
Chapter 7

The Ramsey model

As early as 1928 a sophisticated model of a society’s optimal saving was pub-
lished by the British mathematician Frank Ramsey (1903-1930). Ramsey’s
contribution was mathematically demanding and did not experience a strong
response at the time. Three decades had to pass until his contribution was
taken up seriously (Samuelson and Solow, 1956). The model was fusioned
with Solow’s simpler growth model (Solow 1956) and became a cornerstone
in neoclassical growth theory from the mid 1960s. The version of the model
which we present below was completed by the work of Cass (1965) and Koop-
mans (1965). Hence the model is also known as the Ramsey-Cass-Koopmans
model.
The model is one of the basic workhorse models of macroeconomics. It

can be seen as placed at one end of a line segment, with another workhorse
model as placed at the other end, namely Diamond’s overlapping generations
model. In the Diamond model there is an infinite number of agents (since
in every new period a new generation enters the economy) and these have a
finite time horizon. In the Ramsey model there is a finite number of agents
with an infinite time horizon; further, these agents are completely alike. The
Ramsey model is thus a representative agent model, whereas the Diamond
model has heterogeneous agents (young and old) interacting in every period,
These differences in the basic setup turn out to have important implications
for the conclusions.
Along the line segment, which has these two frameworks as polar cases,

less abstract models are scattered, some being closer to the one pole and
others closer to the other. A given model may open up for different regimes,
one close to Ramsey’s pole, another close to Diamond’s. An example is
Barro’s model, from Chapter 5, with parental altruism. When the bequest
motive is operative, the Barro model coincides with a Ramsey model (in dis-
crete time). But when the bequest motive is not operative, the Barro model
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278 CHAPTER 7. THE RAMSEY MODEL

coincides with a Diamond OLG model. In later chapters we extend the per-
spective by including government, public debt, money, market imperfections
etc. It turns out that for several issues it matters a lot whether one uses a
Ramsey setup or an overlapping generations setup.
The Ramsey framework can be formulated in discrete time as well as in

continuous time. This chapter concentrates on the continuous time version
as did Ramsey’s original contribution. We first study the Ramsey framework
under the conditions of a perfect-competition market economy. In this con-
text we will see that the Solow growth model comes out as a special case
of the Ramsey model. Next we consider the Ramsey framework in a setting
with an “all-knowing and all-powerful” social planner. The next chapter ap-
plies Ramsey’s framework to a series of issues, including welfare implications
of alternative policies to promote economic growth.

7.1 Market conditions

We consider a closed economy. Time is continuous. At any point in time
there are three active markets, one for the “all-purpose” output good, one
for labor, and one for capital services (the rental market for capital goods).
For the sake of intuition, it can be useful to imagine that there is also a loan
market, which we name the bond market, with a short-term interest rate
r. But since households are alike, in general equilibrium this market will
not be used. There is perfect competition in all markets, that is, prices are
exogenous to the individual agents.
To fix ideas, we assume that the households own the capital goods and

hire them out to firms.1 Since the technology exhibits constant returns to
scale and there is perfect competition, the firms, owned by the household
sector as a whole, do not make (pure) profit in equilibrium. Any need for
means of payment − money − is abstracted away. Prices are measured in
current output units.
Although the variables in the model are considered as continuous func-

tions of time, t, we shall, to save notation, write them as wt, rt, etc. (instead
of w(t), r(t), etc.). In every short time interval (t, t+∆t), the individual firm
employs labor at the market wage wt and rents capital goods at the rental
rate r̂t. The combination of labor and capital produces the homogeneous
output good. This can be used for consumption as well as investment.

1If instead the firms owned the real capital while household’s held financial claims on
the firms (shares and bonds), the conclusions would remain unaltered as long as we ignore
uncertainty.
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7.2. Agents 279

Since we assume that households understand precisely how the economy
works, they can predict the future path of wages and interest rates. That
is, we assume perfect foresight. Owing to this absence of uncertainty, the
consequences of a choice are known. And rates of return on alternative
assets must in equilibrium be the same. So the (short-term) interest rate in
the bond market must equal the rate of return on real capital in equilibrium,
that is,

rt = r̂t − δ, (7.1)

where δ (≥ 0) is a constant rate of capital depreciation. This no-arbitrage
condition shows how the interest rate is related to the rental rate of capital.
Below we present, first, the households’ behavior and, next, the firms’

behavior. After this, the interaction between households and firms in general
equilibrium will be analyzed.

7.2 Agents

The households

There is a fixed number of identical households with an infinite time horizon.
This feature makes aggregation very simple: we just have to multiply the
behavior of the single household with the number of households. We may
interpret the infinite horizon of the household as reflecting a Barro-style
altruistic bequest motive (cf. Chapter 5). The household may thus be seen as
a family dynasty whose current members act in unity and are also concerned
with the welfare of future generations. Every family has Lt members and Lt

changes over time at a constant rate, n :

Lt = L0e
nt. (7.2)

In contrast, in a standard OLG model births reflect the emergence of new
economic agents, that is, new decision makers whose preferences no-one has
cared about in advance.
Every family member inelastically supplies one unit of labor per time

unit. Equation (7.2) therefore describes the growth of the population as
well as the labor force. Since there is only one consumption good, the only
decision problem is how to distribute current income between consumption
and saving. The savings are placed in either real capital or short-term bonds.
If the household wishes to dissave, it can simply sell its stock of real capital
or issue bonds.
The household’s preferences can be represented by an additive utility

function with a constant utility discount rate, ρ, called the rate of time
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280 CHAPTER 7. THE RAMSEY MODEL

preference or the rate of impatience. Seen from time 0, the utility function
is

U0 =

Z ∞

0

u(ct)Lte
−ρtdt,

where ct ≡ Ct/Lt is consumption per family member. The instantaneous
utility function u has u0 > 0 and u00 < 0, i.e., positive but diminishing mar-
ginal utility. The utility contribution from consumption per family member
is weighted by the number of family members, Lt. In this way, it is the sum
of the family members’ utility that counts which is why U0 is sometimes re-
ferred to as a classical-utilitarian utility function with discounting. Because
of (7.2), U0 can be written as

U0 =

Z ∞

0

u(ct)e
−(ρ−n)tdt, (7.3)

where the unimportant positive factor L0 has been eliminated. We may call
ρ̄ ≡ ρ−n the effective rate of time preference while ρ is the pure rate of time
preference. We later introduce a restriction on ρ− n to ensure boundedness
of the utility integral.
The household chooses a consumption-saving plan which maximizes U0

subject to a budget constraint. Let At ≡ atLt be the household’s (net)
financial wealth in real terms as of time t. We have

Ȧt = rtAt + wtLt − ctLt, A0 given. (7.4)

This equation is a book-keeping relation telling how financial wealth or debt
(−A) is evolving depending on how consumption relates to current income.
The equation merely says that the increase in financial wealth per time unit
equals saving which equals income minus consumption. Income consists of
return on wealth, rtAt, and wage income, wtLt. Because of constant returns
to scale and perfect competition, firms have no pure profits to pay the owners,
i.e., the households.
When the flow-budget identity (7.4) is combined with a requirement of

solvency, we have a budget constraint. The relevant solvency requirement is
the No-Ponzi-Game condition (NPG)

lim
t→∞

Ate
− t

0 rsds ≥ 0. (7.5)

This condition says that financial wealth far out in the future can not have
a negative present value. That is, in the long run, debt must at most rise at
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a rate less than the real interest rate r. The NPG condition thus precludes
permanent financing of the interest payments by new loans.2

The decision problem is: choose a plan (ct)0t=∞ such that a maximum
of U0 is achieved subject to non-negativity of the control variable c and the
constraints (7.4) and (7.5). The problem is the same as that considered in
Chapter 6, except that the labor supply of the family is now growing over
time.
To solve the problem we apply the Maximum Principle. This method can

be applied directly to the problem in the form given above or to the equivalent
problem with constraints expressed in per capita terms. Let us follow the
latter approach. From the definition at ≡ At/Lt we get by differentiation
wrt. t

ȧt =
LtȦt −AtL̇t

L2t
=

Ȧt

Lt
− atn.

Substitution of (7.4) gives the flow-budget identity in per capita terms:

ȧt = (rt − n)at + wt − ct, a0 given. (7.6)

By inserting At ≡ atLt = atL0e
nt, the No-Ponzi-Game condition (7.5) can

be rewritten as
lim
t→∞

ate
− t

0 (rs−n)ds ≥ 0, (7.7)

where the unimportant factor L0 has been eliminated. We see that in both
(7.6) and (7.7) the growth-corrected real interest rate rt−n appears. Although
deferring consumption gives a real interest rate of rt, this return is diluted
on a per head basis because it will have to be shared with more members of
the family when n > 0. In the form (7.7) the NPG condition requires that
debt, if any, in the long run rises at most at a rate less than the population
growth-corrected interest rate.
Now the problem is: choose (ct)0t=∞ so as to a maximize U0 subject to

the constraints: ct ≥ 0 for all t ≥ 0, (7.6), and (7.7). We follow the solution
procedure from the previous chapter:

1) Set up the current-value Hamiltonian

H(a, c, λ, t) = u(c) + λ [(r − n) a+ w − c] ,

where λ is the adjoint variable associated with the dynamic constraint (7.6)
(the explicit dating of the variables a, c, and λ is omitted where it is not
required for clarity).

2In the previous chapter we saw that the NPG condition, in combination with (7.4),
is equivalent to an ordinary intertemporal budget constraint which says that the present
value of the planned consumption path cannot exceed the sum of the initial financial
wealth and the present value of expected future labor income.
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2) With a view to maximizing the Hamiltonian wrt. to the control vari-
able, c, consider the first-order condition

∂H

∂c
= u0(c)− λ = 0,

that is,
u0(c) = λ. (7.8)

3) Differentiate H partially wrt. the state variable, a, and set the result
equal to the effective rate of discount (appearing in the integrand of the
criterion function) multiplied by λ minus the time derivative of the adjoint
variable λ:

∂H

∂a
= λ(r − n) = (ρ− n)λ− λ̇,

that is,
λ̇ = −(r − ρ)λ. (7.9)

4) Apply the Maximum Principle which (for this case) says: an optimal
path (at, ct)∞t=0 will satisfy that there exists a continuous function λ(t) such
that for all t ≥ 0, (7.8) and (7.9) hold along the path and the transversality
condition,

lim
t→∞

λte
−(ρ−n)tat = 0, (7.10)

is satisfied.
The interpretation of these optimality conditions is as follows. The con-

dition (7.8) can be considered a MC = MB condition (in utility terms). It
illustrates together with (7.9) that the adjoint variable λ can be seen as a
shadow price, measured in current utility, of per head financial wealth along
the optimal path. Rearranging (7.9) gives, rt = ρ− λ̇t/λt; the left-hand-side
of this equation is the market rate of return on saving while the right-hand-
side is the required rate of return (as in the previous chapter, by subtracting
the shadow price “inflation rate” from the required utility rate of return, ρ,
we get the required real rate of return). The household is willing to save the
marginal unit of income only if the actual return equals the required return.
The transversality condition (7.10) says that for t → ∞ the present

shadow value of per head financial wealth should go to zero. Combined
with (7.8), the condition is that

lim
t→∞

u0(ct)e
−(ρ−n)tat = 0 (7.11)

must hold along the optimal path. This requirement is not surprising if we
compare with the case where instead limt→∞ u0(ct)e

−(ρ−n)tat > 0. In this case
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there would be over-saving; U0 could be increased by ultimately consuming
more and saving less, that is, reducing the “ultimate” at. The opposite
case, limt→∞ u0(ct)e

−(ρ−n)tat < 0, will not even satisfy the NPG condition in
view of Proposition 2 of the previous chapter. In fact, from that proposition
we know that the transversality condition (7.11) is equivalent to the NPG
condition (7.7) being satisfied with strict equality, i.e.,

lim
t→∞

ate
− t

0 (rs−n)ds = 0. (7.12)

This implication will turn out to be very useful in the general equilibrium
analysis below.
Recall that the Maximum Principle gives only necessary conditions for

an optimal plan. But since the Hamiltonian is jointly concave in (a, c) for
every t, then the necessary conditions are also sufficient, by Mangasarian’s
sufficiency theorem.
Compared with the problem without growth in the size of the household

(from the previous chapter), rt has been replaced by rt − n in the dynamic
constraint, while ρ has been replaced by ρ− n both in the criterion function
and in the transversality condition. In this way the effect of n on consumption
behavior is neutralized and the Keynes-Ramsey rule implied by the model
ends up the same as if n = 0. Indeed, the first-order conditions (7.8) and
(7.9) again give

ċt
ct
=

1

θ(ct)
(rt − ρ), (7.13)

where
θ(ct) ≡ −

ct
u0(ct)

u00(ct) > 0. (7.14)

Here, θ(ct) is the (absolute) elasticity of marginal utility and indicates how
much the consumer wishes to smooth consumption over time. The inverse of
θ(ct) is the elasticity of intertemporal substitution in consumption. It mea-
sures the willingness to incur variation in consumption over time in response
to a change in the interest rate. These concepts have been discussed in more
detail in previous chapters.
In order that the model can accommodate Kaldor’s stylized facts (see

Chapter 3), it should be able to generate a balanced growth path. When
population grows at the same constant rate as the labor force, here n, bal-
anced growth will require that per capita output, per capita capital, and
per capita consumption grow at a constant rate. This will generally require
that the real interest rate is constant in the process. But (7.13) shows that
a constant per capita consumption growth rate, at the same time as r is
constant, is only possible if the elasticity of marginal utility does not vary
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284 CHAPTER 7. THE RAMSEY MODEL

with c. Hence, we will from now on assume that the right-hand-side of (7.14)
is a positive constant, θ. This amounts to assuming the instantaneous utility
function is a CRRA function:

u(c) =
c1−θ − 1
1− θ

, θ > 0. (7.15)

Recall, that the right-hand side can be interpreted as ln c when θ = 1. So our
Keynes-Ramsey rule simplifies to

ċt
ct
=
1

θ
(rt − ρ). (7.16)

By itself, the Keynes-Ramsey rule is only a rule for the optimal rate of
change of consumption. However, as we saw in Chapter 6, the chosen level of
consumption, c0, will be the highest feasible c0 which is compatible with both
the Keynes-Ramsey rule and the NPG condition. And for this reason the
choice will exactly comply with the transversality condition (7.12). Even if
an explicit specification of c0 is not actually necessary for the analysis of the
dynamics of the Ramsey model, we note that a simple extension of Example
1 of Chapter 6 to include the case n 6= 0 gives:3

c0 = β0(a0 + h0), where (7.17)

β0 =
1R ∞

0
e

t

0
( (1−θ)rτ−ρ

θ
+n)dτdt

, and

h0 =

Z ∞

0

wte
− t

0 (rτ−n)dτdt.

Thus, the entire expected future evolution of wages and interest rates
determines c0. It is also seen that β0, the marginal propensity to consume
out of wealth, is less, the greater is the rate of population growth n.4 The
explanation is that the effective utility discount rate, ρ−n, is less, the greater
is n. The propensity to save is greater the more mouths to feed in the future.
All in all, by the assumption that households maximize present discounted

utility, the Ramsey model endogenizes saving. The parametric saving-income
ratio, s, in the well-known Solow growth model, is replaced by two parame-
ters, the rate of impatience, ρ, and the rate of consumption smoothing, θ.
This adds perspectives to the analysis and implies that the saving-income
ratio will not generally be constant outside steady state.5 Replacing a me-
chanical saving rule by maximization of discounted utility, the model opens
up for studying welfare consequences of alternative economic policies.

3To get these results, in Example 1 of Chapter 6 replace r(τ) and ρ by r(τ) − n and
ρ− n, respectively.

4This also holds if θ = 1, since in that case β0 = ρ− n.
5Below, we return to a comparison with the Solow model.
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Firms

There is a large number of firms which maximize profits under perfect com-
petition. The firms have the same neoclassical CRS production function,

Y s
t = F (Kd

t , TtL
d
t ) (7.18)

where Y s
t is supply of output, K

d
t is capital input (machine-hours), and L

d
t is

labor input (labor hours), all measured per time unit, at time t. The super-
script d on the two inputs indicates that so far input is seen as “demanded
input”. The factor Tt represents the economy wide level of technology as of
time t and it is exogenous to the firm. Technical progress implies growth in
Tt over time,

Tt = T0e
gt, (7.19)

where T0 (> 0) and g (≥ 0) are given constants. Thus, the economy is
assumed to feature Harrod-neutral technical progress at an exogenous rate,
g, as is needed for compliance with Kaldor’s stylized facts.
The profit corresponding to the factor demands is Πt = F (Kd

t , TtL
d
t ) −

r̂tK
d
t − wLd

t . Necessary and sufficient conditions for the factor combination
(Kd

t , L
d
t ), where K

d
t > 0 and Ld

t > 0, to maximize profits are

∂Πt

∂Kt
= F1(K

d
t , TtL

d
t )− r̂t = 0, (7.20)

∂Πt

∂Lt
= F2(K

d
t , TtL

d
t )Tt − wt = 0, (7.21)

7.3 General equilibrium

We now consider the economy as a whole and thereby the interaction between
households and firms in the various markets. For simplicity, we assume that
the number of households is the same as the number of firms. We normalize
this number to one so that F is from now on interpreted as the aggregate
production function and Ct as aggregate consumption.

Factor markets

In the short term, that is, for fixed t, the available quantities of labor, L,
and real capital, K, are predetermined. Indeed, both the size of population
and the total capital stock are at any point in time historically determined.
Markets are assumed to clear at all points in time, that is,

Kd
t = Kt, and Ld

t = Lt, (7.22)
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for all t ≥ 0. It is the interest rate and the wage rate which adjust (immedi-
ately) so that this is achieved. Given (7.22), the supply of output becomes
actual output:

Yt = F (Kt, TtLt) = TtLtF (k̃t, 1) ≡ TtLtf(k̃t), where f 0 > 0, f 00 < 0,
(7.23)

and k̃t ≡ Kt/(TtLt), and where we have used the assumption of constant
returns to scale to introduce the production function on intensive form, f .
By substitution of (7.22) into (7.20) and (7.21), we find the equilibrium

factor prices:

r̂t = rt + δ = F1(Kt, TtLt) =
∂(TtLtf(k̃t))

∂Kt
= f 0(k̃t), (7.24)

wt = F2(Kt, TtLt)Tt =
∂(TtLtf(k̃t))

∂(TtLt)
Tt =

h
f(k̃t)− k̃tf

0(k̃t)
i
Tt (7.25)

= w̃(k̃t)Tt,

where w̃(k̃t) ≡ f(k̃t)− k̃tf
0(k̃t). In (7.24) we have inserted the no-arbitrage

condition (7.1). In that k̃ at any point in time is predetermined, (7.24)
and (7.25) give the equilibrium factor prices as determined by the respective
marginal productivities of the factors of production under full utilization of
the given factor supplies.

Capital accumulation

From national income and product accounting for a closed economy we have

K̇ = Y − C − δK, (7.26)

where we leave out the explicit dating when not needed for clarity. Let us
check whether we get the same result from the wealth accumulation equation
of the household. Because real capital is the only asset in the economy, the
real value of financial wealth, A, at time t equals the total quantity of real
capital, K, at time t.6 From (7.4) we thus have

K̇ = rK + wL− cL

= (f 0(k̃)− δ)K + (f(k̃)− k̃f 0(k̃))TL− cL (from (7.24) and (7.25))

= f(k̃)TL− δK − C (by rearranging and use of cL = C)

= F (K,TL)− δK − C = Y − C − δK.

6Whatever financial claims on each other the households might have, they net out for
the household sector as a whole.
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Hence, the book-keeping is in order (the national income account is consistent
with the national product account).
We now face a fundamental difference as compared with models such as

the Diamond OLG model, namely that current consumption cannot be de-
termined independently of the expected long-term evolution. This is because
consumption and saving, as we saw in Section 7.2, depend on the expecta-
tions of the entire future evolution of wages and interest rates. And given
the presumption of rational expectations, the households’ expectations are
identical to the prediction that can be calculated from the model. In this
way, there is interdependence between the expectations and the level and
evolution of consumption. We can thus determine the level of consumption
only in the context of the overall dynamic analysis. In fact, the economic
agents are in some sense in the same situation as the outside analyst. They,
too, have to think through the entire dynamics of the economy in order to
form their rational expectations.

The dynamic system

To obtain a concise picture of the dynamics, we now show that the model can
be reduced to two coupled differential equations in capital and consumption
per unit of effective labor. Thus, the key dynamic variables are k̃ ≡ K/(TL)
and c̃ ≡ C/(TL) ≡ c/T . Using the rule for the growth rate of a fraction, we
get

·
k̃

k̃
=

K̇

K
− Ṫ

T
− L̇

L
=

K̇

K
− (g + n) (from (7.2) and (7.19))

=
F (K,TL)− C − δK

K
− (g + n) (from (7.26))

=
f(k̃)− c̃

k̃
− (δ + g + n) (from (7.23)).

The differential equation for c̃ is obtained in a similar way:
·
c̃

c̃
=

ċ

c
− Ṫ

T
=
1

θ
(rt − ρ)− g (from the Keynes-Ramsey rule)

=
1

θ

h
f 0(k̃)− δ − ρ− θg

i
(from (7.24)).

Thus, we end up with the dynamic system
·
k̃ = f(k̃)− c̃− (δ + g + n)k̃, (7.27)
·
c̃ =

1

θ

h
f 0(k̃)− δ − ρ− θg

i
c̃. (7.28)
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The lower panel of Fig. 7.1 shows the phase diagram of the system. The

curve OEB represents the points where
·
k̃ = 0; from (7.27) we see that

·
k̃ = 0 for c̃ = f(k̃)− (δ + g + n)k̃ ≡ c̃(k̃). (7.29)

The upper panel of Fig. 7.1 illustrates how these values c̃(k̃) arise as the
vertical distance between the curve ỹ = f(k̃) and the line ỹ = (δ + g + n)k̃
(to save space the proportions are distorted).7 The maximum value of c̃(k̃) is
reached at the point where the tangent to the OEB curve in the lower panel
is horizontal, i.e., where c̃0(k̃) = f 0(k̃) − (δ + g + n) = 0. By definition, the
value of k̃ which satisfies this is the golden rule capital intensity, k̃GR, and so

f 0(k̃GR)− δ = g + n. (7.30)

From (7.27) we see that for points above the
·
k̃ = 0 locus we have

·
k̃ < 0,

whereas for points below the
·
k̃ = 0 locus,

·
k̃ > 0. The horizontal arrows in

the figure indicate these directions of movement.
From (7.28) we see that

·
c̃ = 0 for f 0(k̃) = δ + ρ+ θg or c̃ = 0. (7.31)

Let k̃∗ > 0 satisfy the equation f 0(k̃∗) = δ + ρ + θg. Then the vertical line

k̃ = k̃∗ represents points where
·
c̃ = 0 (and so does the horizontal half-line

c̃ = 0, k̃ ≥ 0). For points to the left of the k̃ = k̃∗ line we have, according to

(7.28),
·
c̃ > 0 and for points to the right of the k̃ = k̃∗ line we have

·
c̃ < 0.

The vertical arrows indicate these directions of movement.

Steady state

The point E has coordinates (k̃∗, c̃∗) and represents the unique steady state.8

From (7.31) and (7.29) follows that

f 0(k̃∗) = δ + ρ+ θg, and (7.32)

c̃∗ = f(k̃∗)− (δ + g + n)k̃∗. (7.33)

7As the graph is drawn, f(0) = 0, i.e., capital is assumed essential. But none of the
conclusions we are going to consider depends on this.

8We note that (7.31) shows that if c̃t = 0, then
·
c̃ = 0. Therefore, point B in Fig. 7.1

is also mathematically a stationary point of the dynamic system. And if f(0) = 0, then,
according to (7.29), the point O in Fig. 7.1 is also a stationary point. But these stationary
points have zero consumption forever and are therefore not steady states of any economic
system.
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From (7.32) it can be seen that the real interest rate in steady state is

r∗ = f 0(k̃∗)− δ = ρ+ θg. (7.34)

The capital intensity satisfying this equation is known as the modified golden
rule capital intensity, k̃MGR. The modified golden rule is the rule saying that
for a representative agent economy to be in steady state, the capital intensity
must be such that the net marginal product of capital equals the required
rate of return, taking into account the pure rate of time preference, ρ, and
the desire for consumption smoothing, measured by θ. Note that the ρ of
the Ramsey model corresponds to the intergenerational discount rate R of
the Barro model, cf. Chapter 5.9

We show below that the steady state is (conditionally) asymptotically
stable. But first we have to make sure that the steady state exists and that
it is consistent with general equilibrium. The latter requires that it satisfies
the household’s transversality condition (7.12). Using at = Kt/Lt ≡ k̃tTt
= k̃tT0e

gt and rt = f 0(k̃t)− δ, we get

lim
t→∞

k̃te
− t

0(f 0(k̃s)−δ−g−n)ds = 0. (7.35)

In steady state k̃t = k̃∗ and f 0(k̃t) − δ = ρ + θg for all t and the condition
becomes

lim
t→∞

k̃∗e−(ρ+θg−g−n)t = 0.

This is fulfilled if and only if ρ+ θg > g + n, that is,

ρ− n > (1− θ)g. (*)

This condition ensures that U0 is bounded in the steady state (see Appendix
B). If θ ≥ 1, the condition is fulfilled as soon as the effective utility discount
rate, ρ−n, is positive. But if θ < 1, the condition requires a sufficiently large
effective discount rate.
Since the parameter restriction (*) implies ρ + θg > g + n, it implies

that the steady-state interest rate r∗, cf. (7.34), is higher than the “natural”
growth rate, g + n. If this did not hold, we see from (7.12) directly that
the transversality condition would fail in the steady state. Indeed, along the
steady state path we would have

ate
−r∗t = a0e

(g+n)te−r
∗t = k0e

(g+n−r∗)t,

9Indeed, in Barro’s model we have 1 + r∗ = (1 + R)(1 + g)θ, which, by taking logs
on both sides and using first-order Taylor approximations around 1 gives r∗ ≈ ln(1 + r∗)
= ln(1 +R) + θ ln(1 + g) ≈ R+ θg.
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Figure 7.1: Phase portrait of the Ramsey model.

which would take the value k0 > 0 for all t ≥ 0 if r∗ = g+n and would go to∞
for t→∞ if r∗ < g+n. The individual households would be over-saving and
each of them would therefore alter their behavior and the steady state could
thus not be an equilibrium path. Another way of seeing that r∗ ≤ g+ n can
never be an equilibrium in a Ramsey model is to recognize that this condition
would make the household’s human wealth infinite because wage income, wL,
would grow at a rate, g+n, at least as high as the real interest rate, r∗. But
this would motivate an immediate increase in consumption today and so the
considered steady-state path would again not be an equilibrium.

Thus, to have a model of interest, from now on we assume that the
parameters satisfy the inequality (*). An implication is that the capital
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intensity in steady state, k̃∗, is less than the golden rule value k̃GR. Indeed,
f 0(k̃∗) − δ = ρ + θg > g + n = f 0(k̃GR) − δ, so that k̃∗ < k̃GR, in view of
f 00 < 0.
So far we have only ensured that if the steady state, E, exists, it is con-

sistent with equilibrium. Existence of a steady state − and of the golden
rule capital intensity − requires that the marginal productivity of capital is
sufficiently sensitive to variation in the capital intensity. We therefore assume

lim
k̃→0

f 0(k̃) > δ + ρ+ θg > δ + g + n > lim
k̃→∞

f 0(k̃). (A1)

The inequality in the middle is already presumed in view of (*). The addition
of the other two inequalities ensures the existence of both k̃∗ > 0 and k̃GR >
0.10 Because f 0(k̃) > 0 for all k̃ > 0, it is implicit in (A1) that δ+ g+ n > 0.
Even without deciding on the sign of n (a decreasing workforce cannot be
excluded in our days), this seems like a plausible presumption.

Trajectories in the phase diagram

A first condition for a path (k̃t, c̃t), with k̃t > 0 and c̃t > 0 for all t ≥ 0, to be
a solution to the model is that it satisfies the system of differential equations
(7.27)-(7.28). Indeed, it must satisfy (7.27) to be technically feasible and
it must satisfy (7.28) to comply with the Keynes-Ramsey rule. Technical
feasibility of the path also requires that its initial value for k̃ equals the
historically given (pre-determined) value k̃0 ≡ K0/(T0L0). In contrast, for c̃
we have no exogenously given initial value. This is because c̃0 is a so-called
jump variable or forward-looking variable, by which is meant an endogenous
variable which can immediately shift to another value when expectations
about the future change. We shall see that the terminal condition (7.35),
reflecting the transversality condition of the households, makes up for this
lack of an initial condition.
In Fig. 7.1, we have drawn some possible paths that could be solutions

as t increases. We are especially interested in the paths which start out at
the historically given k̃0, that is, start out at some point on the stippled
vertical line in the figure. If the economy starts out with a high value of c̃,
it will follow a curve like II in the figure. The low level of saving implies
that the capital stock goes to zero in finite time (see Appendix C). If the
economy starts out with a low level of c̃, it will follow a curve like III in the
figure. The high level of saving implies that the capital intensity converges

to
_

k̃ which is defined by the condition f(
_

k̃) = (δ+g+n)
_

k̃. Such a
_

k̃ exists in

10The often presumed Inada conditions, limk̃→0 f
0(k̃) = ∞ and limk̃→∞ f 0(k̃) = 0, are

stricter than (A1) and not necessary here.
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view of (A1) and is higher than the golden rule value k̃GR.11 This suggests
that there exists an initial level of consumption somewhere in between, which
gives a path like I. Indeed, since the curve II emerged with a high c̃0, then
by lowering this c̃0 slightly, a path will emerge in which the maximal value

of k̃ on the
·
k̃ = 0 locus is greater than curve II’s maximal k̃ value.12 We

continue lowering c̃0 until the path’s maximal k̃ value is exactly equal to k̃∗.
The path which emerges from this, namely the path I, starting at the point
A, is special in that it converges towards the steady-state point E. No other
path starting at the stippled line, k̃ = k̃0, has this property. Those starting
above A did not, as we just saw. Consider a path starting below A, like path
III. Either this path never reaches the consumption level c̃A and then it can
not converge to E, of course. Or, after a while its consumption level reaches
c̃A, but at the same time it has k̃ > k̃0. From then on, as long as k̃ ≤ k̃∗,
for every value of c̃ path III has in common with path I, path III has a

higher
·
k̃ and a lower

·
c̃ than path I (use (7.27) and (7.28)). Hence, path III

diverges from point E.

Equivalently, had we considered values of k̃0 > k̃∗, there would also be a
unique value of c̃0 such that the path starting from (k̃0, c̃0) would converge
to E (see path IV in Fig. 7.1). All other values of c̃0 would give paths that
diverge from E.

The point E is a saddle point. By this is meant a steady-state point
with the following property: there exists exactly two paths, one from each
side of k̃∗, that converge towards the steady-state point; all other paths (in
a neighborhood of the steady state) move away from the steady state and
asymptotically approach one of the two diverging paths through E. The two
converging paths together make up the so-called stable arm; on their own
they are referred to as saddle paths.13 The two diverging paths (along the
dotted North-West and South-East curve in Fig. 7.1) together make up the
unstable arm.

11The latter is seen graphically. More precisely, it follows from f 0(k̃GR) = δ + n+ g ≡
f(
_

k̃)/
_

k̃ > f 0(
_

k̃), where the inequality is due to f 00 < 0 and f(0) ≥ 0.
12As an implication of the uniqueness theorem for differential equations, two solution

paths in the phase plan cannot intersect.
13A more precise definition of a saddle point, in terms of eigenvalues, is given in Appendix

A. There it is also shown that if limk̃→0f(k̃) = 0, then the saddle path on the left side of
the steady state in Fig. 7.1 will start out infinitely close to the origin.
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The equilibrium path

A solution to the model is a path which is technically feasible and in addition
satisfies certain equilibrium properties. In analogy with the definition in
discrete time (see Chapter 3) a path (k̃t, c̃t)∞t=0 is called a technically feasible
path if (i) the path has k̃t ≥ 0 and c̃t ≥ 0 for all t ≥ 0; (ii) it satisfies
the accounting equation (7.27); and (iii) it starts out, at t = 0, with the
historically given initial capital intensity. An equilibrium path with perfect
foresight is then a technically feasible path (k̃t, c̃t)∞t=0 with the properties
that the path (a) is consistent with the households’ optimization given their
expectations; (b) is consistent with market clearing for all t ≥ 0; and (c)
has the property that the evolution over time of the pair (wt, rt), where
wt = w̃(k̃t)Tt and rt = f 0(k̃t) − δ, is as expected by the households. The
condition (a) in this definition requires the transformed Keynes-Ramsey rule
(7.28) and the transversality condition (7.35) to hold for all t ≥ 0.
Consider the case where 0 < k̃0 < k̃∗, as illustrated in Fig. 7.1. Then, the

path starting at point A and following the saddle path towards the steady
state is an equilibrium path because, by construction, it is technically feasible
and it has the required properties, (a), (b), and (c). More intuitively: if
the households expect an evolution of wt and rt corresponding to this path
(that is, expect a corresponding underlying movement of k̃t, which we know
unambiguously determines rt and wt), then these expectations will induce
a behavior the aggregate result of which is an actual path for (k̃t, c̃t) that
confirms the expectations. And along this path the households find no reason
to correct their behavior because the path allows both the Keynes-Ramsey
rule and the transversality condition of the households to be satisfied.
No other path than the saddle path can be an equilibrium. This is be-

cause no other path is compatible with the households’ individual utility
maximization under perfect foresight. An initial point above point A can
be excluded in that the implied path, II, does not satisfy the household’s
NPG condition (and, consequently, not at all the transversality condition).14

Indeed, if the individual household expected an evolution of rt and wt corre-
sponding to path II, then the household would immediately choose a lower
level of consumption, that is, the household would deviate in order not to
suffer the same fate as Ponzi (cf. Chapter 6). But so would all other house-
holds react. Thus, path II would not be realized and the expectation that
it would can not be a rational expectation.
Likewise, an initial point below point A can be ruled out because the

implied path, III, does not satisfy the household’s transversality condition
but implies over-saving. Indeed, at some point in the future, say at time t1,

14A formal proof is given in Appendix C.
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the economy’s capital intensity would pass the golden rule value so that for
all t > t1, rt < g + n. But with a rate of interest below the growth rate of
wage income of the household, the present value of human wealth is infinite.
This motivates a higher consumption than that along the path. Thus, if the
household expects an evolution of rt and wt corresponding to path III, then
the household will immediately deviate and choose a higher initial level of
consumption. But so will all other households react; and the expectation
that the economy will follow path III, will consequently not be rational.
We have presumed 0 < k̃0 < k̃∗. If instead k̃0 > k̃∗, the economy would

move along the saddle path from above. Paths like V and V I in Fig. 7.1 can
be ruled out because they violate the NPG condition and the transversality
condition, respectively. With this we have shown:

PROPOSITION 1 Assume (A1). Let there be a given k̃0 > 0. Then the
Ramsey model exhibits a unique equilibrium path, characterized by (k̃t, c̃t)
converging, for t→∞, towards a unique steady state with capital intensity k̃∗
satisfying f 0(k̃∗)−δ = ρ+θg. The steady state has a per capita consumption
of c̃∗ = f(k̃∗)−(δ+g+n)k̃∗, real wage of w∗t = w̃(k̃∗)T0e

gt, and a real interest
rate of r∗ = ρ+ θg.

A numerical example, based on 1 year as our time unit: θ = 2, g = 0.02,
n = 0.01 and ρ = 0.01. Then, r∗ = 0.05 > 0.03 = g + n.
Note that output per capita, yt ≡ Yt/Lt ≡ ỹtTt, tends to grow at the rate

of technical progress, g :

ẏt
yt
≡

·
ỹt
ỹt
+

Ṫt
Tt
=

f 0(k̃t)
·
k̃t

f(k̃t)
+ g → g for t→∞,

in view of
·
k̃t → 0. Likewise, consumption per capita, ct ≡ c̃tTt, has the

growth rate ċt/ct =
·
c̃t/c̃t + g → g for t→∞; similarly for the real wage wt

= w̃(k̃t)Tt.

The concept of saddle-point stability

The steady state of the model is thus globally asymptotically stable for ar-
bitrary initial values of the capital intensity (our diagram only verifies local
asymptotic stability, but the extension to global asymptotic stability is ver-
ified in Appendix A). If k̃ is hit by a technology shock (corresponding to a
shift in k̃0), the economy will converge toward the same unique steady state
as before. At first glance this might seem peculiar considering that the steady
state is a saddle point. Such a steady state is unstable for arbitrary initial
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values of both variables, k̃ and c̃. But the crux of the matter is that only the
initial k̃ is arbitrary, not the initial c̃. Indeed, the jump variable c̃0 immedi-
ately adjusts to the given circumstances. As shown, it adjusts such that the
household’s transversality condition under perfect foresight is satisfied. This
ensures that the economy is initially on the saddle path, cf. the point A in
Fig. 7.1. In the language of differential equations, conditional asymptotic
stability is present. The condition that ensures the stability in our case is
the transversality condition.
We shall follow the common terminology in macroeconomics and call

a steady state of a two-dimensional dynamic system (locally) saddle-point
stable if:

1. the steady state is a saddle point;

2. there is one predetermined variable and one jump variable; and

3. the saddle path is not parallel to the jump variable axis.

Thus, to establish saddle-point stability, all three properties must be ver-
ified. If for instance point 1 and 2 hold but, contrary to point 3, the saddle
path is parallel to the jump variable axis, then saddle-point stability does
not exist. Indeed, given that the predetermined variable initially deviated
from its steady-state value, it would not be possible to find any initial value
of the jump variable such that the solution of the system would converge to
the steady state for t→∞
In the present case, we have already verified point 1 and 2. And since the

phase diagram shows that the saddle path is not vertical, also point 3 holds.
Thus, the Ramsey model is saddle-point stable. In Appendix A it is shown
that the positively-sloped saddle path in Fig. 7.1 ranges over all k̃ > 0 (there
is nowhere a vertical asymptote to the saddle path). Hence, the steady state
is globally saddle point stable. All in all, these characteristics of the Ramsey
model are analogue to those of the Barro model in discrete time when the
bequest motive is operative.

7.4 Comparative dynamics

The role of the key parameters

A striking conclusion is that the real interest rate in the long run is in a sim-
ple way determined by the rate of time preference, the elasticity of marginal
utility, and the rate of technical progress. A higher ρ, i.e., more impatience
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and thereby less willingness to defer consumption, implies less capital ac-
cumulation and thus smaller capital intensity and in the long run a higher
interest rate and lower consumption than otherwise. The long-run growth
rate is unaffected. A higher desire of consumption smoothing, θ, will have
the same effect in that it implies that a larger part of the greater consump-
tion opportunities in the future, as brought about by technical progress, will
be consumed immediately. The long-run interest rate depends positively
on the growth rate of labor productivity, g, because the higher this is, the
higher is the rate of return needed to induce the saving required to maintain
a steady state and to overcome the desire of consumption smoothing. The
long-run interest rate is independent of the particular form of the aggregate
production function, f . This function matters for what capital intensity and
what consumption per capita are compatible with the long-run interest rate.
This kind of results are specific to representative agent models. This is be-
cause only in these models will the Keynes-Ramsey rule hold not only for
the individual household, but also at the aggregate level.
Unlike the Solow growth model, the Ramsey model provides a theory of

the evolution and long-run level of the rate of saving. The endogenous gross
saving rate of the economy is

st ≡
Yt − Ct

Yt
=

K̇t + δKt

Yt
=

K̇t/Kt + δ

Yt/Kt
=

·
k̃t/k̃t + g + n+ δ

f(k̃t)/k̃t

→ g + n+ δ

f(k̃∗)/k̃∗
≡ s∗ for t→∞. (7.36)

By determining the path of k̃t, the Ramsey model determines how st moves
over time and adjusts to its constant long-run level. Indeed, since for any
given k̃ > 0, the equilibrium value of c̃t is uniquely determined by the re-
quirement that the economy must be on the saddle path. Since this defines
c̃t as a function, c̃(k̃t), of k̃t, there is a corresponding function for the saving
rate in that st = 1− c̃(k̃t)/f(k̃t) ≡ s(k̃t); so s(k̃∗) = s∗.
To see an example of how the long-run saving rate depends on basic

parameters, let us consider the case where the production function is Cobb-
Douglas:

ỹ = f(k̃) = Ak̃α, A > 0, 0 < α < 1. (7.37)

Then f 0(k̃) = Aαk̃α−1 = αf(k̃)/k̃. In steady state we get, by use of the
steady-state result (7.32),

f(k̃∗)

k̃∗
=
1

α
f 0(k̃∗) =

δ + ρ+ θg

α
.
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Substitution in (7.36) gives

s∗ = α
δ + g + n

δ + ρ+ θg
. (7.38)

Given our parameter restriction (A1), we have ρ + θg > g + n, from which
follows s∗ < α.
We note that the long-run saving rate is a decreasing function of the

rate of impatience, ρ, and the desire of consumption smoothing, θ; it is an
increasing function of the capital depreciation rate, δ, the rate of population
growth, n, and the elasticity of production wrt. to capital, α.15 It can be
shown (see Appendix D) that if, by coincidence, θ = 1/s∗, then s0(k̃) = 0,
that is, the saving rate st is also outside of steady state equal to s∗. In view
of (7.38), the condition θ = 1/s∗ is equivalent to the “knife-edge” condition θ
= (δ+ρ)/ [α(δ + g + n)− g] ≡ θ̄. More generally, assuming α(δ+ g+n) > g
(which seems likely empirically), we have that if θ Q 1/s∗ (i.e., θ Q θ̄), then
s0(k̃) Q 0, respectively (and if instead α(δ + g + n) ≤ g, then s0(k̃) < 0,
unconditionally).16 Data presented in Barro and Sala-i-Martin (2004, p. 15)
indicate no trend for the US saving rate, but a positive trend for several
other developed countries since 1870. One interpretation is that whereas the
US has been close to its steady state, the other countries are still in the
adjustment process toward the steady state. As an example, consider the
parameter values δ = 0.05, ρ = 0.02, g = 0.02 and n = 0.01. In this case
we get θ̄ = 10 if α = 0.33; given θ < 10, these other countries should then
have s0(k̃) < 0 which, according to the model, is compatible with a rising
saving rate over time only if these countries are approaching their steady
state from above (i.e., they should have k̃0 > k̃∗). It may be argued that α
should also reflect the role of education and R&D in production and thus be
higher; with α = 0.75 we get θ̄ = 1.75. Then, if θ > 1.75, these countries
would have s0(k̃) > 0 and thus approach their steady state from below (i.e.,
k̃0 < k̃∗).17

Solow’s growth model as a special case

The above results give a hint that Solow’s growth model, with a given con-
stant saving rate s ∈ (0, 1) and given δ, g, and n (with δ +g + n > 0), can,
15Partial differentiation wrt. g yields ∂s∗/∂g = α [ρ− θn− (θ − 1)δ] /(δ+ρ+ θg)2, the

sign of which cannot be determined in general.
16See Appendix D.
17Cho and Graham (1996) consider the empirical question whether countries tend to be

above or below their steady state. They find that on average, countries with a relatively
low income per adult are above their steady state and countries with a higher income are
below.
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under certain circumstances, be interpreted as a special case of the Ramsey
model. The Solow model is given by

·
k̃t = sf(k̃t)− (δ + g + n)k̃t.

The constant saving rate implies proportionality between consumption and
income which, in growth-corrected terms, per capita consumption is

c̃t = (1− s)f(k̃t).

For the Ramsey model to yield this, the production function must be like in
(7.37) (i.e., Cobb-Douglas) with α > s. And the elasticity of marginal utility,
θ, must satisfy θ = 1/s. Finally, the rate of time preference, ρ, must be such
that (7.38) holds with s∗ replaced by s, which implies ρ = α(δ+ g+n)/s −δ
−θg. It remains to show that this ρ satisfies the inequality, ρ−n > (1− θ)g,
which is necessary for existence of an equilibrium in the Ramsey model. Since
α/s > 1, the chosen ρ satisfies ρ > δ+g+n −δ −θg = n+(1−θ)g, which was
to be proved. Thus, in this case the Ramsey model generates an equilibrium
which implies a time path identical to that generated by the Solow model
with s = 1/θ.18

With this foundation of the Solow model, it will always hold that s =
s∗ < sGR, where sGR is the golden rule saving rate. Indeed, from (7.36) and
(7.30), respectively,

sGR =
(δ + g + n)k̃GR

f(k̃GR)
=

f 0(k̃GR)k̃GR

f(k̃GR)
= α > s∗,

from the Cobb-Douglas specification and (7.38), respectively.

7.5 A social planner’s problem

Another implication of the Ramsey setup is that the decentralized market
equilibrium (within the idealized presumptions of the model) brings about the
same allocation of resources as would a social planner with the same criterion
function as the representative household. As in Chapter 5, by a social planner
we mean a central authority who is ”all-knowing and all-powerful”. The
social planner is not constrained by other limitations than those deriving
from technology and initial resources and can thus fully decide on the resource
allocation within these confines.
18A more elaborate account of the Solow model as a special case of the Ramsey model

is given in Appendix D.
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Let the economy be closed and let the social planner have a social welfare
function which is time separable with constant elasticity, θ̂, of marginal utility
and a pure rate of time preference ρ̂. Then the social planner’s optimization
problem is

max
(ct)∞t=0

W0 =

Z ∞

0

c1−θ̂t − 1
1− θ̂

e−(ρ̂−n)tdt s.t. (7.39)

ct ≥ 0, (7.40)
·
k̃t = f(k̃t)−

ct
Tt
− (δ + g + n)k̃t, (7.41)

k̃t ≥ 0 for all t ≥ 0. (7.42)

We assume θ̂ > 0 and ρ̂ − n > (1 − θ̂)g. In case θ̂ = 1, the expression
(c1−θ̂t − 1) /(1 − θ̂) should be interpreted as ln ct. The dynamic constraint
(7.41) essentially reflects the national product account. Because the economy
is closed, the social planner does not have the opportunity of borrowing or
lending from abroad and hence there is no solvency requirement. Instead
we just impose the definitional constraint (7.42) of non-negativity of the
state variable k̃. The problem is the continuous time analogue of the social
planner’s problem in discrete time in Section 5.4. Note, however, a minor
conceptual difference, namely that in continuous time there is in the short
run no upper bound on the flow variable ct, that is, no bound like ct ≤
Tt
h
f(k̃t)− (δ + g + n)k̃t

i
. A consumption intensity ct which is higher than

the right-hand side of this inequality, will just be reflected in a negative value

of the flow variable
·
k̃t.

19

To solve the problem we use the Maximum Principle. The current-value
Hamiltonian is

H(k̃, c, λ, t) =
c1−θ̂ − 1
1− θ̂

+ λ
h
f(k̃)− c

T
− (δ + g + n)k̃

i
,

where λ is the adjoint variable associated with the dynamic constraint (7.41).
An interior optimal path (k̃t, ct)∞t=0 will satisfy that there exists a continuous

19As usual, we presume that capital can be “eaten”. That is, we consider the capital
good to be instantaneously convertible to a consumption good. Otherwise there would
be at any time an upper bound on c, namely c ≤ Tf(k̃), saying that the per capita
consumption flow cannot exceed the per capita output flow. The role of such constraints
is discussed in Feichtinger and Hartl (1986).
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function λ = λ(t) such that, for all t ≥ 0,

∂H

∂c
= c−θ̂ − λ

T
= 0, i.e., c−θ̂ =

λ

T
, and (7.43)

∂H

∂k̃
= λ(f 0(k̃)− δ − g − n) = (ρ̂− n)λ− λ̇ (7.44)

hold along the path and the transversality condition,

lim
t→∞

k̃tλte
−(ρ̂−n)t = 0, (7.45)

is satisfied.20

The condition (7.43) can be seen as aMC =MB condition and illustrates
that λt is the shadow price, measured in terms of current utility, of k̃t along
the optimal path.21 The differential equation (7.44) tells us how this shadow
price evolves over time. The transversality condition, (8.47), together with
(7.43), entails the condition

lim
t→∞

k̃tc
−θ̂
t egte−(ρ̂−n)t = 0,

where the unimportant factor T0 has been eliminated. Imagine the opposite
were true, namely that limt→∞ k̃tc

−θ̂
t e[g−(ρ̂−n)]t > 0. Then, intuitively U0

could be increased by reducing the long-run value of k̃t, i.e., consume more
and save less.
By taking logs in (7.43) and differentiating wrt. t, we get−θ̂ċ/c = λ̇/λ−g.

Inserting (7.44) and rearranging gives the condition

ċ

c
=
1

θ̂
(g − λ̇

λ
) =

1

θ̂
(f 0(k̃)− δ − ρ̂). (7.46)

This is the social planner’s Keynes-Ramsey rule. If the rate of time prefer-
ence, ρ̂, is lower than the net marginal product of capital, f 0(k̃)−δ, the social
planner will let per capita consumption be relatively low in the beginning in
order to enjoy greater per capita consumption later. The lower the impa-
tience relative to the return on capital accumulation, the more favorable it
becomes to defer consumption.
Because c̃ ≡ c/T, we get from (8.48) qualitatively the same differential

equation for c̃ as we obtained in the decentralized market economy. And

20Although the infinite-horizon Maximum principle itself does not guarantee validity of
such a straightforward extension of a necessary transversality condition from finite horizon
to infinite horizon, this extension is valid for the present problem, cf. Appendix E.
21Decreasing ct by one unit, increases k̃t by 1/Tt units, each of which are worth λt to

the social planner.
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the dynamic resource constraint (7.41) is of course the same as that of the
decentralized market economy. Thus, the dynamics are in principle unaltered
and the phase diagram in Fig. 7.1 is still valid. The solution of the social
planner implies that the economy will move along the saddle path towards
the steady state. This trajectory, path I in the diagram, satisfies both the
first-order conditions and the transversality condition. However, paths such
as III in the figure do not satisfy the transversality condition of the social
planner but imply permanent over-saving. And paths such as II in the
figure will experience a sudden end when all the capital has been used up;
they cannot be optimal. Appendix E provides a more rigorous argument for
this, namely that the Hamiltonian is strictly concave in (k̃, c̃). Thence, not
only is the saddle path an optimal solution, it is the only optimal solution.
Comparing with the market solution of the previous section, we have

established:

PROPOSITION 2 (equivalence theorem) Assume (A1) holds with θ and ρ
replaced by θ̂ and ρ̂, respectively. Let there be a given k̃0 > 0. Then the
perfectly competitive market economy, without externalities, brings about
the same resource allocation as that brought about by a social planner with
the same criterion function as the representative household, i.e., with θ̂ = θ
and ρ̂ = ρ.

This is a continuous time analogue to the discrete time equivalence theorem
of Chapter 5.
The capital intensity k̃ in the social planner’s solution will not converge

towards the golden rule level, k̃GR, but towards a level whose distance to the
golden rule level depends on how much ρ̂ + θ̂g exceeds the natural growth
rate, g + n. Even if society would be able to consume more in the long term
if it aimed for the golden rule level, this would not compensate for the re-
duction in current consumption which would be necessary to achieve it. This
consumption is relatively more valuable, the greater is the social planner’s
effective rate of time preference, ρ̂−n. In line with the market economy, the
social planner’s solution ends up in a modified golden rule. In the long term,
net marginal productivity of capital is determined by preference parameters
and productivity growth and equals ρ̂+ θ̂g > g+ n. Hereafter, given the net
marginal productivity of capital, the capital intensity and the level of the
consumption path is determined by the production function.

Average utilitarianism

In the above analysis, the social planner maximizes the sum of discounted per
capita utilities weighted by generation size; this is called discounted classical
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utilitarianism. As an implication, the effective utility discount rate, ρ − n,
varies negatively (one to one) with the population growth rate. Since this
corresponds to how the per capita rate of return on saving, r−n, is “diluted”
by population growth, the net marginal product of capital in steady state
becomes independent of n, namely equal to ρ̂+ θ̂g.
An alternative to discounted classical utilitarianism is to maximize dis-

counted per capita utility which is called discounted average utilitarianism.
Here the social planner maximizes the sum of discounted per capita utilities
without weighing by generation size. Then the effective utility discount rate
is independent of the population growth rate, n. With ρ̂ still denoting the
pure rate of time preference, the criterion function becomes

W0 =

Z ∞

0

ct
1−θ̂ − 1
1− θ̂

e−ρ̂tdt.

The social planner’s solution then converges towards a steady state with the
net marginal product of capital

f 0(k̃∗)− δ = ρ̂+ n+ θ̂g. (7.47)

Here, an increase in n will increase the long-run net marginal product of
capital, everything else equal.
The representative Ramsey household in an economy where the market

mechanism rules may of course also have a criterion function in line with
discounted average utilitarianism, that is, U0 =

R∞
0

u(ct)e
−ρtdt. Then, the

interest rate in the economy will in the long run be r∗ = ρ+ n + θg and so
an increase in n will increase r∗.

Ramsey’s zero discount rate and the overtaking criterion

It was mostly the perspective of a social planner, rather than the market
mechanism, which was at the center of Ramsey’s own analysis. Ramsey
maintained that the social planner should “not discount later enjoyments in
comparison with earlier ones, a practice which is ethically indefensible and
arises merely from the weakness of the imagination” (Ramsey 1928). Ramsey
also assumed g = n = 0. Given the instantaneous utility function u, with
u0 > 0, u00 < 0, and given ρ = 0, Ramsey’s problem was:

max
(ct)∞t=0

W0 =

Z ∞

0

u(ct)dt s.t.

ct ≥ 0,

k̇t = f(kt)− ct − δkt,

kt ≥ 0 for all t ≥ 0.
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Since the improper integral W0 will generally not be bounded in this
case, Ramsey could not use maximization of W0 as an optimality criterion.
Instead he used a criterion akin to the overtaking criterion we considered in
the last part of Chapter 5. We only have to reformulate this criterion in a
continuous time setting. Let (ct)∞t=0 be the consumption path associated with
an arbitrary technically feasible path and let (ĉt) be the consumption path
associated with our candidate as an optimal path, that is, the path we wish
to test for optimality. Define

DT ≡
Z T

0

u(ĉt)dt−
Z T

0

u(ct)dt. (7.48)

Then the feasible path (ĉt)∞t=0 is overtaking optimal, if for any alternative
feasible path, (ct)∞t=0, there exists a number T

0 ≥ 0 such that DT ≥ 0 for all
T ≥ T 0. That, is, if from some date on, cumulative utility of the candidate
path up to all later dates is greater than that of any alternative feasible path,
then the candidate path is overtaking optimal. We say it is weakly preferred
in case we just know that DT ≥ 0 for all T ≥ T 0. If DT ≥ 0 can be replaced
by DT > 0, we say it is strictly preferred.
Optimal control theory is also applicable with this criterion. The Hami-

Itonian is
H(k, c, λ, t) = u(c) + λ [f(k)− c− δk] .

The Maximum Principle states that an interior overtaking-optimal path will
satisfy that there exists an adjoint variable λ such that for all t ≥ 0 it holds
along this path that

∂H

∂c
= u0(c)− λ = 0, and (7.49)

∂H

∂k
= λ(f 0(k)− δ) = −λ̇. (7.50)

The Keynes-Ramsey rule now becomes

ċt
ct
=

1

θ(ct)
(f 0(kt)− δ), where θ(c) ≡ − c

u0(c)
u00(c).

One might conjecture that the transversality condition,

lim
t→∞

ktλt = 0, (7.51)

is also necessary for optimality but, as we will see below, this turns out to
be wrong in this case with no discounting.
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Our assumption (A1) here reduces to limk→0 f
0(k) > δ > limk→∞ f 0(k).

Apart from this, the phase diagram is fully analogue to that in Fig. 7.1,
except that the steady state, E, is now at the top of the k̇ = 0 curve. This
is because in steady state, f 0(k∗)− δ = 0, and this equation also defines kGR
in this case. By the same method as that used to prove Proposition 4 in
Chapter 5 (Section 5.5), it can be shown that the saddle path is again the
unique solution to the optimization problem.
The interesting feature is that in this case the Ramsey model constitutes

a counterexample to the widespread presumption that an optimal plan must
satisfy a transversality condition like (7.51). Indeed, by (7.49), λt = u0(ct)
→ u0(c∗) for t → ∞ along the overtaking-optimal path (the saddle path).
Thus, instead of (7.51), we get

lim
t→∞

ktλt = u0(c∗)k∗ > 0.

With CRRA utility it is straightforward to generalize these results to the
case g ≥ 0, n ≥ 0 and ρ̂−n= (1−θ̂)g. The social planner’s overtaking-optimal
solution is still the saddle path approaching the golden rule steady state;
and this solution violates the “natural” transversality condition. What we
learn from this is that an infinite horizon and the golden rule are sometimes
associated with remarkably distinct results.
Note also that with zero effective utility discounting, there can not be

equilibrium in themarket economy version of this story. The real interest rate
would in the long run be zero and thus the human wealth of the infinitely-
lived household would be infinite. But then the demand for consumption
goods would be unbounded and equilibrium thus be impossible.

7.6 Concluding remarks

The Ramsey model has played an important role as a way of structuring
economists’ thoughts about many macrodynamic phenomena including eco-
nomic growth. The model should not be considered directly descriptive but
rather as an examination of a benchmark case. As noted in the introduction
this case is in some sense the opposite of the Diamond OLG model. Both
models build on very idealized assumptions. Whereas the Diamond model
ignores any bequest motive and emphasizes life-cycle behavior and hetero-
geneity of the population, the Ramsey model implicitly assumes an altruistic
bequest motive which is always operative and which turns households into
homogeneous, infinitely-lived agents. In this way the Ramsey model ends
up as an easy-to-apply framework, implying, among other things, a clear-cut
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theory of the real interest rate in the long run. The model’s usefulness lies in
allowing general equilibrium analysis of an array of problems in a “vacuum”.
The next chapter presents examples of different applications of the Ram-

sey model. Because of the model’s simplicity, one should always be aware
of the risk of non-robust conclusions. The assumption of a representative
household is one of the main limitations of the Ramsey model. It is not easy
to endow the dynasty portrait of households with plausibility. One of the
problems is, as argued by Bernheim and Bagwell (1988), that this portrait
does not comply with the fact that families are interconnected in a complex
way via marriage of partners coming from different parent families. And the
lack of heterogeneity in the model’s population of households implies a dan-
ger that important interdependencies between different classes of agents are
unduly neglected. For some problems these interdependencies may be only of
secondary importance, but for others (for instance, public debt issues) they
are crucial. Another critical limitation of the model comes from its reliance
on saddle-point stability with the associated presumption of perfect foresight
infinitely far out in the future. There can be good reasons for bearing in
mind the following warning (by Solow, 1990, p. 221) against overly reliance
on the Ramsey framework in the analysis of a market economy:

“The problem is not just that perfect foresight into the indefinite
future is so implausible away from steady states. The deeper problem
is that in practice − if there is any practice − miscalculations about
the equilibrium path may not reveal themselves for a long time. The
mistaken path gives no signal that it will be ”ultimately“ infeasible.
It is natural to comfort oneself: whenever the error is perceived there
will be a jump to a better approximation to the converging arm. But
a large jump may be required. In a decentralized economy it will not
be clear who knows what, or where the true converging arm is, or,
for that matter, exactly where we are now, given that some agents
(speculators) will already have perceived the need for a mid-course
correction while others have not. This thought makes it hard even to
imagine what a long-run path would look like. It strikes me as more or
less devastating for the interpretation of quarterly data as the solution
of an infinite time optimization problem.”

7.7 Bibliographical notes

1. Frank Ramsey died at the age of 26 but he published several important articles.
Ramsey discussed economic issues with, among others, John Maynard Keynes. In
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an obituary published in the Economic Journal (March 1932) some months after
Ramsey’s death, Keynes described Ramsey’s article about the optimal savings
as “one of the most remarkable contributions to mathematical economics ever
made, both in respect of the intrinsic importance and difficulty of its subject, the
power and elegance of the technical methods employed, and the clear purity of
illumination with which the writer’s mind is felt by the reader to play about its
subject”.
2. The version of the Ramsey model we have considered is in accordance with

the general tenet of neoclassical preference theory: saving is motivated only by
higher consumption in the future. Other versions assume accumulation of wealth
is also motivated by a desire for social prestige and economic and political power
rather than consumption. In Kurz (1968b) an extended Ramsey model is studied
where wealth is an independent argument in the instantaneous utility function.
3. The equivalence in the Ramsey model between the decentralized market

equilibrium and the social planner’s solution can be seen as an extension of the
first welfare theorem as it is known from elementary textbooks, to the case where
the market structure stretches infinitely far out in time, and the finite number
of economic agents (families) face an infinite time horizon: in the absence og
externalities etc., the allocation of resources under perfect competition will lead to
a Pareto optimal allocation. The Ramsey model is indeed a special case in that all
households are identical. But the result can be shown in a far more general setup,
cf. Debreu (1954). The result, however, does not hold in overlapping generations
models where new generations enter and the “interests” of the new households
have not been accounted for in advance.

7.8 Appendix

A. Algebraic analysis of the dynamics around the steady state

In order to supplement the graphical approach of Section 7.3 with an exact
analysis of the adjustment dynamics of the model, we compute the Jacobian
matrix for the system of differential equations (7.27) - (7.28):

J(k̃, c̃) =

⎡⎣ ∂
·
k̃/∂k̃ ∂

·
k̃/∂c̃

∂
·
c̃/∂k̃ ∂

·
c̃/∂c̃

⎤⎦ = ∙ f 0(k̃)− (δ + g + n) − 1
1
θ
f 00(k̃)c̃ 1

θ
(f 0(k̃)− δ − ρ+ θg)

¸
.

Evaluated in the steady state this reduces to

J(k̃∗, c̃∗) =

∙
ρ− n− (1− θ)g − 1
1
θ
f 00(k̃∗)c̃∗ 0

¸
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This matrix has the determinant

1

θ
f 00(k̃∗)c̃∗ < 0.

Since the product of the eigenvalues of the matrix equals the determinant,
the eigenvalues are real and opposite in sign.
A steady-state point in a two dimensional continuous-time dynamic sys-

tem is called a saddle point if the associated eigenvalues are opposite in
sign.22 For the present case we conclude that the steady state is a saddle
point. This mathematical definition of a saddle point is equivalent to that
given in the text of Section 7.3. Indeed, with two eigenvalues of opposite
sign, there exists, in a small neighborhood of the steady state, a stable arm
consisting of two saddle paths which point in opposite directions. From the
phase diagram in Fig. 7.1 we know that the stable arm has a positive slope.
Thus, for k̃0 sufficiently close to k̃∗ it is possible to start out on a saddle path.
Consequently, there is a (unique) value of c̃0 such that (k̃t, c̃t)→ (k̃∗, c̃∗) for
t → ∞. Finally, the dynamic system has exactly one jump variable, c̃, and
one predetermined variable, k̃. It follows that the steady state is (locally)
saddle-point stable.
We claim that for the present model this can be strengthened to global

saddle-point stability. That is, our claim is that for any k̃0 > 0, it is possible
to start out on a saddle path. For 0 < k̃0 ≤ k̃∗, this is obvious in that
the extension of the saddle path towards the left reaches the y-axis at a
non-negative value of c̃∗. That is to say that the extension of the saddle
path cannot, according to the uniqueness theorem for differential equations,
intersect the k̃-axis for k̃ > 0 in that the positive part of the k̃-axis is a
solution of (7.27) - (7.28).23

For k̃0 > k̃∗, our claim can be verified in the following way: suppose,
contrary to our claim, that there exists a k̃1 > k̃∗ such that the saddle path
does not intersect that region of the positive quadrant where k̃ ≥ k̃1. Let k̃1
be chosen as the smallest possible value with this property. The slope, dc̃/dk̃,
of the saddle path will then have no upper bound when k̃ approaches k̃1 from
the left. Instead c̃ will approach∞ along the saddle path. But then ln c̃ will
also approach ∞ along the saddle path for k̃ → k̃1 (k̃ < k̃1). It follows that

22Note the difference compared to the discrete time system in Appendix F of Chapter
5. In the discrete time system we have next period’s k̃ and c̃ on the left-hand side of the
dynamic equations, not the increase in k̃ and c̃, respectively. Therefore, the criterion for
a saddle point is different in discrete time.
23Because the extension of the saddle path towards the left in Fig. 7.1 can not intersect

the c̃-axis at a value of ĉ > f(0), it follows that if f(0) = 0, the extension of the saddle
path ends up in the origin.
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d ln c̃/dk̃ = (dc̃/dk̃)/c̃, computed along the saddle path, will have no upper
bound. Nevertheless, we have

d ln c̃

dk̃
=

d ln c̃/dt

dk̃/dt
=

·
c̃/c̃
·
k̃

=
1
θ
(f 0(k̃)− δ − ρ− θg)

f(k̃)− c̃− (δ + g + n)k̃
.

When k̃ → k̃1 and c̃→∞ , the numerator in this expression is bounded, while
the denominator will approach −∞. Consequently, d ln c̃/dk̃ will approach
zero from above, as k̃ → k̃1. But this contradicts that d ln c̃/dk̃ has no upper
bound, when k̃ → k̃1. Thus, the assumption that such a k̃1 exists is false and
our original hypothesis holds true.

B. Boundedness of the utility integral

We claimed in Section 7.3 that if the parameter restriction

ρ− n > (1− θ)g (*)

holds, then the utility integral is bounded in the steady state. To avoid
irrelevant constants in the integrand to disturb the issue, we replace u(c)
= (c1−θ−1)/(1−θ) by ũ(c) = u(c)+1/(1−θ) = c1−θ/(1−θ). This is always a
legitimate transformation, since only relative marginal utilities matter for the
household’s behavior. Thus we shall examine whether Ũ0 =

R∞
0

c1−θ

1−θ e
−(ρ−n)tdt

is bounded along the steady-state path, ct = c̃∗Tt. For θ 6= 1,

(1− θ)Ũ0 =

Z ∞

0

c1−θt e−(ρ−n)tdt =

Z ∞

0

(c0e
gt)1−θe−(ρ−n)tdt

= c0

Z ∞

0

e[(1−θ)g−(ρ−n)]tdt =
c0

ρ− n− (1− θ)g
, (7.52)

by (*). If θ = 1, we get

Ũ0 =

Z ∞

0

(ln c0 + gt)e−(ρ−n)tdt,

which is also finite, in view of (*) implying ρ− n > 0 in this case. It follows
that also any path converging to the steady state will entail bounded utility,
when (*) holds.
On the other hand, suppose that (*) does not hold, i.e., ρ−n ≤ (1− θ)g.

Then by (7.52) and c0 > 0 follows that Ũ0 =∞.
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C. The diverging paths

In Section 7.3 we stated that paths of types II and III in the phase diagram
in Fig. 7.1 can not be equilibria with perfect foresight. Given the expectation
corresponding to any of these paths, every single household will choose to
deviate from the expected path (i.e., deviate from the expected “average
behavior” in the economy). We will now show this formally.
We first consider a path of type III. A path of this type will, according to

(7.28), not be able to reach the horizontal axis in Fig. 7.1 (cf. the uniqueness
theorem for differential equations). Instead it will converge towards the point

(
_

k̃, 0) for t → ∞. This implies limt→∞ rt = f 0(
_

k̃) − δ < g + n, because
_

k̃
> k̃GR. So,

lim
t→∞

ate
− t

0 (rs−n)ds = lim
t→∞

k̃te
− t

0 (rs−g−n)ds = lim
t→∞

k̃te
− t

0 (f
0(k̃s)−δ−g−n)ds =

_

k̃e∞ > 0.

(7.53)
Hence the transversality condition of the households is violated. Conse-
quently, the household will choose higher consumption than along this path
and can do so without violating the NPG condition.
Consider now instead a path of type I. We shall first show that if the

economy follows such a path, then depletion of all capital occurs in finite

time. Indeed, it is clear that any path of type I will pass the
·
k̃ = 0 locus in

Fig. 7.1. Let t0 be the point in time where this occurs. If path I lies above

the
·
k̃ = 0 locus for all t ≥ 0, then we set t0 = 0. For t > t0, we have

·
k̃t = f(k̃t)− c̃t − (δ + g + n)k̃t < 0.

By differentiation wrt. t we get

··
k̃t = f 0(k̃t)

·
k̃t − ċt − (δ + g + n)

·
k̃t = [f

0(k̃t)− δ − g − n]
·
k̃t − ċt < 0,

where the inequality comes from
·
k̃t < 0 combined with k̃t < k̃GR ⇒ f 0(k̃t)−δ

> f 0(k̃GR)− δ = g + n. Therefore, there exists a t1 > t0 ≥ 0 such that

k̃t1 = k̃t0 +

Z t1

t0

·
k̃tdt = 0,

as was to be shown. At time t1, k̃ cannot fall any further and c̃t immediately
drops to f(0) and stay there hereafter.
Yet, this result does not in itself explain why the individual household

will deviate from such a path. The individual household has a negligible
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impact on the movement of k̃t in society and correctly perceives rt and wt

as essentially independent of its own consumption behavior. Indeed, the
economy-wide k̃ is not the household’s concern. What the household cares
about is its own financial wealth and budget constraint. Nothing prevents
the household from planning a negative financial wealth, a, and possibly a
continuously declining financial wealth, if only the NPG condition,

lim
t→∞

ate
− t

0 (rs−n)ds ≥ 0,

is satisfied. But we can show that paths of type II will violate the NPG
condition. The reasoning is as follows. The household plans to follow the
Keynes-Ramsey rule. Given the expected evolution of rt and wt correspond-
ing to path II, this will imply a planned gradual transition from positive
financial wealth to debt. The transition to positive net debt, d̃t ≡ −ãt
≡ −at/Tt > 0, takes place at time t1 defined above.
The continued growth in the debt will meanwhile be so strong that the

NPG condition is violated. To see this, note that the NPG condition implies
the requirement

lim
t→∞

d̃te
− t

0 (rs−g−n)ds ≤ 0, (NPG)

that is, the productivity-corrected debt, d̃t, is allowed to grow in the long run
only at a rate less than the growth-corrected real interest rate. For t > t1
we get from the accounting equation ȧt = (rt − n)at + wt − ct that

·
d̃t = (rt − n− g)d̃t + c̃t − w̃t > 0,

where d̃t > 0, rt > ρ + θg > g + n, and c̃t grows exponentially according to
the Keynes-Ramsey rule, while w̃t is non-increasing in that k̃t does not grow.
This implies

lim
t→∞

·
d̃t

d̃t
≥ lim

t→∞
(rt − n− g),

which is in conflict with (NPG).
Consequently, the household will choose a lower consumption path and

thus deviate from the expected path. All households would do the same and
the evolution of rt and wt corresponding to path I is thus not an equilibrium
with perfect foresight.
The conclusion is that all individual households understand that the only

evolution which can be expected rationally is the one corresponding to the
saddle path.
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D. A constant saving rate as a special case

As we noted in Section 7.4 Solow’s growth model can be seen as a special
case of the Ramsey model, in that a constant saving rate may, under certain
conditions, emerge as an endogenous result in the Ramsey model.
Let the rate of saving, (Yt − Ct)/Yt, be st. We have generally

c̃t = (1− st)f(k̃t), and so (7.54)

·
k̃t = f(k̃t)− c̃t − (δ + g + n)k̃t = stf(k̃t)− (δ + g + n)k̃t. (7.55)

In the Solow model the rate of saving is a constant, s, and we then get, by
differentiating with respect to t in (7.54) and using (7.55),

·
c̃t
c̃t
= f 0(k̃t)[s−

(δ + g + n)k̃t

f(k̃t)
]. (7.56)

By maximization of discounted utility in the Ramsey model, given a rate
of time preference ρ and an elasticity of marginal utility θ, we get in equilib-
rium

·
c̃t
c̃t
=
1

θ
(f 0(k̃t)− δ − ρ− θg). (7.57)

Generally, there will not be any constant, s, such that the right-hand sides
of (7.56) and (7.57), respectively, are the same for varying k̃ (that is, outside
steady state). But Kurz (1968a) showed the following:

CLAIM Let δ, g, n, α, and θ be given. If the elasticity of marginal utility θ
is greater than 1 and the production function is ỹ = Ak̃α with α ∈ (1/θ, 1),
then a Ramsey model with ρ = θα(δ+g+n) −δ−θg will generate a constant
saving rate s = 1/θ. Thereby the same resource allocation and transitional
dynamics arise as in the corresponding Solow model with s = 1/θ.

Proof. Let 1/θ < α < 1 and f(k̃) = Ak̃α. Then f 0(k̃) = Aαk̃α−1. The
right-hand-side of the Solow equation, (7.56), becomes

Aαk̃α−1[s− (δ + g + n)k̃t

Ak̃α
] = sAαk̃α−1 − α(δ + g + n). (7.58)

The right-hand-side of the Ramsey equation, (7.57), becomes

1

θ
Aαk̃α−1 − δ + ρ+ θg

θ
.
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By inserting ρ = θα(δ + g + n)− δ − θg, this becomes

1

θ
Aαk̃α−1 − δ + θα(δ + g + n)− δ − θg + θg

θ

=
1

θ
Aαk̃α−1 − α(δ + g + n). (7.59)

For the chosen ρ we have ρ = θα(δ+ g+n)− δ− θg > n+ (1− θ)g, because
θα > 1 and δ+g+n > 0. Thus, ρ−n > (1−θ)g and existence of equilibrium
in the Ramsey model with this ρ is ensured. We can now make (7.58) and
(7.59) the same by inserting s = 1/θ. This also ensures that the two models
require the same k̃∗ to obtain a constant c̃ > 0.With this k̃∗, the requirement
·
k̃t = 0 gives the same steady-state value of c̃ in both models, in view of (7.55).
It follows that (k̃t, c̃t) is the same in the two models for all t ≥ 0. ¤
On the other hand, maintaining ỹ = Ak̃α, but allowing ρ 6= θα(δ+ g+n)

−δ − θg, so that θ 6= 1/s∗, then s0(k̃) 6= 0, i.e., the Ramsey model does
not generate a constant saving rate except in steady state. Defining s∗ as
in (7.38) and θ̄ ≡ (δ + ρ)/ [α(δ + g + n)− g], we have: When α(δ + g +
n) > g (which seems likely empirically), it holds that if θ Q 1/s∗, i.e., if
θ Q θ̄, then s0(k̃) Q 0, respectively; if instead α(δ + g + n) ≤ g, then θ <

1/s∗ and s0(k̃) < 0, unconditionally. These results follow by considering the
slope of the saddle path in a phase diagram in the (k̃, c̃/f(k̃)) plane and
using that s(k̃) = 1 − c̃/f(k̃), cf. Exercise 7.? The intuition is that when
k̃ is rising over time (i.e., society is becoming wealthier), then, when the
desire for consumption smoothing is “high” (θ “high”), the prospect of high
consumption in the future is partly taken out as high consumption already
today, implying that saving is initially low, but rising over time until it
eventually settles down in the steady state. But if the desire for consumption
smoothing is “low” (θ “low”), saving will initially be high and then gradually
fall in the process towards the steady state. The case where k̃ is falling over
time gives symmetric results.

E. The social planner’s solution

In the text of Section 7.5 we postponed some of the more technical details.
First, by (A1), the existence of the steady state, E, and the saddle path in
Fig. 7.1 is ensured. Solving the linear differential equation (7.44) gives λt
= λ0e

− t
0 (f

0(k̃s)−δ−ρ̂−g)ds. Substituting this into the transversality condition
(8.47) gives

lim
t→∞

e−
t
0 (f

0(k̃s)−δ−g−n)dsk̃t = 0, (7.60)
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where we have eliminated the unimportant positive factor λ0 = c−θ̂0 T0. This
condition is essentially the same as the transversality condition (7.35) for
the market economy and holds in the steady state, E, given the parameter
restriction ρ̂− n > (1− θ̂)g, which is satisfied in view of (A1). Thus, (7.60)
also holds along the saddle path. Since we must have k̃ ≥ 0 for all t ≥ 0,
(7.60) has the form required by Mangasarian’s sufficiency theorem. Thus, if
we can show that the Hamiltonian is concave in (k̃, c) for all t ≥ 0, then the
saddle path is a solution to the social planner’s problem. And if we can show
strict concavity, the saddle path is the only solution. We have:

∂H

∂k̃
= λ(f 0(k̃)− (δ + g + n)),

∂H

∂c
= c−θ̂ − λ

T
,

∂2H

∂k̃2
= λf 00(k̃) < 0 (by λ = c−θ̂T > 0),

∂2H

∂c2
= −θ̂c−θ̂−1 < 0,

∂2H

∂k̃∂c
= 0.

Thus, the leading principal minors of the Hessian matrix of H are

D1 = −
∂2H

∂k̃2
> 0, D2 =

∂2H

∂k̃2
∂2H

∂c2
−
µ
∂2H

∂k̃∂c

¶2
> 0.

Hence, H is strictly concave in (k̃, c), and the saddle path is the unique
optimal solution.
It also follows that, as we stated, the transversality condition (8.47) is a

necessary transversality condition. Note that we had to derive this conclusion
in a different way than when solving the household’s consumption/saving
problem in Section 7.2. There, we could appeal to Proposition 2 of the
previous chapter to verify necessity of the transversality condition. But that
proposition does not cover the social planner’s problem.
As to the diverging paths in Fig. 7.1, note that paths of type II (those

paths which, as shown in Appendix C, in finite time deplete all capital) can
not be optimal, in spite of the temporarily high consumption level. This fol-
lows from the fact that the saddle path is the unique solution. Finally, paths
of type III in Fig. 7.1 behave as in (7.53) and thus violate the transversality
condition (8.47), as claimed in the text.

7.9 Exercises
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