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A refresher about continuous time analysis

In the next months we will consider models in continuous time. This short note is a

refresher of how to understand and analyze models in continuous time.

We start from a discrete time framework: the run of time is divided into successive

periods of constant length, taken as the time-unit. Let financial wealth at the beginning

of period i be denoted ai, i = 0, 1, 2, .... Then wealth accumulation in discrete time can

be written

ai+1 − ai = si, a0 given,

where si is (net) saving in period i.

1 Transition to continuous time analysis

With time flowing continuously, we let a(t) refer to financial wealth at time t. Similarly,

a(t+∆t) refers to financial wealth at time t+∆t. To begin with, let∆t be equal to one time

unit. Then a(i∆t) = ai. Consider the forward first difference in a, ∆a(t) ≡ a(t+∆t)−a(t).
It makes sense to consider this change in a in relation to the length of the time interval

involved, that is, the ratio ∆a(t)/∆t. As long as ∆t = 1, with t = i∆t we have ∆a(t)/∆t

= (ai+1 − ai)/1 = ai+1 − ai. Now, keep the time unit unchanged, but let the length of

the time interval [t, t+∆t) approach zero, i.e., let ∆t→ 0. Assuming a(·) is a continuous
and differentiable function, then lim∆t→0∆a(t)/∆t exists and is denoted the derivative of

a(·) at t, usually written da(t)/dt or just ȧ(t). That is,

ȧ(t) =
da(t)

dt
= lim

∆t→0

a(t+∆t)− a(t)

∆t
= lim

∆t→0

∆a(t)

∆t
.

By implication, wealth accumulation in continuous time is written

ȧ(t) = s(t), a(0) = a0 given, (1)

where s(t) is the saving at time t. For ∆t “small” we have the approximation ∆a(t)

≈ ȧ(t)∆t = s(t)∆t. In particular, for ∆t = 1 we have ∆a(t) = a(t+ 1)− a(t) ≈ s(t).
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As time unit let us choose one year. Going back to discrete time, if wealth grows at

the constant rate g > 0 per year, then after i periods of length one year (with annual

compounding)

ai = a0(1 + g)i, i = 0, 1, 2, ... . (2)

When compounding is n times a year, corresponding to a period length of 1/n year, then

after i such periods:

ai = a0(1 +
g

n
)i. (3)

With t still denoting time (measured in years) passed since the initial date (here date 0),

we have i = nt periods. Substituting into (3) gives

a(t) = ant = a0(1 +
g

n
)nt = a0

∙
(1 +

1

m
)m
¸gt

, where m ≡ n

g
.

We keep g and t fixed, but let n (and so m)→∞. Then, in the limit there is continuous

compounding and

a(t) = a0e
gt, (4)

where e is the “exponential” defined as e ≡ limm→∞(1 + 1/m)
m ' 2.718281828.... The

formula (4) is the analogue in continuous time (with continuous compounding) to the

discrete time formula (2) with annual compounding. Thus, a geometric growth factor is

replaced by an exponential growth factor.

We can also view these two formulas as the solutions to a difference equation and a

differential equation, respectively. Thus, (2) is the solution to the simple linear difference

equation ai+1 = (1+ g)ai, given the initial value a0. And (4) is the solution to the simple

linear differential equation ȧ(t) = ga(t), given the initial condition a(0) = a0.With a time

dependent growth rate, g(t), the corresponding differential equation is ȧ(t) = g(t)a(t)

with solution

a(t) = a0e
t
0 g(τ)dτ , (5)

where the exponent,
R t
0
g(τ)dτ , is the definite integral of the function g(τ) from 0 to t. The

result (5) is called the basic growth formula in continuous time analysis and the factor

e
t
0 g(τ)dτ is called the growth factor or the accumulation factor.

Notice that the allowed range for parameters may change when we go from discrete

time to continuous time with continuous compounding. For example, the usual equation

for aggregate capital accumulation in continuous time is

K̇(t) = I(t)− δK(t), K(0) = K0 given, (6)
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where K(t) is the capital stock, I(t) is the gross investment at time t and δ ≥ 0 is the
(physical) capital depreciation rate. Unlike in discrete time, here δ > 1 is conceptually

allowed. Indeed, suppose for simplicity that I(t) = 0 for all t ≥ 0; then (6) gives K(t) =
K0e

−δt (exponential decay). This formula is meaningful for any δ ≥ 0. Usually, the time
unit used in continuous time macro models is one year (or a quarter of a year) and

then a realistic value of δ is of course < 1 (say, between 0.05 and 0.10). However, if the

time unit applied to the model is large (think of a Diamond-style OLG model converted

into continuous time), say 30 years, then δ > 1 may fit better, empirically. Suppose, for

example, that physical capital has a half-life of 10 years. Then with 30 years as our time

unit, inserting into the formula 1/2 = e−δ/3 gives δ = (ln 2) · 3 ' 2.

2 Stocks and flows

An advantage of continuous time analysis is that it forces one to make a clear distinction

between stocks (say wealth) and flows (say consumption and saving). A stock variable is a

variable measured as just a quantity at a given point in time. The variables a(t) and K(t)

considered above are stock variables. A flow variable is a variable measured as quantity

per time unit at a given point in time. The variables s(t), K̇(t) and I(t) above are flow

variables.

One can not add a stock and a flow, because they have different denomination. What

exactly is meant by this? The elementary measurement units in economics are quantity

units (so and so many machines of a certain kind or so and so many litres of oil or so

and so many units of payment) and time units (months, quarters, years). On the ba-

sis of these we can form composite measurement units. Thus, the capital stock K has

the denomination “quantity of machines”. In contrast, investment I has the denomina-

tion “quantity of machines per time unit” or, shorter, “quantity/time”. If we change our

time unit, say from quarters to years, the value of a flow variable is quadrupled (pre-

supposing annual compounding). A growth rate or interest rate has the denomination

“(quantity/time)/quantity” = “time−1”.

Thus, in continuous time analysis expressions like K(t) + I(t) or K(t) + K̇(t) are

illegitimate. But one can write K(t +∆t) ≈ K(t) + I(t)∆t and K̇(t) = I(t) (if δ = 0).

In the same way, if a bath tub contains 50 litres of water and the tap pours 1
2
litre per

second into the tub, a sum like 50 c + 1
2
(c/sec) does not make sense. But the amount

of water in the tub after one minute is meaningful. This amount would be 50 c + 1
2
· 60
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Figur 1: With ∆t “small” the integral of s(t) from t0 to t0 +∆t is ≈ the hatched area.

((c/sec)×sec) = 90 c. In analogy, economic flow variables in continuous time should be

seen as intensities defined for every t in the time interval considered, say the time interval

[0, T ) or perhaps [0,∞). For example, when we say that I(t) is “investment” at time t, this
is really a short-hand for “investment intensity” at time t. The actual investment in a time

interval [t0, t0 +∆t) , i.e., the invested amount during this time interval, is the integral,R t0+∆t

t0
I(t)dt ≈ I(t)∆t. Similarly, s(t) (the flow of individual saving) should be interpreted

as the saving intensity at time t. The actual saving in a time interval [t0, t0 +∆t) , i.e., the

saved (or accumulated) amount during this time interval, is the integral,
R t0+∆t

t0
s(t)dt. If

∆t is “small”, this integral is approximately equal to the product s(t0)·∆t, cf. the hatched

area in Fig. 1.

The notation commonly used in discrete time analysis blurs the distinction between

stocks and flows. Expressions like ai+1 = ai + si, without further comment, are usual.

Seemingly, here a stock, wealth, and a flow, saving, are added. But, it is really wealth

at the beginning of period i and the saved amount during period i that are added: ai+1
= ai + si · ∆t. The tacit condition is that the period length, ∆t, is the time unit. But

suppose that, for example in a business cycle model, the period length is one quarter, but

the time unit is one year. Then saving in quarter i is si = (ai+1 − ai) · 4 per year.

In empirical economics data typically come in discrete time form and data for flow

variables typically refer to periods of constant length. One could argue that this discrete

form of the data speaks for discrete time rather than continuous time modelling. And

the fact that economic actors often think and plan in period terms, may be a good

reason for putting at least microeconomic analysis in period terms. Yet, it can hardly be
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said that the mass of economic actors think and plan with one and the same period. In

macroeconomics we consider the sum of the actions and then a formulation in continuous

time may be preferable. This also allows variation within the usually artificial periods

in which the data are chopped up.1 For example, stock markets (markets for bonds and

shares) are more naturally modelled in continuous time because such markets equilibrate

almost instantaneously; they respond immediately to new information.

In his discussion of this modelling issue, Allen (1967) concluded that from the point

of view of the economic contents, the choice between discrete time or continuous time

analysis may be a matter of taste. But from the point of view of mathematical convenience,

the continuous time formulation, which has worked so well in the natural sciences, is

preferable.2
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1Allowing for such variations may be necessary to avoid the artificial oscillations which sometimes
arise in a discrete time model due to a too large period length.

2At least this is so in the absence of uncertainty. For problems where uncertainty is important, discrete
time formulations are easier if one is not familiar with stochastic calculus.
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