Correction to page 1085 in Chapter 30 (and page 1053 in Chapter 29)

In the break of today's lecture there was a good question about why on p. 1053 in Chapter 29 and p. 1085 in Chapter 30 the transformation $\tilde{U}_{t} \equiv(1+\rho)^{t} U_{t}$ is introduced. And I must admit that this clumsy \tilde{U}_{t} is not needed and comes from an inconvenient implicit definition of U_{t}.

Here is a better way to proceed at page 1085 (and in Exercise X.7a). ${ }^{1}$ The paragraph starting with "In every new period t " should be replaced by the following: .

Letting period t be an arbitrary period, i.e., $t \in\{0,1,2, \ldots, T-1\}$, we rewrite U_{0} in the following way

$$
\begin{aligned}
U_{0} & =\sum_{s=0}^{t-1} u\left(c_{s}\right)(1+\rho)^{-s}+\sum_{s=t}^{T-1} u\left(c_{s}\right)(1+\rho)^{-s} \\
& =\sum_{s=0}^{t-1} u\left(c_{s}\right)(1+\rho)^{-s}+(1+\rho)^{-t} \sum_{s=t}^{T-1} u\left(c_{s}\right)(1+\rho)^{-(s-t)} \\
& \equiv \sum_{s=0}^{t-1} u\left(c_{s}\right)(1+\rho)^{-s}+(1+\rho)^{-t} U_{t}
\end{aligned}
$$

When deciding the "action" c_{0}, the household knows that in every new period, it has to solve the remainder of the problem in a similar way, given the information revealed up to and including that period. As seen from period t, the objective function is

$$
\begin{equation*}
E_{t} U_{t}=u\left(c_{t}\right)+(1+\rho)^{-1} E_{t}\left[u\left(c_{t+1}\right)+u\left(c_{t+2}\right)(1+\rho)^{-1}+\ldots\right] \tag{30.12}
\end{equation*}
$$

To solve the problem as seen from period t we will use the substitution method. First, from (30.10) we have

$$
\begin{align*}
c_{t} & =\left(1+r_{t}\right) a_{t}+w_{t} n_{t}-a_{t+1}, \quad \text { and } \tag{30.13}\\
c_{t+1} & =\left(1+r_{t+1}\right) a_{t+1}+w_{t+1} n_{t+1}-a_{t+2} .
\end{align*}
$$

Substituting this into (30.12), the problem is reduced to an essentially unconstrained maximization problem, namely one of maximizing $E_{t} U_{t}$ w.r.t. $a_{t+1}, a_{t+2}, \ldots, a_{T}$ (thereby

[^0]indirectly choosing $\left.c_{t}, c_{t+1}, . ., c_{T-1}\right)$. Hence, we first take the partial derivative w.r.t. a_{t+1} in (30.12) and set it equal to 0 :
$$
\frac{\partial E_{t} U_{t}}{\partial a_{t+1}}=u^{\prime}\left(c_{t}\right) \cdot(-1)+(1+\rho)^{-1} E_{t}\left[u^{\prime}\left(c_{t+1}\right)\left(1+r_{t+1}\right)\right]=0 .
$$

Reordering gives the stochastic Euler equation,

$$
\begin{equation*}
u^{\prime}\left(c_{t}\right)=(1+\rho)^{-1} E_{t}\left[u^{\prime}\left(c_{t+1}\right)\left(1+r_{t+1}\right)\right], \quad t=0,1,2, \ldots, T-2 \tag{30.14}
\end{equation*}
$$

[^0]: ${ }^{1}$ The unfortunate U_{t} at page 1053 in Chapter 29 can be skipped in an analogue way.

