity of ¢4, co;, and
ki1. To solve the problem we insert (8.4) (both as it looks and shifted one period
forward) into (8.5) and maximize w.r.t. ¢y and ky 1. An interior solution® will
fort =0,1,...,T — 1 satisfy the first-order conditions:

oW, - 3
o= (1 B (1 p) M (ea) = (1 R) 0 () (1) 7 =0,
2t
and
oW, -
7 o= (1+R) " () (1 +n)(1+ )] T
t+1

H(L+ R (erppn) | (kgr) +1 = 6| Tipa = 0.

These two conditions can be written
1

(14 p) "/ (car) = (1 + R) ™" (exr) T<n and (8.8)
u'(er) = (14 R)™ ' (cagg) Lt fll(l_ﬁ?:) — 5’ (8.9)

2 An interior solution is a solution with the property that for no ¢ € [0,7 — 1] is a boundary
point of the set of technically feasible paths reached.
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312 CHAPTER 8. OPTIMAL CAPITAL ACCUMULATION

respectively, for t = 0,1,...,7 — 1. Condition (8.8) is a MC' = M B condition (in
terms of utility) referring to the distribution of consumption across generations
in the same period. It states that, from the point of view of the social planner,
the utility loss by transferring one unit of consumption from the old in period ¢ to
the young in the same period must equal the utility gain obtained by the young
(who can now consume more), discounted by the intergenerational discount rate
R. The rate of transformation is 1/(1 + n), since, for every old there are 1 + n
young.

Condition (8.9) is a M C' = M B condition referring to the distribution of con-
sumption across time and generations. It states that the utility loss by decreasing
the consumption of the young in period ¢ by one unit must equal the utility gain
obtained by the young in the next period discounted by the intergenerational

discount rate R. The rate of transformation is | f'(ky1) +1— 6| /(14 n), since

the saved unit is invested and gives a gross return of f’ (/;tﬂ) + 1 — ¢ in period
t + 1, but at the same time, for every young in period t there are 1 4+ n young in
period t + 1.

Replacing u/(c1z41) in (8.9) by its value from (8.8), shifted one period ahead,
we end up with

() = (L4 p) " (caren) (L ' (Ren) = 9). (8.10)

This relation is identical to the familiar condition, the Euler equation, for in-
dividual intertemporal utility optimization in the Diamond model, if we insert
the equilibrium relation r;,; = f’ (/;:tH) — 0. The central planner thus holds the
individual’s intertemporal first-order condition in the market economy in respect.

But (8.10) only ensures that the relative consumption across time and gener-
ations is “right” (optimal). For the general “level” of the consumption path to
be “right”, we need that the terminal constraint (8.7) holds with strict equality:

fop = k. (8.11)

Such a terminal optimality condition is called a transversality condition. The

intuition behind it is that the alternative, kp > IET, would reflect overaccumula-
tion, since higher discounted utility, W}, could be obtained by consuming more
in period T'— 1 (or an earlier period) without violating the terminal constraint
(8.7).

As formally shown in Section 8.2, the conditions above are not only necessary
but also sufficient for an optimal solution. So the optimal allocation over gen-
erations and time is characterized by (8.4), (8.8), (8.9), and (8.11). Apart from
the presence of technological progress, the first three of these equations are the
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same as in the competitive market economy when the bequest motive is opera-
tive. The equations (7.12), (7.7), and (7.10) (where 1411 = f'(kiy1) — 6) from
Barro’s dynasty model in Chapter 7 confirm this. So the resource allocation in
a perfectly-competitive market economy with altruistic parents looks similar to
that brought about by a social planner with an effective intergenerational dis-
count rate equal to the private one. We have not yet established full equivalence,
however, since the family dynasty in the Barro model has an infinite horizon. To
get a comparable situation we now consider an infinite planning horizon in the
social planner’s problem.

Infinite planning horizon

In the social welfare function (8.5) we let 7' — oco. As before, we consider a
historically given initial effective capital-labor ratio ky > 0. When T — o0,
the function (8.5) becomes a criterion which in itself assigns a proper weight to
what happens “ultimately”. There is no need — in fact it makes no sense — to
“translate” the terminal constraint (8.7) into a terminal constraint like limy_ ko

> & except if i = 0. And in that case, the condition is redundant since we in
any case, by definition of capital, have the technical feasibility condition

ky > 0 for all . (8.12)

The first-order conditions (8.8) and (8.9) are still conditions which an interior
optimal solution has to satisfy. It remains to set up the necessary transversality
condition for the infinite horizon case. A first problem is that with 7" — oo, W)
may no longer be bounded from above. In that situation we cannot maximize
Wy, and as long as maximization is our optimality criterion, no optimal solution
exists. While in Section 8.4 we consider other optimality criteria, we here main-
tain maximization as criterion for optimality. And provided an optimal solution
exists, it must satisfy the transversality condition

1+g T -
jlglgo (1_’_—1’?) UI(Clel)(l + n)kT =0. (813)

A substantiation of the necessity of this condition for the problem at hand is
contained in Appendix C. Here we attempt an intuitive understanding. On the
one hand, high k is good for future production. On the other hand, overaccu-
mulation such that some consumption possibilities are postponed forever should
be avoided. That is, the “ultimate” % should not be too high. For a moment,

imagine as before there is a finite horizon, T, with terminal constraint l;:T > INCT.

Consider a technically feasible plan with kr > /;:T, i.e., the terminal constraint
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314 CHAPTER 8. OPTIMAL CAPITAL ACCUMULATION

is not binding. This plan will not be optimal if the extra consumption in period
T — 1, made feasible by a small decrease of kr, creates extra discounted utility.
Indeed, by a small decrease in kp for the benefit of the young in period T'— 1, we
get Acir_1 = —(1 4+ n)Aky > 0, since for every young in period 7' — 1 there are
1 4 n young in period T. A change in kr of size Aky = —1 amounts to a change
in kp of size Akp = —(1+4 g)7, since kp = kr(1+ ¢)7 (in view of 7y = 1). Hence,
with Akr = —1, the utility gain for generation T'— 1 resulting from this reduction
of kr is u/(cyp_1)(1 + n)(1 + g)”. The present value of this gain, evaluated from
the social planner’s point of view, which is the point of view of generation —1 (the
old generation in period 0), is (1 4+ R)~Tu/(ci7-1)(1 4+ n)(1 + g). If this present

value is positive, it cannot be optimal to end up with kr > kp. This explains the
transversality condition (8.11). But if the present value were zero (say because

c1r—1 and cop_1 were already above a certain level of saturation), then l;:T > /~€T
need not be inconsistent with optimality.
With finite horizon, T, the necessary transversality condition can thus be
written .
1+g , . -
—— | uw(cir—1)(1+n)(kr — kr) =0. 8.14
(£ wlem(t+ )i~ Fa) (8.4
This is a manifestation of the “complementary slackness condition” from the
general theory of static maximization subject to inequality constraints. Here it
says that if more capital than required is leftover, its discounted shadow price as
seen from time 0 must be nil.?

In the infinite horizon case we have IE_T = 0. Then, taking the limit in (8.14) for

T — oo gives the condition (8.13). This “natural” extension of (8.14), with kp
= 0, to the limit for 7" — oo is valid in the present problem (in less proto-type
economic problems such an extension need not be valid).

To obtain compatibility with a balanced growth path when g > 0, we have to
specify u(c) to be a CRRA function, ¢!=%/(1—0), with elasticity of marginal utility
equal to § > 0. Then, in (8.13), we can substitute u/(c;7_1) = cjp_,. In order
that maximization of the social welfare function is possible, we need that the sum
of discounted utilities, Wy, converges for 7' — oo (an thereby remains bounded).
To ensure this condition satisfied, we have to assume a positive intergenerational
discount rate, R, satisfying

1+R>(1+g)" (A2)

3A discounted shadow price (measured in some unit of account) of a good is, from the point
of view of the buyer, the maximum number of units of account (here consumption utilities)
that the optimizing buyer is willing to offer at time 0 to obtain one extra unit of the good, here
l~€t+17 at time t + 1.
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This discounting might seem unjust and unethical towards future generations.
Yet, we shall see that to the extent the future generations are favoured by better
technology, they in fact tend to end up with higher lifetime utility than their
predecessors in spite of the discounting in the social welfare function.

The transversality condition (7.8) from the Barro model for a market economy
with positive bequests in Chapter 7 can be shown to be equivalent to (8.13). Thus,
in view of the equilibrium condition r; = f’ (l;;t) — 4, the equations describing the
equilibrium path in the Barro model for a competitive market economy with
positive bequests are the same as those describing the social planner’s solution.
A necessary and sufficient condition for positive bequests in a steady state of
that model was given by the condition (7.36). In terms of R we may restate this

condition as
1+ D

(14+n)(1+yg)

where R is the steady-state interest rate in the associated well-behaved Diamond
economy. This inequality is compatible with (A2) whenever 14+rp > (1+n)(1+4g¢),
that is, whenever the associated Diamond economy has an effective capital-labor
ratio in steady state below the golden-rule value.

To summarize:

1+ R< (1+9)"7, (8.15)

PROPOSITION 1 (equivalence theorem) Consider a perfectly competitive mar-
ket economy with technology, demography, labor force, and preferences as de-
scribed above. Assume u(c) = ¢!7?/(1 — 6) and, if g > 0, (A2). Suppose (8.15)
holds and that households have perfect foresight and perfect computation abil-
ity. Let ko > 0 be given. If initial conditions are such that the bequest motive
is operative for all ¢ > 0, then the resulting resource allocation is the same as
that brought about by a social planner facing the same technology and initial
resources and having a positive effective intergenerational discount rate, R, equal
to the private one.

Proof. As the text above indicate, the laws of movement of the two models are
the same, except that we have not yet shown that the transversality conditions
of the two models are equivalent. This is done in Appendix C. Since the resource
allocation brought about by the social planner is unique (the argument is given
in Section 8.2.2), so is that of Barro’s market economy. [J

Social discounting: different views

To get perspective on Proposition 1, note that there may be good reasons that
a social planner should have a lower intergenerational discount rate R than the
private sector. One reason is put forward by Nobel laureate Amartya Sen who
refers to what he calls the isolation paradox (Sen 1961). Suppose each old has
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an altruistic concern for all members of the next generation. Then a transfer
from any member of the old generation to the heir entails an externality that
benefits all other members of the old generation. A nation-wide coordination
(political agreement) that internalizes these externalities would raise bequests,
which corresponds to a lowering of the intergenerational utility discount rate, R.

More generally, members of the present generations may be willing to join in a
collective contract of more saving and investment by all, though unwilling to save
more in isolation. Other reasons for a relatively low social discount rate have been
suggested. One is based on the super-responsibility argument: the government has
responsibility over a longer time horizon than those currently alive. Another is
based on the dual-role argument: the members of the currently alive generations
may in their political or public role be more concerned about the welfare of the
future generations than they are in their private economic decisions.

Varieties of utilitarianism An elementary principle may be that the utility
of all individuals should enter with the same weight in the social welfare function.
Adherence to this principle implies that the per capita lifetime utility obtained
by each generation from own lifetime consumption should be weighed by the
size of that generation. This size is here growing at the rate n. Thus, from a
social point of view the effective discount factor used to compare the per capita
utility of the next generation with that of the present generation should be 1+n.
This principle may be called utilitarianism and implies a pure intergenerational
discount rate, R, equal to zero, see (8.6). If we ignore technological progress, this
“generation indifference” principle agrees with the principle that when setting up
a social welfare criterion we should imagine that members of current and future
generations agree on the value of R before knowing which generation they belong
to (the “veil of ignorance” principle). Then, as long as we ignore technological
progress, it seems likely that R = 0 would be agreed upon.

Taking into account that sustained technological progress is prevalent, many
economists argue, however, that because future generations are likely to benefit
from better technology, a counterbalancing positive value of R is ethically ac-
ceptable. This principle, sometimes called discounted utilitarianism, means that
less weight is placed on the utility of members of future generations than on the
utility of members of the present generations.* In spite of an R > 0, future gen-
erations may be better off than present generations if there is sustained growth
in some measure of per capita welfare. The steady state considered in the next
sub-section has this property when g > 0.

An alternative — or supplementary — argument for a positive R, though small,

4In contrast, the principle of discounted average utilitarianism uses R as effective intergen-
erational discount rate, thereby ignoring that generations generally are of different size.
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is that there is a positive but small probability of a meteorite or an atomic war
obliterating the human race in the future. Some argue that this is the only eth-
ically acceptable reason for an R > 0. This is for instance the position taken by
the “Stern Review” (the popular name for the voluminous report The Economics
of Climate Change, published 2007 by the British economist Nicholas Stern and
his associates and dealing with the huge negative externalities on future genera-
tions caused by the greenhouse gas emissions to the atmosphere). Because of the
positive but small probability of extinction, the Stern Review contends that R
on an annual basis should be considerably less than 0.001.°

8.1.2 The modified golden rule of the command optimum

In view of the equivalence theorem, it can be no surprise that also the social
planner’s solution in steady state satisfies the modified golden rule.

In steady state ke = k*, ¢y = ¢y, and ¢y = ¢ for all t =0,1,2, ..., where k*,
¢, and ¢ are positive constants. Hence, ¢, = &7, = ¢(1 + g)'. Owing to the
CRRA utility function we have u/(cy;) = cl_te. Consequently, in steady state the
first-order condition (8.9) reads

o fl(E)+1—=96

G0 = (14 B) L er(1+ g)] 1+n

Solving for the net marginal productivity of capital, we get f’ (k) —6 = (1+
R)(1+n)(1+g)? — 1. The capital intensity satisfying this condition is called the
modified-golden-rule capital intensity, ky;qr, i.e.,

fkver) —0 =14+ R)(A+n)(1+g)° —1. (8.16)

The conclusion is that optimality of a steady state requires that the capital
intensity in this steady-state results in a net marginal productivity of capital equal
to the right-hand side of (8.16). In the previous chapter we considered Barro’s
model of a competitive market economy with an intergenerational discount rate
R. We saw that as long as the bequest motive is operative, the steady state
interest rate, r* = f’ (l;:*) — 0, in that model takes exactly the modified-golden-rule
value given by the right-hand side of (8.16).

To help ensuring that a positive k* satisfying the modified golden rule exists,
we assume the following combined technology and parameter condition

I%in% f(k) > (1+R)(1+n)(1+4g)°—(1-46)and (A3)

;;hilof,(%) < (IT+n)1+g)—(1-9)

®This is lower than the calibrated private own-generation preference R equal to 0.0092, see
Section 7.4 of Chapter 7.
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Together with (A2), these two inequalities imply lim;_, f'(k) > (1 + R)(1 +
n)(1+g)? —(1—=0)>1+n)(1+g)—(1—46) > lim___ f(k). By continuity
of f', hereby, existence of both the modified-golden-rule capital intensity, kyqr,
and the “simple” golden-rule capital intensity, kqg, is ensured, the latter being
defined by f'(kgr) = (14 g)(1 +n) — (1 —d). With § > 0,R > 0,n > 0, and
g > 0, the Inada conditions are of course sufficient but not necessary for (A3) to
be satisfied.

When the effective intergenerational discount rate is at its lower bound, R
= (14 ¢)'% — 1, given by (A2), the rule (8.16) simplifies to the simple golden
rule where k* = kqg. This is the rule saying that to obtain the highest possible
sustainable consumption path, the net marginal product of capital should in
steady state equal the “natural growth rate” of GDP, which in turn equals g +
n+gn;% when g and n are “small”, this sum can be approximated by g+n. In this
limiting case maximization of W, does not make sense (when 7' — 00), since W)
will not be bounded. One can in such a case sometimes use another optimality
criterion, be it the overtaking criterion or the more robust catching-up criterion.
Indeed, our social planning problem turns out to be well-defined in terms of both
these criteria when 1+ R = (1+ ¢)'~?%; and the first-order conditions (8.4), (8.8),
and (8.10) are still necessary for an optimal solution (see Section 8.4 below).

With the simple golden rule as the benchmark case, the predicate “modified”
in the term “modified golden rule” should be interpreted in the following way.
If the intergenerational discount rate is higher than needed to “compensate” for
technological progress (i.e., R > (1 + g)*=% — 1), then the social planner prefers
a permanent effective capital-labor ratio l%MG r, lower than IA%G r- Though society
could attain a higher consumption path in the long run, if ker were strived for,
this would not compensate for the cost in the form of reduced current consumption
required to arrive at k= l;:GR (or stay there instead of moving to l%MGR). The
long-run benefit is lower relative to this cost, the higher is the discount rate R.”

8.1.3 The turnpike property

In Section 8.3 it is shown that when 1+ R > (14 ¢)'7?, the effective capital-labor
ratio, k;, along the optimal path converges for { — oo to the unique steady-
state value k* = kygr. Even in the golden rule case, 1 + R = (1 + g)'~?, with

6In our discrete time setting the growth rate of ¥ = TLf(k*) in steady state is (1 + ¢)(1 +
n)—1l=g+n+gn.

"In the absence of technical progress, (8.16) simplifies to f'(kygr) —9 = (1+ R)(1+n) —1
= R+n+ Rn ~ R+ n. This and similar approximations should be taken with caution because
the period length is not the usual one year, but around 30 years; therefore, the term Rn might
not be negligible. Yet, the example calibrated at the end of Section 7.4 of the previous chapter
gives Rn ~ 0.037 - 0.270 ~ 0.010, which is relatively small compared to R +n ~ 0.307.
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Figure 8.1: Finite horizon. Most of the time the optimal path has k close to kyan-

overtaking or catching-up as optimality criterion, cf. Section 8.4, convergence
towards k* = kqp for t — oo holds. These stability properties of the golden rule
and modified-golden-rule paths are sometimes called “turnpike” properties. It is
more common, however, to reserve the term “turnpike” specifically to a situation
with a finite planning horizon.

We will here state, without proof, one such turnpike theorem for a finite-
horizon planning problem like the one considered above:

If the planning horizon 7' is “large”, then the best, i.e., optimal, way to
go from any initial (effective) capital-labor ratio kg > 0 to a specified

terminal capital-labor ratio k& > 0 is to stay arbitrarily close to the
modified-golden-rule capital-labor ratio, ky;ggr, for most of the time.

Fig. 8.1 illustrates this turnpike property of the modified-golden-rule path
(l;: = l;:MGR) in a situation where at first glance moving close to kyqr seems a
detour. Compare with a highway (turnpike): the shortest way to go from Hellerup
to Helsinore is to take Strandvejen. Yet, it is faster to go by the highway.®
This is similar to the economic planning problem. The intuition is that, first,
the desire for consumption smoothing favors steady consumption compared to
oscillating consumption. Second, the k = kucr path entails the proper balance
between consumption now and consumption later, given the intergenerational

8Hellerup is a suburb of Copenhagen. Strandvejen (“Beach Road”) is the name of the narrow
and winding road along the coast to Helsinore.
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discount rate and the growth rates of the labor force and technology. Hence, if
the economy is initially above kricr, some initial dissaving pays, both because
dissaving directly means more consumption now and because maintaining a lower
k in the future requires less saving in the future. If alternatively, as in Fig. 8.1, the
economy is initially below ke R, the cost in terms of forgone early consumption

of moving up to kygr is compensated when finally we move down to ]~€T+1.

8.2 Optimal control theory and the social plan-
ner’s problem*

Heretofore we have solved intertemporal optimization problems by using the sub-
stitution method. The advantage of this method is that it is simple and straight-
forward. There are cases, however, where the method does not work. Another
drawback is that the method is not immediately supported by a general math-
ematical machinery providing necessary and sufficient conditions for optimality
and for existence of solutions to a broad class of optimization problems. Fortu-
nately, two alternative mathematical methods are available which are backed up
by such general machinery: optimal control theory (where the Hamiltonian func-
tion and shadow prices are key concepts) and dynamic programming (where the
value function and the Bellman equation are key concepts). Here we will apply
optimal control theory to the social planner’s problem. Moreover, the questions
of existence, uniqueness, and precise characterization of the solution are exam-
ined. A useful feature of the method of optimal control theory is that it delivers
dynamics of the shadow prices.

The main result within optimal control theory is Pontryagin’s Maximum Prin-
ciple, in brief the Maximum Principle. In its continuous time version this principle
was developed in the 1950s by the soviet mathematician L. S. Pontryagin and his
associates with a view to engineering applications, control of rockets, satellites,
etc.” Since then, the method has been applied also in medicine, biology, ecology,
and economics. In economics the method is applied to a wide range of topics
including the study of consumption versus saving, optimal taxation, firms’ fixed
capital investment, inventory control, pollution problems, and extraction of nat-
ural resources. Based on Pontryagin’s principles a solution technique for discrete
time dynamic optimization problems has been developed and it is a special case of
this technique we will now use for solving the problem of a society’s optimal cap-
ital accumulation. We first consider the finite horizon case and next the infinite
horizon case.

9Pontryagin et al. (1962).
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8.2.1 Decomposing the social planner’s problem

To prepare the ground we first have to convert the social planner’s problem into
a form convenient for the application of the discrete time Maximum Principle.
This conversion is of interest also in its own right. With 8 = (1 + R)™! =
(1+R)"Y(1+n) € (0,1) and v = (1 + p)~' > 0, the social welfare function with
a finite horizon is

T-2

Wy = yu(cag) + Zﬁt“[u(cu) + yu(coy1)] + Bru(crp_y). (8.17)

t=0
We order terms after periods instead of generations:

T-2

T—2
Wo = ~u(co) + Z BHIU(CU) + Z Bt+1u(62t+1) + 5TU(01T71)
=0

t=0
T-1 T-1

= Pu(cro) + yu(em) + B u(ey) + Z Bru(cay)

= Bu(cro) +yulc) + ) B (Bulerr) + yulcar))

t=1

— S8 (Bulew) + yu(ex)).

t=0

We name the function @(eyy, cor) = Su(cyy) +yu(co) the social planner’s period
utility function. The arguments of this function are the per capita consumption
in the young and the old generation, respectively, alive in period t.

With the social welfare function written this way, the optimization problem
can be decomposed into two separate problems. One is the intertemporal problem:
how to choose between less aggregate consumption in period ¢ and more aggregate
consumption later. The other is a static one: given aggregate consumption per
unit of labor, ¢; = Cy/Ly, in period t, how should this consumption be shared
among old and young?

The social planner’s optimized period utility function

Let us take the second problem first. Since the problem is a static one, to save
notation, we suppress the time index. The problem is: given ¢ > 0,

max i(cy, c2) = Pu(cr) +yuley)  s.t. (8.18)

C1,C2
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yu'(c,) Pu'(c—(1+n)'c)

l+n

Pu'(c)

1+n

qo:(c) (1+n)c

Figure 8.2: Finding cs as a solution of (8.20) for given ¢ > 0.

a+(1+n)tey = ¢ (8.19)
&1 Z 0762 Z 0.

After substituting the constraint, ¢; = ¢ — (1 4+ n) !¢y, into the @ function, we
find the first-order condition

' (e2) = Bu(er)(L+n)h =pu (c— (1 +n)"e) (L4+n)~ " (8.20)

This equation defines ¢y as an implicit function of ¢, ca = ¢(c), where ¢ > 0 in
view of (Al), cf. Fig. 8.2. By implicit differentiation, we find

Bu//(cl)
(1+n)2yu"(c2) + Bu"(c1)

o) = (1+n) € (0,1 + n). (8.21)

On this basis it is convenient to introduce a new function, v(c), defined by

v(e) = (e — (1+n) " o(e),¢(c)) = Bu(c — (1 +n) p(c) +yule(c)). (8.22)

This function, named the social planner’s optimized period utility function, inher-
its key properties from u. In optimum we have
v'(c) = Bu(cr) 1= (1+n)"¢(c)] +7u(c2)¢'(c)
= Pu(cr) — [6u (c1)(1 +n) (e )} ¢'(c) = Bu'(cr), (8.23)
in view of (8.20). This property is a manifestation of the envelope theorem.

Indeed, v(c) is a composite function of c. Considering Su(c— (1+n) " teg) +vyu(cs)
= u(c, cp) as the exterior function and c¢; = ¢(c) as the interior function, the
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envelope theorem says that the total derivative of U wrt. c equals the partial
derivative w.r.t. ¢.!% That is, u1(c, c2)+ us(c, ¢2)¢'(¢) = Uy (¢, ¢2) = Bu/(c1), where
the second but last equality comes from the fact that 52(0, ¢2) = 0 in optimum
and the last equality from the definition of Z(c, ¢2). Moreover,

v"(c) = pu"(c1) [1 = (14+n)"'¢(¢)] <O, (8.24)

in view of the fact that u”(c;) < 0 and 1 — (14+n)"¢/(¢) > 0, by (8.21). Finally,
by (8.19), we have that ¢ — 0 implies ¢; — 0, from which follows lim._,ov'(c)
= lim., o pu/(c;) = o0, in view of the No Fast Assumption, (Al), stated in
Section 8.1.

The intertemporal optimization problem

The intertemporal optimization problem is to choose a plan {ct}?:_ol so as to

max Wy = gﬂtv(ct) s.t. (8.25)

¢ > 0, - (8.26)
e = L ““t)*g;j;’(ﬁ; n)/ A+l G Gs0,  (827)
Be > 0, fort=0,1,2...T—1, and kp > k >0, (8.28)

where koand k are given numbers. The constraint (8.27) comes from (8.19) in
combination with the dynamic resource constraint (8.4), using that ¢ = ¢;/(1 +
9)', given 7y = 1.

We have here written the optimization problem on the standard form for an
optimal control problem in discrete time. In the language of optimal control
theory, ¢; is a control variable in the sense of an instrument which the optimizing
agent is able to directly control. Sometimes the alternative term decision variable
is used. The set of admissible values of the control variable is called the control
region, here the set of non-negative numbers. The variable ky entering the first-
order difference equation (8.27) is called a state variable. It is in each period a
predetermined variable and its value in the next period is not directly chosen,
but is implied by the change caused by the chosen value of the control variable in
the current period. When the first-order difference equation for the state variable
is ordered such that it has the value of the state variable “next period” isolated
on the left-hand side of the equation, as in (8.27), it is known as a transition

10 Appendix A of Chapter 7.
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function. There is given an initial value, I;;U, of the state variable, interpreted as
historically determined. In many cases, including the present one, there will be
a a terminal constraint, that is, a restriction on what values the state variable is
allowed to take at the terminal date. Here this is represented by the constraint

kr >k in (8.28). Owing to the nature of the state variable in the present problem,
in (8.28) is added the non-negativity constraint on k, fort =0,1,2,...,7 — 1.1

To choose the “best” control, we need of course a criterion from which to
choose. This is provided by the objective function (8.25), also known as the
criterion function. There are problems where, contrary to the present case, both
the control and the state variable (or only the latter) enter the criterion function.
The model could, for instance, include environmental quality as a state variable.
This state variable would then naturally enter the period utility function as a
separate argument besides consumption. The solution procedure described below
is also applicable in such cases. In economics we are sometimes interested in
minimizing a criterion function. The function could for instance represent costs
of a given project. In that case we can simply multiply the criterion function by
the factor minus 1 and then maximize.

A path {(l%t, ct> }t:o that satisfies the constraints (8.26), (8.27), and (8.28)

is, in the terminology of optimal control theory, an admissible path. If we have 2
= 0, an admissible path in the present problem is the same as what in our general
terminology in Chapter 3 is called a technically feasible path. If the terminal

constraint has k > 0, the set of admissible paths is the subset of technically
- = - T-1
feasible paths satisfying kr > k > 0. Anyway, an admissible path {(k‘t, ct)}
t=0
that solves the problem is an optimal path or simply a solution. A solution,
- T-1 -
{(l{:t, ct)} , is an interior solution if for all ¢, k; > 0 and ¢; > 0.
t=0
8.2.2 Applying Pontryagin’s Maximum Principle

After making sure that the dynamic constraint, here (8.27), is written as a tran-
sition function, i.e., in the form k1 = (ks é,t), we are ready to solve the

1 As we have stated the problem, here as well as in Section 8.1, we have implicitly assumed
that the capital good can instantaneously (without cost) be converted into a consumption
good and thus be consumed. Otherwise, the control region should be replaced by 0 < ¢;
< (1+4g)"f(k:) (in which case a “complementary slackness” condition for all ¢ must be added).
In our formulation there is only an implicit — and less strict — upper constraint on ¢;, namely

e < (1+g)t [f(l;:t) +(1- 6)]@} . This weak inequality is implied by (8.27) combined with

/~€t+1 > 0 for all ¢. It reflects that the consumed amount can never exceed the available amount
of goods.
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optimization problem. The four-step solution procedure described below applies
to a large class of discrete-time intertemporal optimization problems in macro-
economics:

1. Set up the current-value Hamiltonian function associated with the problem:

H(ift,ct,)\t,t) = U(Ct)ﬂL)\tw(fft,état)
flk) + (1= 0)ky — /(1 + g)'

= v+ (EPE

, (8.29)

fort =0,1,...,T — 1, where )\; is an adjoint variable (also called a co-state
variable) associated with the dynamic constraint in the problem. That is,
A; is an auxiliary variable which is analogous to the Lagrange multiplier in
static optimization.

2. Fort=0,1,...,T—1, differentiate H partially w.r.t. to the control variable.
If looking for an interior solution, put the partial derivative equal to zero:

Ji§
U () = M+ 901 4 =0, (8.30)
t
that is,
V() = M(1+ ) V(1 4+ n)7Y (8.31)

fort=0,1,.., T — 1.12

3. Differentiate H partially w.r.t. the state variable. Then put the result for
period t equal to the adjoint variable dated ¢t — 1, multiplied by the inverse
of the discount factor in the objective function, that is,

8_]-[_ f,<];3t)+1—5_ .
Ok & 1+g9)(1+n) A1 (8.32)

for t = 1,2,...,T — 1. In this way a first-order difference equation in the
adjoint variable is obtained.
4. Now apply the Mazimum Principle which (for this problem type) states:

- T-1

an interior optimal path {(kt, ct>} will satisfy that there exists an ad-
t=0

joint variable, \;, such that (8.30) and (8.32), for ¢t = 0,1,...,T — 1, and

21f we wish to allow for boundary solutions, (8.30) is replaced by a more general condition,
which (surprisingly) only if H is concave in c is equivalent to requiring that ¢; should maximize
H. For details, see Feichtinger and Hartl (1986, p. 504 ff.).
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t =1,....,T — 1, respectively, hold along the path, and the transversality
condition,

BT Mo (br — k) =0, (8.33)

is satisfied.

The optimality condition (8.31) can be seen as a MC' = M B condition. The
current utility cost by decreasing ¢; by one unit equals the left-hand side of
(8.31). The associated gain comes from capital next period being increased by
the amount AK, 1 = —AC; = —L;Ac¢; = L, - 1 for Ac = —1. Thereby, in view
of (8.27), ki 1 is approximately increased by the amount

Ok

Cy

Akyyy ~ Acy = —(149) (A 4n)TAq = (1+9) (1 +n)"L (8.34)

So, when Ac = —1, the optimality condition (8.31) can be rewritten v'(¢;) =
)\t(r)/}tﬂ [Ocy ~ )\tAl;:tH, where the right-hand side is the gain obtained through
the increase in l~€t+1, measured in period—t utility units. The adjoint variable \;
can thus be interpretated as the shadow price, measured in current utility units,
of the marginal unit of capital (per unit of effective labor) next period along the
optimal path.

This interpretation of \; is confirmed if we rewrite (8.31) as

A =0 (c)(1+¢) 1 +n). (8.35)

Imagine a decrease of next period’s effective capital-labor ratio, l%tﬂ, by one
unit. The right-hand side of (8.35) then directly expresses the current utility
gain obtained by this. The gain derives from the unit-decrease in l;:tﬂ allowing
an increase in consumption per worker in period ¢ by Ac; & (1+¢)"™(1+n) units
(invert (8.34) for Ak,yy = —1). When we multiply this by the marginal utility of
consumption in period ¢, v'(¢;), we get the total utility gain in period ¢ from this
reallocation. Since in the optimal plan such a marginal reallocation leaves total
welfare unchanged, the left-hand side of (8.35) must measure the current utility
worth of the marginal unit of capital (per unit of effective labor) next period
along the optimal path.

The key importance of the condition (8.32) lies in its message that the shadow
price \; satisfies a certain difference equation. Substituting (8.35), as it stands
and for ¢ replaced by ¢t — 1, into (8.32) and reordering gives

flle)+1—=96

V(1) = U’ (cr) 1+ n

(8.36)

This is of the same form as the consumption Euler equation in (8.9). : on the
margin one unit of account (here the output good) must in the optimal plan be
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equally valuable in its two alternative uses: consumption in period ¢ —1 or saving,
resulting in per capita net return (f'(k;)+1—9)/(1+n), which gives rise to extra
consumption in period ¢, the discounted utility value of which is measured by the

right-hand side of (8.36).
Finally, the transversality condition, (8.33), has the form of a complementary

slackness condition. Here it implies ky = k. Indeed, in view of (8.35), an optimal
plan has Ar_; = v'(er_1)(1 + ¢)T(1 + n) > 0 (no saturation). Thus, if kr >

k (“over-satisfaction” of the terminal constraint in (8.28)), then higher welfare
could be obtained by decreasing kr and increasing cp_; correspondingly. There
would be scope for this change without violating the terminal constraint (8.28).

Technical remark. A Hamiltonian function is often just called a Hamiltonian.
More importantly, the prefix “current-value” is used to distinguish it from the
present-value Hamiltonian. The latter is defined as H= B'H with B\, in the sec-
ond term substituted by f,, which is the associated (discounted) adjoint variable.
Applying the present-value Hamiltonian involves a similar solution procedure ex-
cept that step 3 is replaced by OH / Oky = 11, and in the transversality condition,
BT \r_q is replaced by pp_1. The two solution procedures are equivalent. For
many economic problems the current-value Hamiltonian has the advantage that
it makes the interpretation simpler. In the current-value Hamiltonian the adjoint
variable, )\;, which acts as a shadow price of the state variable, is a current price
rather than a discounted price as p,. U

The Maximum Principle gives necessary conditions for an optimal plan. That
is, from the above analysis we know that any interior optimal solution to the
social planner’s problem must satisfy the above conditions. These conditions are
helpful for finding a candidate for an optimal solution, but they do not guarantee
that this candidate is an optimal solution or that there at all exists an optimal
solution (as the problem is phrased).!> For these concerns we must appeal to
sufficient conditions for an optimal plan and to circumstances which verify that an
optimal solution exists. Regarding the sufficiency issue, note that our Hamiltonian
(8.29) is for every t jointly concave in k, and ¢; indeed, the first term in (8.29)
is (strictly) concave in ¢; and the second term is (strictly) concave in k; and
concave in ¢;. Then, for problems like the present one, it can be shown that a

- T—1
plan { </§t, ct> } which satisfies the first-order conditions and the transversality
t=0

13Sydsaeter et al. (2008, p. 373) provide the following example of non-existence of a solution.
A person wants to keep a pan of boiling water as close as possible to the constant temperature
of 100°C for one hour when it is being heated on an electric burner whose only control is an
on/off switch. Assuming there is no cost of switching, there is no limit to the number of times
the burner should be turned on and off.
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condition is optimal.'* Consequently, these conditions are both necessary and
sufficient for optimality.

Regarding the issue of existence of an optimal solution to the social planner’s
problem, as far as the present finite horizon case is concerned, existence is easily
proved on the basis of the extreme value theorem (see Appendix A).

Infinite horizon

In (8.25) and (8.28) we let T — oo and set & = 0. Then the social planner’s
dynamic problem is a standard “neoclassical optimal growth problem” with ex-
ogenous technological progress. The problem is also called “Ramsey’s optimal
saving problem in discrete time” because it has a close connection to Frank Ram-
sey’s classical analysis of a society’s optimal saving (Ramsey, 1928).

With infinite horizon the first-order conditions (8.30) and (8.32) are still neces-
sary conditions for an interior solution. The “natural” extension of the necessary

transversality condition (8.33), with & = 0, to an infinite horizon is

Jim. BTNk = 0. (8.37)
As touched upon in Section 8.1, in prototype-economic problems, like the present
one, such a direct extension of a necessary transversality condition from a finite
to an infinite horizon is valid. The condition (8.37) says that the present value (in
utility units) of the capital stock “left over” at infinity must be zero. Otherwise
there is over-accumulation (or no optimal solution exists because W} is unbounded

from above when T" — 00).
Since the first-order condition (8.35) holds for any interior solution, (8.37) can

be written

lim A7 (cp_1)(1 + g)T(1 + n)kp = 0. (8.38)

T—o00

For later use this is a more convenient form for the necessary transversality con-
dition. In Appendix C a proof of the necessity of (8.38) is sketched.

Sufficiency of the first-order and transversality conditions In the social
planner’s optimization problem with infinite horizon, since the Hamiltonian is
concave w.r.t. (l%t, ¢;) and both the state variable and its shadow price \; are non-
negative for every ¢, the first-order conditions together with the transversality
condition are both necessary and sufficient for an interior optimal solution.'®
These conditions may be called the Mangasarian conditions because they are

HSydsaeter et al. (2008, p. 445)
15Sydsaeter et al. (2008, p. 447).
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analogue to the sufficient conditions established by the American mathematician,
Olvi Mangasarian, for continuous-time optimal control problems (Mangasarian,
1966). Moreover, it turns out that the Hamiltonian (8.29) is for every t strictly
concave in (ky, ¢;)."® It then follows that a solution to the social planner’s optimal
control problem is unique.

It remains to show that there exists an admissible path satisfying the Man-
gasarian conditions and to characterize the properties of such a path. Are for
instance oscillations possible or does the solution display a monotonic pattern
over time? Here, dynamic analysis and a phase diagram are useful.

8.3 The transitional dynamics™

To allow for balanced growth, thereby making the dynamic analysis easily tractable,
we specialize the investigation to the case where the household’s period utility

function is of CRRA form:!7
1-0

In this case the partial similarity between social planner’s optimized period utility
function, v, and the household’s period utility function, u, commented on in
connection with the “envelope condition” (8.23) above, becomes complete:

LEMMA 1 Suppose u(c) in (8.17) is a CRRA function with parameter 6. Then
so is the social planner’s optimized period utility function, v(c), defined in (8.22).
We can thus write

-0
Proof. Substituting v/(¢;) = ¢ % and u"(¢;) = —0c; /7, for i = 1,2, into

(8.20) and (8.21) gives ¢'(c) = cy/c in view of (8.19). Then, by (8.24), v"(c)c
= pu"(c1) [e — (1 +n)"tey] = Bu’(¢1)eyr in optimum. Combining this with (8.23),

we have
ca'(c)  cau'(a)

v d(e)
where the last equality is implied by (8.39). The result (8.41) holds for any

¢ > 0. From Appendix A of Chapter 3 we know that up to a positive linear
transformation v must then be of the form (8.40). O

— 0, (8.41)

16This is seen by applying the same method as used in Appendix E of Chapter 10 for the
continuous time case.

17 As mentioned in the previous chapter, in problems with infinite horizon it is an advantage
not to have to bother with additive constants in the instantaneous utilities. Otherwise, conver-
gence of the sum (8.25) for 7' — oo may go by the board. Hence we write the CRRA function
without subtraction of the constant 1/1 — 8).
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Remark. The key in the proof is the observation that when the household’s
period utility function, u, is CRRA, the planner’s chosen ¢; is a function, ¢(c),
of the current per capita consumption level, ¢, with derivative ¢'(c) = co/c. This
result means that the elasticity of co w.r.t. the “budget”, ¢, is 1. Consequently,
the chosen c¢; and ¢, are proportional to ¢ and to each other, implying that the
social planner’s period utility function (cy, cz) in (8.18) is homothetic.'® This
implication of u being CRRA should be no surprise. From Chapter 4 we know
this implication for an additive utility function with sub-utility functions that are
CRRA with the same parameter 6. Also, recall that in case § = 1, the expression
on the right-hand side of (8.39) and (8.40) should be interpreted as Inc. O

~ The model can be reduced to two coupled first-order difference equations in
k; and ¢. In (8.36) we replace t by t + 1, apply (8.40), and reorder to get
1+n _o

¢l = — ¢ .
! filkn) +1—6 "

(8.42)

In view of ¢; = &(1 + g)*, we have ¢;% = &7%(1 4 g)~%. Substituting into (8.42)
and rearranging yields

LO+g0n)

&l - e (8.43)
frke) +1=96

G =1

The transition function (8.27) can be written

- k) + (1 -0k — 6 i«
T T aitm = h(ky, &), (8.44)

where

fle)+1—=96
(14+9)(1+n)

1

Substituting (8.44) into (8.43) gives

~ 1/6
. f'(h(ky,é))+1—=96 3
Cip1 = <ﬂ (1 +g)9(1 +n) ) Ct. (847)

The equations (8.44) and (8.47) constitute a system of two coupled first-
order difference equations in k; and ¢; and these equations are autonomous, i.e.,

18See Appendix C of Chapter 4.
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they do not depend on ¢ separately. The initial & is historically given by the

value ko. From now, to save notation, we let the symbol ko itself directly indicate
a historically given initial value of k. But the initial ¢, Co, is up to the social
planner’s choice, hence endogenous. As a substitute for knowing ¢, in advance,
we have, fortunately, the transversality condition (8.38).

We may restate the parameter inequality (A2) from Section 8.1 as an upper
bound on the utility discount factor, 3 = (1 + R)™!, this way:

0<pB<(1+g)"", whereg>D0. (A27)

This inequality will ensure boundedness from above of the social welfare function.
Similarly, the condition (A3) on the range of the marginal productivity of capital
can be restated as

lim f'(k) > B (14+n)(1+g)? — (1—0) and lim f'(k) < (1+n)(1+g)—(1-4),

k—0 k—o0

(A3")
Together with (A2’), these two inequalities imply lim;_, f/(k) > 87(1 +n)(1 +
9)? —(1=6) > (14+n)(1+g)— (1—0) > lim;_,__ f'(k). By continuity of f, hereby,
existence of both the golden-rule capital intensity, kqg, and the modified-golden-
rule capital intensity, kycp, is ensured. '

Phase diagram

By a phase diagram for the dynamic system (8.44) — (8.47) is meant a graph
in the (l%,é) plane showing projections of the time paths, (l%t,ét)fio, that are
consistent with the system for alternative arbitrary initial points, (150, o). The
phase diagram is shown in the lower panel of Fig. 8.3.

In the phase diagram the curve marked by “k,y; = k;” shows the points (k,¢)
with the property that if k&, = k, then ¢ is the value of & such that kt+1 in the
dynamic equation (8.44) takes the value k, that is, the same value as k; has.
In brief, the locus for k,q = k; is made up by the pairs (k, &) at which (8.44)
generates no change from t to ¢ 4+ 1 in the effective capital-labor ratio. The pairs
(l;:, ¢) with this property satisfy the equation

é= (k)= [(1+9)(1+n) = (1= 6)] k = &(k),

by (8.44). The graph representing this equation in the phase diagram is called
the nullcline for k. The example shown Fig. 8.3 has the graph going through
the origin, i.e., f(0) = 0 is presumed. Here capital is thus essential. But all the

"9The often presumed Inada conditions, lim;__, f'(k) = oo and lim; f'(k) = 0, are stricter
than (A3’) and not necessary.
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conclusions we shall consider go through also when capital is not essential. So we
only impose the condition f(0) > 0.

The upper panel of Fig. 8.3 illustrates how the graph of E(/;;) can be con-
structed as the vertical distance between the curve y = f (l%) and the line gy
= [(1+ ¢g)(1 +n) — (1 — 6)] k (to save space, the proportions are distorted). Both
the upper and lower panel indicate the position of the golden rule capital intensity,
kar, defined by f'(kgr) = (1+¢)(14n) — (1 —6). In the upper panel the tangent
to the f curve having this slope tells where IQ:GR is. In the lower panel, IEGR is
at the point where the tangent to the OEB curve is horizontal, namely where
(k) = f'(k) = [(14¢)(1+n)— (1 —=06)] = 0. In view of (A3’), the technology
guarantees existence of such a value of k.

The horizontal arrows in the lower panel indicate the direction in which k
moves if the economy is not at the kzt+1 = kzt locus. These directions are deter-
mined by (8.44). Above the kt+1 = k; locus, consumption is so high and saving
so low that the capital intensity shrinks (ktﬂ < kt) Below the kt—i—l = k’t locus,
consumption is so low and saving so high that the capital intensity grows (ktﬂ
> ky).

Now, consider the nullcline for ¢, i.e., the ¢, 1 = ¢ locus. This is the collection
of points (l~€, ¢) with the property that no change in ¢ is generated by the dynamic
equation (8.47). These points are such that the pair (k, é) satisfies the equation

h(k, &) = kyar, (8.48)

where h is the function defined in (8.44), and kacr is the modified-golden-rule
capital intensity. This follows from (8.47), since kycr, as defined in (8.16), is
given by

f'(kyer) +1—6=8"'(1+9)'(1+n), (8.49)

in view of 3 = (1+ R)™*

Equation (8.48) defines ¢ as an implicit function of k, ie., ¢ = n(k), where
(k) = —hy/hy > 0, by (8.45) and (8.46). Consequently, the ¢ 1 = ¢ locus has
positive slope. In Fig. 8.3 it is represented by the curve DEF. This curve must
cross the k:t+1 =k, locus exactly where k= kyon. Indeed, in view of the definition
of the function h in (8.44), the ¢, 1 = & locus is such that kt“ = kMG r- Hence, at
the point where the ¢,,1 = ¢ locus crosses the ktﬂ = k:t locus, we have k:t = k:t+1
= kMGR Therefore, the (non-trivial) steady-state value of kis k* = kMGR The
corresponding steady-state value of ¢ is called ¢*, cf. the point E in Fig. 8.3.2°

The vertical arrows in the figure indicate the direction in which ¢ moves if
the economy is not at the ¢;;1 = ¢ locus. These directions are determined by

20The point D in Fig. 8.3 is located where the ¢;11 = ¢ locus crosses the k-axis. This
happens to be at a k > 0 if capital is essential (see Appendix D), but this is not crucial for any
of our conclusions.
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Figure 8.3: Assembly of the phase diagram.

(8.47). To the left of the ¢, = & locus, we have k < kyar, hence the marginal
productivity of capital is above the MGR level. Given this high rate of return, it is
optimal to postpone consumption in order to enjoy higher consumption later and
SO Cip1 > ¢ in (8.47). To the right of the ¢, = ¢& locus, we have IEHI > kMG
hence the marginal productivity of capital is below the MGR level. Given this
low rate of return, impatience “wins” and encourages consumption now to the
detriment of consumption in the future. So ¢;; < ¢ in (8.47).

The unique convergent path is the unique solution By construction the
first-order conditions are satisfied along the trajectories in the phase diagram. In
particular they are satisfied at the steady-state point E. We claim that also the
necessary transversality condition (8.38), with v'(c, 1) = ¢; %, is satisfied at E.
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Indeed, since ¢; % = (¢_1(14¢)"")~?, the transversality condition can be written
: _g7t—1 ~
lim [B(1+ )] &1+ g) (L + )k = 0. (8.50)

In the steady state ¢;_; and /;:t can be replaced by the constants ¢* and /;:*,
respectively. So (8.50) is satisfied in view of (A2’). The transversality condition
will then hold also along any trajectory converging towards the steady state E.
Since ky is predetermined, the economy must at the initial date be at some point
on the vertical line & = ko in Fig. 8.3. Among the infinitely many admissible
values of ¢g, the social planner looks for an optimal one, knowing that over time
optimal consumption must move according to (8.47).

We claim that the solution is to choose ¢y such that the economy converges to
the steady state, E, for t — co. As we shall see, this requires the unique choice ¢
= ¢4 in Fig. 8.3. The argument goes as follows. Consider the arrows in the phase
diagram. They suggest that the steady state, E, is a saddle point. Graphically,
by this is meant a steady-state point with the following property: there exists
exactly two paths (one from each side of ]NC*) which tends towards the steady
state E, cf. the two stippled curves, I and IV, through E pointing North-East
and South-West, respectively. All other paths move away from the steady state
and asymptotically approach one of the diverging paths represented by the two
stippled curves through E pointing North-West and South-East, respectively. In
Appendix D, where a formal definition of a saddle point in terms of eigenvalues is
given, we also give an algebraic proof that the steady state is a saddle point and
thereby that the arrows along the paths I and IV can rightly be interpreted as
indicating convergence over time towards the steady state E; indeed, monotonous
(non-oscillating) convergence can be shown. The reason that an algebraic proof
is needed is that a phase diagram for a dynamic system in discrete time can only
suggest the convergence property. Contrary to a system in continuous time, the
system in discrete time will not move continuously along one of the trajectories.
Only a countable number of points on the trajectory will be observed (this is why
the solution curves in the diagram are stippled). Jumps forth and back across
the steady state can not aprior:t be ruled out.

The two converging paths, I and IV, in Fig. 8.3 are called saddle paths. In
combination they make up what is known as the stable branch (or stable arm,).
The two diverging paths going through E in combination make up the unstable
branch (or unstable arm).

It follows that choosing ¢y = ¢4 in Fig. 8.3 implies choosing a path which con-
verges to the steady state E. Since the Mangasarian conditions hold, we conclude
that this path, path I as the figure is drawn, is an optimal solution. If instead
ko were above l%*, the optimal path would be on the upper stable branch, path
IV in Fig. 8.3. Knowing from the end of Section 8.2.2 that an optimal solution
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will be unique, we have thus reached the conclusion that a solution to the social
planner’s problem exists, is unique, and converges to the modified golden rule.

Let us try to get some more direct understanding why all the other dynamic
paths in the diagram can be ruled out as solutions. Paths starting below the
saddle path (such as path III in the diagram) entail so low consumption, given
the value of the state variable k, and so  high investment that the economy in finite
time ends up in the regime with k > kgp and k still growing. This implies that
the transversality condition (8.50) is violated, thus signifying “overaccumulation”.
To see this, suppose, without loss of generality, that already at time 0, we have
ko > kon along such a path. Then k, > kag for all t > 0 so that

Fll) +1=6< fl(kgr) +1—6 = (1+g)(1 +n)

for all t > 0. By (8.43), lagged two periods, this implies, for ¢t > 2,

_17t—
ctl B~ (1+9) Ct2>[ﬁ (1+g)9 } Coea
by backward iteration. Consequently,

lim [8(1+9)")" &% > &7 > 0.

Since in addition lim;_, k:t = k‘ >0 along the path, the transversality condition
(8.50) is thus violated. If ko were above k*, it is paths like VI that are relevant.
Also these paths signify “overaccumulation” in the long run.

All paths starting above the saddle path (such as path II in the diagram) reach
k = 0 in finite time. This follows from the fact that before this possibly happens,
there is a sequence of periods where not only is ¢ so large that k, is decreasing,
but ¢; is at the same time increasing over time. Then, sooner or later, all capital
is used up, and consumption, ¢, drops sharply to at most f(0) > 0. That this
road to a foreseeable disaster in finite time will be avoided by the optimizing
planner seems intuitive. If ko were above k*, it is paths like V that are relevant,
and they have the same doomsday implication.

Taking stock

Let us sum up:

PROPOSITION 2 (existence, uniqueness, and convergence) Assume (A2’) and
(A3’). Let ko > 0. Then there exists a unique optimal path, {(l;:t,ét)} It

starts at the point on the saddle path which corresponds to the given ky. The
optimal path then follows the saddle path and converges toward the steady state,
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E. The steady state has k* = kyer. The modified-golden-rule condition, (8.49),
thus holds in the long run.

As the steady state is a saddle point, the convergence property of the optimal
solution is known as saddle-point stability. For details see Appendix D, which
also contains an algebraic formula for the optimal time path, based on a linear
approximation of the dynamic system around the steady state.

Given the optimal path for &; and &, the optimal paths for other variables are
easily found. For instance, given the optimal ¢;, the optimal level of consumption
per unit of labor in the economy will be ¢; = ¢(14g¢)" where ¢, — ¢* for t — oo.
To find the optimal distribution of consumption between generations we insert
this ¢; into the first-order condition (8.20) from the static optimization problem.
In view of the CRRA utility specification, this first-order condition amounts to

vey! =B (e — (1+n) "ex) - (1+mn)"" (8.51)

Given ¢, this equation has a unique solution in ¢y, from which we finally find ¢4
=c¢; — (1 4+ n) tey, by (8.19).

Note the chain of causality concerning the long-run properties of the optimal
solution. First, the preference parameters (5 and 6) and growth parameters
(9 and n) determine the net marginal productivity of capital in steady state
according to the modified golden rule. For instance, a lower intergenerational
discount factor 5 (less weight on future generations) and, when g > 0, a higher
0 (more weight on individual consumption smoothing) reduces the steady-state
capital intensity kyvicr, thereby raising the net marginal productivity of capital.
A higher rate of technical progress, g, has a similar effect. In the next step the
technology factors (the production function f and capital depreciation rate )
determine the capital intensity and consumption per unit of effective labor in
steady state. Finally, the optimal distribution of consumption between young
and old is in every period determined by the lifetime preference parameters,
= (1+ p)~! and 0, and the social planner’s effective intergenerational discount
factor, 3 = (1 + R)~%.

Combining Proposition 1 and Proposition 2, we can infer that assuming (A2’)
and (A3’), also the Barro model of a market economy for which (8.15) holds (so
that positive bequests obtain) will feature a unique and stable steady state which
satisfies the modified golden rule.

Technical remark. ....(hent fra Ch8-2016-1, s. 329) Then the criterion function
(8.25) should be replaced by (8.x) and ¢; in (8.27) by ¢y + (1 + n) " tey. The
Hamiltonian should be rewritten correspondingly. The solution procedure would
be to maximize the rewritten Hamiltonian with respect to the two control vari-
ables, ¢i; and cy. In a different context, a case with two control variables (and
continuous time) is considered in Chapter 17. O
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8.4 The overtaking and catching-up criteria™

Here we will consider the case where the utility discount factor is at its upper
bound given in (A2’), that is

B=(1+g)"" (A27)

Then the ke Rr, defined by (8.49), coincides with the golden-rule capital intensity,
kar, given by the requirement

flkar) +1—=0=(1+g)(1+n).

In this case, maximization of Wy in (8.25) with 7' = oo (infinite horizon) does
not make sense, since the social welfare function, Wy, is now unbounded from
above. Because of the relatively high discount factor (and thereby low discount
rate), we are in a situation where the distant future contributes sufficiently much
to the value of the social welfare function to imply unboundedness from above of
this function.

What can be done in this situation? Just leaving the problem for good be-
cause a maximum of Wy does not exist seems unsatisfactory. According to our
intuition, when the discount rate is low, gradually approaching the golden rule
from the historically given ko should have some kind of optimality attribute in
this situation. Failing to come close to kg in finite time would imply a forgone
“opportunity of infinite gain”.

Fortunately, there are other ways to meaningfully rank (at least partially)
alternative technically feasible paths with infinite horizon.?! The simplest al-
ternative optimality criterion is named the overtaking criterion. The idea is to
replace infinite sums (7" = oo) with finite sums (7" < co) and then consider how
a certain difference behaves as T'— 0o. As above, let the period utility function
be denoted v(c). Let the sequence {¢;} be an arbitrary technically feasible per
capita consumption path (by this is meant that it is the per capita consumption

part of a technically feasible path {(l%t, ct)}). Let the sequence {¢;} be a partic-

ular technically feasible per capita consumption path which we wish to test for
optimality. So {¢} is our “candidate” for an optimal path.

Define
71 -1
Dy = Z Bro(é) — Zﬁtv(ct), (8.52)
=0 =0

2IThis is only relevant in the context of a social planner. In a market economy, as described
by the Barro model of Chapter 7, an equilibrium with positive bequests can only exist if 3 is
lower than the right-hand side of (A27).
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Figure 8.4: Phase diagram for the case g = 0,8 = 1.

where 0 < 5 < 1. Then the path {¢;} is overtaking optimal, if for any alternative
technically feasible path, {c¢;}, there exists an integer 7" such that Dy > 0 for
all T' > T'. That is, if for every alternative feasible path, the candidate path,
{¢;}, has from some date on, cumulative utility up to all later dates at least as
great as that of the alternative technically feasible path, then the candidate path
is overtaking optimal. We say the candidate path is weakly preferred in case we
just know that Dy > 0 for all T'> T". If Dy > 0 can be replaced by Dr > 0, we
say it is strictly preferred.

Consider again a social planner facing the same objective function, demogra-
phy, and technology as in the previous section, except that (A2’) is replaced by
(A2”). For simplicity, let us start with the case g = 0, i.e., there is no technolog-
ical change. In this case, k, = k, = K;/L; for all t, and 8 =1 (i.e., R = 0). To
ensure existence of a steady state, assume

IICE% f'(k)y>n+4d> khigo 1'(k). (A37)
Moreover, in the absence of technological change we do not require that the period
utility function, v(c), is of CRRA-type but only that it satisfies v’ > 0, v < 0, as
well as the No-Fast Assumption (Al). To avoid having to deal with unimportant
technicalities, we also assume that capital is essential, i.e.,

f(0) = 0. (A4)
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If the technically feasible path {¢;} is overtaking optimal, it must satisfy
the first-order conditions (8.30) and (8.32) with (since local optimality remains
necessary for global optimality). The new phase diagram, shown in Fig. 8.4, is
similar to that in Fig. 8.3 except that now the steady state point E is placed at
the top of the ki1 = k; curve (since now k* = kygr = kgr). The steady state
is still a saddle point and the associated saddle paths are trajectories I and IV
in the figure. The point of intersection between the vertical line k = kg and the
relevant saddle path is called A. The figure shows the case where 0 < kg < kgg,
and trajectory I is the relevant saddle path. If instead kg > kgg, trajectory IV is
the relevant saddle path.

PROPOSITION 3 Assume g = 0, § = 1, the No-Fast Assumption (A1), (A3”),
and (A4). In Fig. 8.4, the trajectory starting at point A and converging, along
the saddle path, toward the steady-state point E is the unique overtaking-optimal
trajectory. The steady state has k* = kgr and thereby the golden-rule condition,

f'(k*) — 6 = n, holds in the long run.

We provide two substantiations of this proposition, an intuitive “proof” and
a formal proof.

Intuitive “proof”. Let {ci} be the sequence of consumption along a path of type
¢t =1, II,...,VI in Fig. 8.4. We need only compare paths emanating from the
vertical line k = ky. Presupposing kg < kggr, our optimality candidate is path
{c{ } We first compare this path with paths of type ITI. The phase diagram
directly shows that for all t = 0,1,2, ..., we have ¢/ > ¢/!!. Hence, Dy > 0 for
all T =0,1,2,.... If instead ky > kgg, the same argument makes clear that our
optimality candidate {c{ V} dominates paths of type VI.

Returning to the case kg < kgr, we next compare {c } with paths of type
II. It can be shown that along a type II path at some point in time, ¢; > 0, all
capital is used up (see Appendix D), so that ¢/ = f(0) =0 for t = t1,¢; + 1,...,
in view of (A4). For every T > t; we now have

Dy = Z_: v(c! +Zv ch (Z_:v(cf)jLZv(O))

t=0 t=t1 t=0 t=t1

Z (el —i—Zvctl (Zv(c{1)+v(0)<T—t1)> (8.53)

= (v(e)) — (") + (v(er,) = v(0) (T — 1)

t=0

v

where the weak inequality is due to ¢/ > ¢/, hence v(c]) > v(c]), for t =

t1,t1 + 1, ... (here we use the monotonicity of ¢; along path I shown in Appendix
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D). The first term in the last row is a negative constant, whereas the last term is
positive and grows linearly with 7.2 Hence, there exists a 1" such that Dy > 0
for all T > T". In the case ky > kqgr it remains to compare {c,{v} with paths of
type V. In this case we replace c{l in the second and third row of (8.53) by cgr
so that (8.53) is again valid. Again, the desired conclusion follows. [

Formal proof. The sequence {c{ } , described in the intuitive “proof” above, sat-
isfies the Mangasarian sufficient conditions and is thereby a solution according
to the overtaking-optimality criterion. Moreover, as the Hamiltonian is strictly
concave in (ky, ¢;) for every t, the sequence {c{ } is a unique solution according to
the overtaking-optimality criterion. [

This result can be extended to the case of Harrod-neutral technological progress
at constant rate g > 0 and CRRA utility, v(c) = ¢!=%/(1 —0), § > 0. To also now
end up at the golden rule, we let 3 satisfy (A2”) for the given g > 0. We have v(c¢;)
= @(1+9))'"™" /(1= 0) = &"(14 g)"9"/(1 = 0), so that, by (A2"), Bv(c:)
= &7%/(1 — 0) = v(&). Thus, with ¢, replaced by & and assumption (A3”) by
(A3’) in Section 8.1, the logic in the proof of Proposition 3 goes through. Again,
the trajectory along the saddle path from point A to point E, is the unique
overtaking-optimal trajectory.

Generally, the overtaking criterion entails only a partial ordering of the al-
ternative technically feasible paths. Hence there are cases where the overtaking
criterion is not applicable. For example, technically feasible paths may oscillate
with the implication that the role as the “better” path switches indefinitely be-
tween alternative technically feasible paths as 7" — oo. Then there is no path
which is overtaking optimal.

A slightly more general optimality criterion is the catching-up criterion. Let
again D be defined as in (8.52). Then the technically feasible path {¢} is
catching-up optimal if, when comparing with any alternative technically feasible
path {¢;}, we have

lim Dp > 0. (8.54)

T—o00

Note that whenever a path is overtaking-optimal, it is also catching-up optimal,
but not the other way round.?

Note also the welcome property, that whenever a path is optimal according
to the traditional maximization criterion, it is also optimal according to both the
overtaking and the catching-up criterion.

22Tn case v(0) in (8.53) is not well-defined beforehand (for instance if v(c) = Inc), we define
v(0) = —oo and consider ¢; = 0 as admissible.

23There are exceptional cases where a slightly more general definition of the catching-up
criterion is relevant, see Appendix E. This is related to the distinction between limp_, ., and
liminfr_ o .
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8.5 Concluding remarks

Chapter 7 described coordination across generations as brought about by com-
petitive markets if a bequest motive due to parental altruism is and remains
operative in a two-period OLG model. This is Barro’s framework which is close
to a representative agent model in discrete time.

In the present chapter we have looked at the intergenerational coordination
problem from the perspective of a benevolent and omniscient social planner facing
the same neoclassical CRS production function and initial resources as in the
market economy. Whether the planning horizon is finite or infinite, the associated
time path of the economy features a distinctive stability attribute, known as the
turnpike property.

The fundamental result of the chapter, stated in Proposition 2, is that if the
effective intergenerational discount rate is large enough to allow existence of dy-
namic general equilibrium in Barro’s framework and existence of a maximum of
social welfare in the social planner’s infinite horizon problem, and if the range of
the marginal productivity of capital as a function of the effective capital inten-
sity is adequate, then the evolution of the economic system, whether governed
by competitive markets or a social planner, is uniquely determined and implies
convergence toward a steady state satisfying the modified golden rule. Moreover,
the analysis leads to the equivalence theorem saying that when parental altruism
lead to positive bequests, the resource allocation brought about by competitive
markets is the same as that brought about by a social planner with a certain
criterion function with infinite horizon. This result requires that (a) the social
planner’s criterion function respects individual preferences as to the distribution
of own consumption across lifetime; (b) the social planner discounts the utility
of future generations in the same way as the private families do.

In dealing with the dynamic optimization problems involved, we have de-
scribed and applied two alternative methods, the simple substitution method and
Pontryagin’s Mazximum Principle (in discrete time). If the effective intergenera-
tional discount rate is not large enough to allow existence of a maximum of social
welfare in the social planner’s infinite horizon problem, other optimality criteria
than maximization can sometimes be applied. To these belong the overtaking
criterion and the catching-up criterion.

The period length in the models considered so far is half adult lifetime, that
is, quite long. This is both an advantage and a weakness: an advantage because
it simplifies a lot, but a weakness if we wish to study problems where, for exam-
ple, year-by-year changes are of interest. Therefore, in the next chapter we will
allow lifetime to consist of many periods. Indeed, we shall make a transition to
continuous time analysis.
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8.6 Literature notes

The “veil of ignorance” principle mentioned in Section 8.1 is one of the ethi-
cal ideas in the American philosopher John Rawls’ The theory of Justice (Rawls
1971). This influential book proposed an alternative to utilitarianism, the maz-
imin criterion. According to this criterion the social planner should maximize the
utility of the worst-off individual. This principle is less applicable to evolutionary
problems with technological progress than to static resource allocation problems.
Other alternatives to utilitarianism include the (pure) sustainability principle
according to which the social planner should maximize the level of per capita
human welfare that can be sustained forever; the human development extension
of the sustainability principle says that the social planner should maximize the
per capita level of human welfare that can not only be sustained forever but
is consistent with a given minimum growth rate in human welfare, see Roemer
(2008).

Reasons for allowing disparity between the social planner’s and the private
intergenerational utility discount rate are discussed by Marglin (1963) and Sen
(1967, 1982). Social discounting, when natural resources and environmental risks
are taken into account, is treated in Lind et al. (1982), Heal (1998), Weitzman
(2007), and Stern (2008).

Introductions to turnpike theory are provided by Chakravarty (1969), Burmeis-
ter (1980), Blanchard and Fischer (1989), and Bewley (2007). For comprehensive
accounts, see McKenzie (1987) and Arkin and Evstigneev (1987).

The decomposition in Section 8.2.1 of the social planner’s problem into two
separate problems, a static and a dynamic one, is possible because of the assumed
additive separability of the lifetime utility function. The case of non-separability
gives more intricate results, see Michel and Venditti (1997).

The Russian mathematician Lev Pontryagin (1908-1988) developed, with his
students, in 1956 the Maximum Principle in continuous time, the main theorem in
optimal control theory. An English translation was published in 1962 (Pontryagin
et al., 1962).2* For non-specialist economists an accessible rigorous exposition of
the Maximum Principle, in continuous as well as discrete time, is contained in
Sydseeter et al. (2008). Other useful introductions to the Maximum Principle and
related methods, in discrete time, can be found in Feichtinger and Hartl (1986)
and Dixit (1990). A mathematically advanced account, including generalized
optimality criteria, stochastic optimal control, and economic applications, is given
in Arkin and Evstigneev (1987).

The argument in Appendix C for the necessity of the infinite horizon transver-

24Pontryagin lost his eyesight in the age of 14, but his mother read mathematical books and
journal articles to him.
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sality condition relies on the boundedness of the state variable, l;’, and is based on
identification of increments to a function with its differential when the changes in
the independent variables become “infinitely small” and thus constitute “infini-
tisimals”. This kind of somewhat imprecise reasoning is common in economics,
but largely abandoned by mathematicians. For a rigorous account, accessible for
non-mathematicians, of the necessity of the transversality condition in a class of
economic optimization problems in discrete time, see Kamihigashi (2002). Ex-
tended results can be found in for instance Becker and Boyd (1997) and Kamihi-
gashi (2005).

8.7 Appendix

(in need of abbreviation and polishing)

A. Boundedness

In this appendix we will show existence of a solution to the social planner’s
problem with finite horizon. As a by-product appears some background material
to be used in subsequent appendices. We start with the case without technological
progress.

A stationary model Assuming no technological progress, the dynamic re-
source constraint in (8.27) reads:

fke) + (1= 0)ky —
1+n

ki = , (8.55)
where k; = K /Ly, ¢, = Cy/L;, 0 <5 <1,n>—1, f(0) >0, f/ >0, and f” < 0.
The path {(k:, ¢;) 1o is technically feasible if it satisfies (8.55) for all ¢ > 0, with
¢; > 0 and k; > 0, where kg equals the historically given initial capital-labor ratio.

Assume
§4+mn>0 (8.56)

and
lim f'(k) >0 +n > klim f'(k). (8.57)

k—0
Then, as indicated in Fig. 8.5, the graph of f(k) is above the line y = (§ +n)k
for k small and below for k large. In view of continuity of f and the fact that
f" < 0, there is a unique k£ > 0 such that

fk)Z (6+n)k for k=, (8.58)

VIIA
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v

k

Figure 8.5: The maximum sustainable k is bark.

respectively. An implication of this is the following. Consider the investment
per worker required to make up for capital depreciation per worker and to equip
the net inflow of workers with capital in the same amount per worker which
applies to the rest of the labor force. If the capital-labor ratio, k, is above k,
then this required investment per worker is larger than gross output per worker,
y. Therefore, the required investment per worker can not be realized, hence it is
technically impossible to maintain this high capital-labor ratio. To be precise:

LEMMA Al (boundedness of k and c) Assume (8.56) and (8.57). Let Ty =
max {k:o, k:}, where k£ > 0 is defined in (8.58). Any technically feasible path,
{(ki1, ) }ooy , satisfies

ke

Cy

< 7, (8.59)
< f(@o) + (1 = 0), (8.60)
fort =0,1,2, ....

Proof. By (8.55) and non-negativity of k; for all ¢,

HoO i = ot (5.61)

where the inequality is due to ¢; > 0. Note that for all & > 0, (k) > 0, ¢'(k)
= (1 +n)"[f(k)+1-=¢] > 0, and ¢"(k) = (1 4+ n)~'f'(k) < 0; moreover,
(k) = k. Hence,

ki1 <

go(k)%k for k =k, (8.62)

VIIA

respectively.
We prove (8.59) by induction. Suppose that for a fixed ¢ € {0,1,2,...}, k;
< Zp = max {ko, k} . Then

ki1 < @(kt) < (o) < T,
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where the first (weak) inequality comes from (8.61), the second from the fact that
¢'(k) > 0, and the last from Ty > k combined with (8.62). Obviously, k; < g
holds for ¢ = 0. Hence (8.59) holds for all ¢ > 0.

To prove (8.60), note that (8.55) combined with k;; > 0 implies

cr < f(ke) + (1 =)k = (k) < f(Zo) + (1 —0)o,

where the last inequality follows from (8.59) combined with the fact that ¢'(k)
— f'(k)+1—6>0forall k>0 O

Technological progress. Reduction to a stationary model We now add
Harrod-neutral technological progress. We show that this case can be reduced to
a stationary case so that with an appropriate reinterpretation of the variables,
the results in Lemma A1 apply.

With Harrod-neutral technological progress at the rate g > 0 we have, from
(8.27), the dynamic resource constraint:

fk)+ (1= 0)k — &
(1+9)(1+n)

ko = : (8.63)

where ¢ = ¢;/(1 + g)'. The assumptions (A2’) and (A3’) in Section 8.3 imply
(1+g9)(1+n)—(1—-0)>0 (8.64)

and
lim f/(k) > (1+¢)(1+n) — (1 —20) > lim f'(k). (8.65)

k—0 k—o0
Hence, defining 1 +n' = (14 g)(1 +n), we see that (8.55), (8.56), and (8.57) are
satisfied with n replaced by n’ and k; replaced by k;, t = 0,1, 2, .... From Lemma
A1l we now conclude that for all t > 0,

ke < I, (8.66)
& < f(Zo) + (1 —0)o, (8.67)

with Zo = max {12‘0, 12;} , where k > 0 is defined as in (8.58), but with n replaced

by n’ and k, replaced by k.

This boundedness from above of l%t and ¢; implies that k; and ¢; can not in
the long run grow at a rate higher than g.

As to existence of a solution to the planner’s optimization problem, (8.25) -
(8.28), with T' < oo, we shall appeal to the extreme value theorem.?® The period

25The extreme value theorem states that a continuous function defined on a closed and
bounded set has both a maximum and a minimum.
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utility function v and the production function f are continuous functions. By
substitution of the constraint (8.27), for ¢ = 0,1,..., T — 1, into the objective
function, this becomes a continuous function of ky, ks, ..., k7. These k’s are non-
negative and have an upper bound, given by (8.66). Hence, by the extreme value
theorem the objective function has a maximum. Thereby a solution to the social

planner’s problem exists.

B. When 7" — oo, a high enough discount rate is needed for bounded-
ness of the integral of discounted utilities

Here we shall substantiate the claim in Section 8.1 that with CRRA utility, u(c)
=c7%/(1 —0), > 0, the parameter restriction

1+R>(1+g)" (A2)

ensures tha’E the social welfare function with an infinite horizon is bounded from
above. As R > —1 and 8 = (1 + R)™!, this inequality is equivalent to

0<f<(l+g9) " (A2)

which is the simpler form applied in sections 8.2 and 8.3.
The social welfare function with infinite horizon introduced in Section 8.1 is:

Wo = (14 p) ulea) + > B84 ulere) + (1+ p) " ulcarsn)] (8.68)

where p > —1, v/ > 0, and v” < 0. In Section 8.2 we showed that the prob-
lem of maximizing W, subject to technical feasibility could be decomposed into
two problems, the static problem, (8.18) - (8.19), and the dynamic problem of
maximizing

Wo =Y po(c), (8.69)

subject to technical feasibility. Here ¢; = C;/L; and v(¢;) is the social planner’s
optimized period utility function,

v(er) = Bulcr(er)) + (14 p) ulear(cr)),

as defined in (8.22). Here we have inserted v = (1 + p)~! > 0. It always holds
that v > 0 and v” < 0. In Lemma 1 of Section 8.3 it was shown that if u(c)
=c!7%/(1 — 0), where 6 > 0, then we can always choose the function v such that
for the same 6, v(c) = ¢=?/(1 - 0).

It is boundedness from above of the expression in (8.69) that is our concern.
We begin with the case g = 0.
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The stationary model Define ¢ = f(zg) + (1 — §)ZTg, where Ty is given in
Lemma Al. In view of (8.60), we have for all t > 0, ¢; < €. Then, since v' > 0,
v(cr) < w(€). Consequently,

for 0 < f < 1, which is the form (A2’) takes for ¢ = 0. We also see that if
B > 1, there always exists a b > 0 such that for 9(¢) = v(¢) + b, 9(¢) > o, B
is not bounded from above. So, 0 < § < 1 is sufficient as well as necessary (up
to a positive constant added to the period utility function) for the social welfare
function to be bounded from above.

The case of technological progress Consider the case g > 0 combined with
v(c) = /(1 — 0), where § > 0. Define ¢ = f(Zg) + (1 — §)Zo; here, Ty =
max {12;0, l;:} , where k > 0 is defined as in (8.58), but with n replaced by n’ and
k; replaced by k. We have ¢, = &7, = ¢(1 + g)' < ¢(1 4 g)! in view of (8.67).

There are two cases to consider.

Case 1: 0 > 0,0 # 1. We get

_1-0
v(e) = Ctl ' < ¢
YT1-0-1-9
Consequently, with [ satisfying (A2’),

(1 + g)(l—e)t'

_ [e’¢) T,l_e -

1 1 0)t 1 1 9
We see that this upper bound for Wj is finite if 0 < 5(1 + )1 ¥ <1, ie., if (A2")
holds. This inequality ensures that if 0 < # < 1, then 0 < Wy < oo, and 1f 0>1,
then —oo < Wy < 0.
In a steady state we have ¢; = é*(1 + g)?, so that

Ol\

~*10 e

Z B(1+g)t*",

t=0

which is finite if (A2’) holds. If, on the other hand, 3 > (1+¢)?~!, then W, = oo
if0<6<1,and Wy = —o0,if 0 > 1.
Case 2: § =1, i.e., u(c) = Inc. Here

ZB lnct<26 [lnc%—tln(l—l—g} = (In¢c) Zﬁ —i—Zﬂtln 1+9).

= t=0
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This upper bound for Wj is finite if 0 < 5 < 1 which is the form taken by (A2’).
The reason is that geometric decline (via 3°) outweighs arithmetic growth (via
tIn(l+ g)).

In a steady state,

Wo=> B'Iné +th(l+g)]= ()Y g+ ftn(l+g),
t=0

t=0 t=0

which is bounded from above if 0 < 5 < 1 (i.e., (A2’) holds) and not bounded
from above if # > 1, since in this case the second term will dominate and outweigh
the first if In¢* < 0.

C. Transversality conditions with infinite horizon

In Section 8.1 as well as 8.2 we heralded a follow-up on the respective transver-
sality conditions. It is convenient to begin with the one in Section 8.2.

Necessity of the transversality condition (8.38) In Section 8.2 we claimed

that the transversality condition (8.38) must be satisfied by an interior solution

to the optimization problem (8.25) — (8.28) with 7" — oco. Here we substantiate

this claim by a heuristic argument known as the unreversed arbitrage principle.?s
For convenience we rewrite (8.38) as

lim 8710 (er)(1+ )" (1+ g)(1 4 n)kr = 0. (*)

Imposing the conditions (A2’) and (A3’) (Section 8.3), k; cannot in the long

run grow at a rate higher than the rate of technological progress. So the effective
capital-labor ratio, kp, will remain bounded from above for T — oo. Hence,

limy o [(1 +g9)(1+ n)l%T] < oo in (*). It is therefore enough to show that

lim 7' (er 1)1+ ¢)" "t =0 (8.70)

T—o00

along an interior optimal path.
o0

Let a given path {(l;t, ct>} be an interior optimal path. This will be our
t=0
“reference path”. Since the reference path is optimal, no welfare improving real-

location of resources is possible. An example of a technically feasible reallocation
of resources is the following. We increase cg, ¢,..., ¢p_1 so that l~cl, 12‘2,. . kr
are all decreased by h units where h is a small positive number (for A sufficiently
small this is always possible since we consider an interior path implying that K;

26This draws upon Becker (2008).
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is positive for all ¢). Finally, in period T per capita consumption is decreased
and gross investment thereby increased sufficiently so as to bring /%T+1 back to
its level in the reference path.

The implied changes in per capita consumption, ¢;, relative to the reference
path, can be calculated on the basis of the dynamic resource constraint expressed
in growth-corrected variables:

Cy
(1+g)

Cy =

= f(ke) + (L= 8)ky — (14 g)(1 + n)kpa,
cf. (8.27). For any given changes in k; and l;:tﬂ, Ak, and A/;;tﬂ, the differential
of ¢, is
The actual changes in ¢; are then
ACt%dCt:(l—i—g)tdét, tZO,l,...,T.

The considered reallocation is such that Akg=0, Ak, = —hfort=1,2,...,
T, and Akp,q = 0. It follows that

1-(14+9)(1+n)h for t =0,
Ay ~ 1+gt[f’kt+1— (1—|—g)(1+n)]h fort=1,2,...,T—1,
(14 g)" (f(k:T)+1—5)h for t =T

For period 0 this reallocation implies a utility gain approximately equal to
V' (co)Acy = v'(co)(1 + g)(1 +n)h > 0.

In each of the periods 1,2,...,T — 1 there tends to be a utility loss, although two
countervailing forces are in play. On the one hand the marginal product of the h
units of growth-corrected capital is lacking. On the other hand, the lower needed
investment than otherwise gives scope for higher consumption. In any event, the
total discounted utility loss incurred in these periods is approximately

T-1

S A )1+ g) [f/(R) + 1= 6= (1+g)(1+n)| h.

t=1

Finally, in period T there is a utility loss because the marginal product of the A
units of growth-corrected capital is lacking. The discounted utility loss incurred
by this is approximately

BT (er)(1 + g)T ( Flkr) +1— 5) h.
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Since the reference path is assumed optimal, the gain and the losses should
for small h cancel so that, approximately,

f'(ke) +1=6 - o f (k) +1—6
E:ﬂ o) (1+mu+n)—1+ﬁv@ﬂﬂ+m<1+mﬂ+ny
(8.71)

where we have divided through by (1+ ¢)(1+mn)h. Like the Euler equation (8.36),
(8.71) is a necessary condition for optimality. The argument used in its derivation
is called a T' — 1 periods reversed arbitrage argument. For T" = 1 the first term
in (8.71) disappears and (8.71) reduces to (8.36).

An alternative reallocation — an unreversed arbitrage — is one where the h
units of growth-corrected capital are permanently sacrificed.?” In this case the
total discounted utility loss pertaining to period 1 and onward is approximately

Zﬁ D1+ g) [(1+g)(1+m) = (f/(R)+1-6)|

Ignoring approximation errors, the optimal reference path must satisfy

}:6 D1 +g)

But both (8.72) and (8.71), as T" — oo, can hold only if

(8.72)

f@9+1—5_1
(1+9)(1+n) '

o

In view of the first-order condition (8.36), this unreversed arbitrage argument
implies
lim A7 (cr_)(1+g)" ' =0,

T—oo

which is the transversality condition (8.70) as was to be shown. In the limit, for
h — 0, the approximation errors implicit in the equations become negligible.?®

2"Here the argument presupposes that there is scope for this permanent reduction in k, ie.,
that our reference path does not have limp_. l;T = 0. If it does, we can use a symmetric
reasoning with h < 0, again leading to the conclusion that (8.70) must hold along an interior
optimal path.

28In case kp is unbounded from above for T — oo (because (A2’) and/or (A3’) are violated),
the transversality condition (*) is stronger than (8.70) and requires an independent proof. See
Literature notes.
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The “generations-oriented” format of the transversality condition In-
stead of the above “period-oriented” format based on the social planner’s opti-
mized period-utility function, v(¢;), consider the social planner’s problem formu-
lated in a “generations-oriented” format based on the individual’s period-utility
functions, u(cy;) and u(ca41), as in Section 8.1. For this format the transversality
condition reads

Jim (501 + )] @/ (exr—) (1 + n)kr =0, (3.73)
cf. (8.13) where we have entered 3 = (1 + R)~!. By inserting the “envelope
condition” v'(cr) = fu/(c17-1), from (8.23), we see that (8.73) is equivalent to

(*)-

Application to Proposition 1 (equivalence) Proposition 1 in Section 8.1.1
compares the resource allocation in the Barro model of a market economy with
positive bequests (Chapter 7) to that of a social planner facing the same tech-
nology and initial resources as in the market economy and having an effective
intergenerational discount factor, 3 = (1 + R)™!, equal to the private one. This
Bis assumed to satisfy assumption (A2’) saying that 0 < 3 < (1 + ¢)%~L.

We may write the intertemporal utility function of the altruistic parent be-
longing to generation 0 (Section 7.2.1) as

U[) = Z BT [U(ClT) + (1 + p)_lu(CQTﬂ)} .

This intertemporal utility function is closely related to the social welfare function
of the social planner. Indeed, from (8.68) we see that

WO = (1 + p)il'U(Cgo) + BUU

This is exactly what the old in period 0 in the Barro model maximizes by choosing
c20 > 0 and by > 0 subject to the budget constraint cog + (1 +n)bg = (1 +19)s_1
and taking into account that the chosen by indirectly affects the maximum lifetime
utility to be achieved by the next generation, cf. Section 7.2.1.

From the perspective of generation 0, i.e., the young in period 0 in the Barro
model, the transversality condition is

lim BT 1(1 4 p) ™'/ (car) (1 + n)bp = 0, (8.74)

T—o0

which follows from (7.8) by inserting 8 = (1 + R)~!, letting ¢ = 0, and replacing
1 by T.
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For the social planner’s problem formulated in “generations-oriented” format
as in Section 8.1, the transversality condition is given by (8.73) above. For com-
parison with (8.74), we substitute k7 = k7/(1 + ¢)” and divide through by £ to
get

lim A7 (cir-1)(1 + n)kp = 0. (8.75)

T—o00

To complete the proof of Proposition 1, we now show:

LEMMA C1 Barro’s and the social planner’s transversality conditions, (8.74)
and (8.75), are equivalent.

Proof. (incomplete) From the budget constraint, (7.5), of the old parent in the
Barro model, with ¢ replaced by T'— 1, we have

Cor

o < (1+rp)kr = (1+ f'(kr) — 0)kr,

0<br=1+rp)kr—

in view of cor > 0 and rp = f’ (l;:T) — ¢ in the competitive market economy.
Multiplying through by 7 '(1 + p) '/ (car)(1 4 n) > 0 gives

0 < BT Y14 p) M (car)(1 + n)bp ~
< BT+ p) M (ear) (1 + )X 4 f'(kp) — 8)kp = BT (crr1) (1 + n)kr,

where the equality follows from (8.10) with ¢ replaced by 7" — 1. Hence, letting

T — o0, a technically feasible path satisfying (8.75) will also satisfy (8.74).
That the inverse also holds, follows from ...77 [

D. Saddle-point dynamics

We shall here be more detailed about formal aspects of the solution to the social
planner’s problem with infinite horizon in sections 8.3 and 8.4. The claim is
that the solution coincides with the unique converging path, cf. figures 8.3 and
8.4, if the parameters satisfy either (A2’) or (A2”) (from Section 8.3 and 8.4,
respectively), that is, if

0<B< (149" (A2%)

holds. Strict inequality here leads to the modified golden rule, whereas the lim-
iting case with equality leads to the golden rule.

Of crucial importance is that the non-trivial steady state of the dynamic
system is a saddle point. A steady state of a two-dimensional dynamic system
in discrete time is a saddle point if a certain matrix, known as the Jacobian,
evaluated in the steady state has one eigenvalue with absolute value below one,
the stable eigenvalue, and one eigenvalue with absolute value above one, the
unstable eigenvalue. Our dynamic system is given by (8.44) and (8.47). We start
with the simple case where there is no technological progress.
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The case with no technological progress

With g = 0 the dynamic system can be written
f(k}t) + (1 — 5)l€t — Ct

ke = - = h(ks, 1), (8.76)
"Mk, cr)) +1— 6\’
Cio1 = <ﬂf ( ( tlcit:)n ) ct, (877)

where kg is predetermined, whereas ¢y is a jump variable. A variable which is

not predetermined and can immediately jump to another value, is called a jump

variable. Such a jump may be triggered by the arrival of new information. Control
variables are generally jump variables.

We now linearize around the non-trivial steady state. A convenient approach

is based on taking the differential on both sides of (8.76) and (8.77), respectively:
(f'(k*)+1—0)dk; — de,

dki = Ton = aydky + agdey,  (ay = hy, a3 = hy)

% (f' (k") +1— 5)%_1 f(k*)(ardky + axdey) + (f/(B*) + 1 — 5)% de,

1
(87 A +n)]
= ag(aldkt + CLQdCt) + CL4dCt = (llagdkt + (CLQCLg + CL4>dCt.

deiyr =

Using k* = kyer and (8.49), we have

—1
ap = 7' >1, by (A2%) for g=0, ap= T < 0, (8.78)
*x £/ * *x £/ *
as —9;{(1(]3_),”) < 0, aijas = —;({ ikn; < 0,
P p— #(k)>0’ @4:(w%:1-
087 (1 +n)? BH1 +n)

The linear approximation The approximating linear dynamic system in de-
viations from the steady state, (lz), is

dk
A dk; ’
dciq dey
where the matrix A is the mentioned Jacobian, given by

-1 -1
a a ﬁ n
A = |: 1 2 :| = [ c* ! (k*) I+

Y

ajaz asas + ay 9(1tn) 1 + b
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with
—C*f”Uf*)
067 (1 +n)?

The determinant and trace of A are:

b= > 0.

det A = aq(azasz + ay) — ajazas = ajay = a3 > 1, (by (8.78)) (8.79)
trA = a1+ asaz+as=a,+1+b>2. (8.80)

Let 1 and €5 be the eigenvalues of A. Then

1
g1 = §(tI'A— \/Z),
g2 = ;uA+¢®,

where A = (trA)? — 4det A (the discriminant of A). From matrix algebra we
know the rules €1 - €5 = det A and &1 + g5 = trA. In view of (8.79), det A > 0,
hence the eigenvalues are of the same sign. And in view of (8.80), trA > 0, hence
the eigenvalues are both positive. Further,

A = a®+1+2a+0*+2(a; +1)b—4a; = (a3 — 1)> +b* +2(a; + 1)b
= (a1 — 1?4+ 0> +2(a; —1)b+4b=(ay — 1 +b)*> 4+ 4b > 0.

Both eigenvalues are thus real and, as b > 0, we have VA > a; — 1+ b. It follows
that

1 1
0 < 51:§(a1+1+b—\/Z)<§(1+1):1,

1 1
ey = 5(a1+1+b+\/ﬁ)>5(2aﬁdb)=m+b>€uZ17

where the last (weak) inequality comes from (8.78). Hereby we have shown that
the steady state, (k*,c*), is a saddle point, and ¢; is the stable eigenvalue while
€9 is the unstable eigenvalue. The next step is to show that the stability property
called saddle-point stability is present.

Saddle-point stability A steady state of a two-dimensional dynamic system
is called (locally) saddle-point stable, if:

(a) the steady state is a saddle point;

(b) the dynamic system has one predetermined variable and one jump variable;
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(c) for any initial value of the predetermined variable in a neighborhood of the
steady state, there is a unique value of the jump variable such that the
system starts (has initial point) on the saddle path; and

(d) there is a boundary condition or other condition on the system such that
the diverging paths are ruled out as solutions.

In our context, (a) and (b) are already established, and (d) follows from the
uniqueness of the optimal solution (cf. the end of Section 8.2.2) combined with
the fact that the transversality condition (8.50) holds along the converging path.
It remains to check point (c). Here the phase diagram in Fig. 8.3 reveals that the
saddle path is not (at least in a small neighborhood of the steady state) parallel
to the jump-variable axis. So also point (c) is satisfied.

An approximative explicit formula for the optimal time path, based on the
above linearization of the dynamic system, can be derived as follows. The general
solution to the linearized system can be written

k k*
( t) =C (Ull)sﬁ + Cy (“21)63 + ( *), (8.81)
Cg V12 V99 C

where (Z’;) is an eigenvector associated with ¢;, © = 1,2, and C; and C, are
constants related to the initial values, kg and cg, in the following way:

v v k* k
Cl< ”) +02< 21) + ( ) = ( 0). (8.82)

V12 V22 c Co
Here, ky is predetermined, whereas ¢y is to be chosen such that the system is on the
saddle path at time 0. This is equivalent to choosing ¢y such that the unstable
eigenvalue, &5, is neutralized in (8.81), i.e., such that Cy = 0. Since ay # 0,

the eigenvector (21;) can be written ((517;1) /a2). Substituting this together with
Cy = 0 into (8.82) and solving for C and ¢, gives

Cl - k’o - k’*,
* €1 — a1 * * -1 *
co = (ko—Fk") - +c" = (ko — k)BT —e1)(1+n)+c" >0,
2
inviewof ey <1<a; =" and as = —(1+n)~!. So the particular solution we
have been looking for is
ke = (ko— k*)e!l + k¥, (8.83)
o = (ko— k) (B —e)(1+n)l + . (8.84)
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This is the approximative explicit analytical solution to the social planner’s
problem.? Having found such a solution, we have also, for the approximating
linear system, given an algebraic proof of property (c) above. As an implication,
the “true” non-linear system is at least locally saddle-point stable.

Global saddle-point stability Proposition 2 of Section 8.3 not only claims
local saddle-point stability, but global saddle-point stability. This claim means
that point (c) above can be strengthened to the following. Given an arbitrary
positive initial value of the predetermined variable, there is a unique positive
value of the jump variable such that the system initially is on the saddle path.
That is, global saddle-point stability requires that for any ko > 0, it is possible
to start out on the stable arm. Suffice it to say that this condition s satisfied
by the present model. The proof is analogue to one used for the continuous-time
case in Appendix A to Chapter 10.

Including technological progress

With g > 0, the original system, (8.44) and (8.47), can be written

Flke) + (1= 6k — &

kiyr = T, = h(ke, &),
- 1/6
6t 1 — /Blf (kt"l‘l) + ]' _ 5 6t
+ 1 + n' ’

where we have defined 1 +n' = (1 + g)(1 +n) and 5’ = B(1 + g)' 7. In view
of (A2*), we have 0 < 8’ < 1. In this way we have reduced the system to the
same form as in the stationary case above. Thus, the conclusions go through with
appropriate reinterpretation of the variables.

Since €1 > 0, the solution (8.83) - (8.84) approaches the non-trivial steady
state in a non-oscillatory way.

Two technical issues relating to the phase diagram

The first issue is about the point D in Fig. 8.3. This point is located where
the ¢;11 = ¢ locus intersects the k-axis. Whether it does so for a k& > 0 or a
k < 0 is immaterial for our stated conclusions. In the case shown in Fig. 8.3,
the intersection is at a k& > 0. This case occurs when capital is essential, i.e.,
f(0) = 0. Indeed, by the definition of h in (8.44), along the ¢.,; = ¢ locus we

29Exact explicit analytical solutions are obtainable only in special cases, for example the log
utility-Cobb-Douglas case, see Exercise 8.x.

© Groth, Lecture notes in macroeconomics, (mimeo) 2017.



8.7. Appendix 357

have & = f(k;) +(1 — &)k — (1+g)(1+ n)kyar = m(k). Now, m(k*) = & > 0

t
and m(0) = —(14 ¢g)(1 + n)kyer < 0 when f(0) = 0. Since m is continuous,
there is therefore a k € (0, k*) such that m(k) = 0.

The second issue relates to the fact that all paths which start above the saddle
path, hit the boundary of the dynamic system in finite time. This indicates that
they are not interior paths. One might then question whether they need at all
satisfy the Euler equation in the periods before they hit the boundary. That
is, have we really constructed these paths correctly in the phase diagram? The
answer is yes. As long as the boundary of the system is not binding, the first-
order conditions which lead to the Euler equation must hold along an optimal

path.

E. Limit inferior and limit superior

Both when discussing infinite horizon transversality conditions and when intro-
ducing the catching-up optimality criterion in Section 8.4, we assumed that the
relevant limits exist for T" — oo. If full generality were aimed at, we should for
example allow non-convergence of Dy for T' — oo. Indeed, the set of feasible
paths might in theory be such that Dy fluctuates forever with non-vanishing am-
plitude. If so, we would have to replace “limr_ " in (8.54) by “liminfr 7, i.e.,
the limit inferior.

Let “5 > t” be a shorthand for “j =t¢,t+1,...”7. The limit inferior for t — oo
of a sequence {z;},°, is defined as lim; . inf {x,| n >t¢}. Here inf of a set of
real numbers, say S; = {x,| n > t}, means the infimum of the set, that is, the
greatest lower bound for S,.3° Fig. 8.6 illustrates. For t = ¢y, b; is a lower bound,
but evidently not the greatest. As ¢t — oo, the greatest lower bound tends to bs,
which then is the liminf, . ;. Analogously, the “limsup” or limit superior for
t — oo of a sequence {x;},°, is defined as lim;_, sup {x,| n > ¢}, where sup of
the set means the supremum of the set, that is, the least upper bound.®' In Fig.
8.6, for t = t1, the least upper bound for S; is by, but for ¢ — oo the least upper
bound tends to b3, which is thus the limsup,_, ;.

Obviously, liminf; .. z; < limsupz;. If lim; . x; exists, then lim; ., z; =
liminf; ., x; = limsup,_,,, x;. This is the case where by = b3 in Fig. 8.6. An
example of non-convergence is z; = (—1)%, t = 0,1,2,..., where liminf; .., z; =
—1 and limsup,_, . z; = 1.

Due to strict concavity in many economic problems, however, infinitely fluctu-
ating paths that do not converge can often be shown to be inferior (see Koopmans,
1965). In “normal” economic optimization problems, as those considered in this

30 A number less than or equal to all numbers in a set S is called a lower bound for S.
31 A number greater than or equal to all numbers in a set S is called an upper bound for S.
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Figure 8.6: lim; o ¢ does not exist, but lim;_,, inf z; and lim; o, sup x; do.

book, infinitely fluctuating paths never turn up. Hence, in our context essentially
nothing is lost by using the more narrow specification of both necessary and suf-
ficient transversality conditions and catching-up optimality presented in the text,

that is, using “lim” instead of “lim inf”.

8.8 Exercises

8.1 See footnote at end of Appendix D.
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