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In Section 1 below it is proved that the social planner’s problem has a unique
solution which converges towards the steady state considered in Section 3 of the paper.
In view of the parameter separations made (allowing more ”non-convexities” than
usual), this result is not obvious beforehand, and we are not aware of any proof in the
literature covering this case.

In Section 2.1 it is proved that the transversality condition of the household in the
market economy is equivalent to the assumption A3 in Section 4.2 of the paper.

In Section 2.2 it is proved that the market equilibrium is unique and that it con-
verges towards the steady state considered in Section 4.2 of the paper.

1 The solution to the social planner’s problem

This refers to Section 3 of the paper. In order to permit existence of an optimal
solution we require the parameter restriction

n
> (1—60)——~L. Al
p> (-0 (A1)
To obtain concavity of the maximized Hamiltonian and to check sufficient condi-
tions for optimality it is convenient to rewrite the maximization problem. Introducing
the transformations

A= AT= and 7 = %7, (1)

we have Y = K%(ANy)'=*, and A = 5(L— Ny)A. Then the current value Hamiltonian
for the social planning problem becomes

1-6

H— 1__91 + M[K*(ANy) ™ — 6K — cL] + M\A(L — Ny)A,

where \; and )\, are the shadow prices of the state variables K and A, respectively.!
Necessary conditions for an interior solution are that for all t > 0 :

c?=\L, (2)

A1 - a)%NY — oA, 3)
b= oA - (G~ 6) ()

Ao = pho — Al% — MA(L — Ny), (5)

tlirgo e K =0, tllglo Aoe LA = 0. (6)

LObserve that, in view of the transformation (1), A2 here is not the same as o in the paper.



Log-differentiating (2) wrt. ¢ and using (4) gives

1Y
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(Oé];Okl —6— P), (7)
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where k = k / A. Since in a steady state, by definition, g, is constant, k is also constant
in view of (7).
Define ¢ = A\y/A;. From (3)

Hence, in steady state

But, by definition of ¢, (j/c] = ()‘\2/)\2) — (Ai/A1), hence, from (4), and (5),

Y

APl e

This, together with (9) and the definition of 4, imply

oY n

Inserting this into (7) gives

*

L, n
= (——~L — 11
g. 0(1—047 p), (11)

which is (3.7) in the paper.

To show that the steady state is saddle-point stable, let z = Y/K and ¢ = ¢L/K.
Then, from the first order conditions (2), (3), (4), (5), and the dynamic constraints of
the social planner’s problem we get the differential equations

z = (a—l)z%—l_—a(f?L%—é)] z,
a
- (o — 0 -1 pl_
c = 7 z+c+76—§}c,
T —é+&Lu+1_—a(iL+6)] u.
a

The Jacobian evaluated in the steady state? is triangular and has the eigenvalues
pp = (02/02)* = (a—1)z* <0, py, = (0c/0¢)* =¢* > 0, and py = (00/0u)* = FLu* >
0. The three variables, z, ¢, and u, are jump variables, but the initial conditions for z

2Steady state values referring to the social planner’s solution are marked by *.
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and u are not independent. Given the predetermined variable k = K/(AL), we have
u = lz;zﬁ, from the production function ¥ = K*(ANy)'"*. Hence, with two free
initial conditions and exactly two positive eigenvalues, existence and uniqueness of a
convergent solution (that is, saddle-point stability) holds generically.

A path (¢, Ny, K, A)%,, which satisfies the first order conditions (2), (3), (4), and
(5), and which approaches the steady state for ¢ — oo, is our candidate for an optimal
solution. To make sure that the path is an optimal solution, we note, first, that it
satisfies the necessary transversality conditions in (6). Indeed, along the path we have

M K, Ao A
Jm(s—pt ) = ImE -t 3)
oY .
= _(8_K —06)+g¢g,  (from (4) and (5))
Ui

= —EWL +g;, (from (10))
which is negative in view of (11) and Al. Hence, (6) holds.

Second, we check whether the Hamiltonian is jointly concave in the state variables
K and A after the controls ¢ and Ny have been substituted by their maximizing values
from (2) and (3), respectively. We find H = B + M7LK + \yJLA, where the term B
does not depend on K or A. Clearly this function is concave.

The third thing to check is whether our candidate path (¢, Ny, K, A), satisfies a
sufficient transversality condition. In view of (2) and (3), Ay > 0 and Ay > 0 for all
t > 0. Hence, by (6), the path (¢, Ny, K, fl)fio satisfies

lim e (K - K) + Noe (A — )| >0,

for all feasible paths (¢, Ny, K, A)%,. The conclusion is that, by Arrow’s sufficiency
theorem (see Seierstad and Sydszeter, 1987, p. 236), our candidate path (¢, Ny, K, A)%,
s an optimal solution.

The above applies to the case where the steady state is interior, i.e., the case where

Ui
< ——~L A2
P (A2)
holds. If A2 is violated there can be no R&D and no growth in a steady state; instead
the steady state solution is like that of a standard one-sector Ramsey model without

technical progress.

2 The market economy

2.1 The transversality condition is equivalent to A3

In Section 4.2 of the paper we claimed that assuming the transversality condition of
the household to hold in a steady state is equivalent to assuming

1-6 1-—¢

1—5anl—a

p > ayL. (A3)



Here we give the argument in detail. For the steady state to be an equilibrium, the
transversality condition of the household,

lim ve Jo 7% =0, (12)

t—oo

K+pA

must be satisfied. We have v = ==£= and in steady state gx = gc = T2=04 = gp+ 94,
from (4.12), since g; = 0; hence g, = g.. It follows that the steady state satisfies (12)

if and only if the steady state has
> ge. (13)

By the Keynes-Ramsey rule, r = 0g. + p, hence, if § > 1, (13) holds automatically,
since p > 0. Suppose, on the contrary, # < 1. The value of n for which fg. + p = g. is,
using (4.15),

 (1—ea)(l-a)p
T=0—01 -9l

(14)

Now, 0 < g—; = 9%—9778 < %—‘Z; in this case, since, by (4.16), %‘Z; > 0. Therefore, (13) holds

if and only if n < 7. And, by (14), n < 7 if and only if

1-0 1-—¢

1—504771—04

p > ayL,

which is A3.

2.2 Dynamics

Here we prove the claim in Section 4.2 that given A3 and A4 the market equilibrium is
described by a unique convergent solution, at least as long as either n < (1—ca)/(1—«)
or # = 1. That is, saddle-point stability holds, at least within the empirically relevant
domain of the parameter space.

Assume A3 and

<1—€
=7

ayL. (A4)

—

The equations describing the dynamics of the market equilibrium can be reduced to
three differential equations in z = Y/K, ¢ = ¢L/K, and u. Indeed, by (4.11)

z =k (15)
Then, from (4.12) and (2.5),

a—1 a—1[p n—>1-a)

P = - — 1—u)L| z.
g a |p 1—a ( U)]Z

z =
Insert p/p from (4.6), using (4.12) and (5.4), to get

z=le(a—1z+ (1 —ea— n)%Lu + é [(n+a—1)yL+(1— a)é]} 2 (16)



with steady state value

1 —ca n L m—(1—-a)vL+(1—-a)d
— _ = . 17
‘ <1—04 1—0z)€au (1—-a)ea (17)
By (4.8), (4.12), and (2.4) we get
- 1
&= me 9z+5+976—§ (18)
The steady state value of ¢ is
1
525[(9—€Q)Z+<1—9)(5+p]. (19)
Finally, from the definition k = K/(A™suL) we find, using (15),
u=zYOK/ (AT L). (20)
Differentiating wrt. time ¢ gives
1— 1 - -1
= |1—-¢)z—c+( ga—n)lLu—l— iy ~vL| u, (21)
-« o o o

by (16), (2.4), and (2.5). Using (21), (17), and (19), we find the steady state value of

u as

_[l—a-(0=0)njyL+ (1 -a)p
o 7)o P (22)

confirming (8.2).
The equations (16), (18), and (21) constitute a three-dimensional dynamical sys-
tem. The Jacobian evaluated at the steady state point is

ela—1)z 0 [1l—ca—r1 %Lz
J=| =L ¢ 0 . (23)
(1= —u (F2-n%u

The characteristic polynomial for J is
P(X\) = —=N° 4+ by — by A + by,
where by = det(J), b1 = )., i dij
Aji  Qjj
and column j of J. Let A, A2, and A3 be the roots of J. Then

, by = tr(J), a;; being the element in row 4

by = A2,
by = Ao+ Az 4+ A2, (24)
by = A+ X2+ As.

We get, from (23), bp = — [1 —ea — (1 = 0)n] F Lzcu < 0, by A3 and A4 in view
of (i) of Lemma 2. Hence, so far there are two possibilities: (i) All three roots are
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negative or have negative real part (multiple convergent solutions); (ii) one root is
negative, and two roots have non-negative real part (unique convergent solution, in
view of the boundary condition (20)). A sufficient (though not necessary) condition
for excluding possibility (i) is that b; < 0 or by > 0. Now, from (23),

B 1l—ca vL
by = 5(04—1)Z+C+<1_a—77)gu
o 0-1 p l—ca ~vL
= =3 (5@2—5)+(1—€)Z+9+(1_a—U)au (by (19))
l—-ca vL

= r—g.+(1—e)z+( N — n);u (by (4.12) and (4.8)).

-«
As shown above, in view of the transversality condition of the household, r > g;
hence, it follows that a sufficient (but not necessary) condition for by > 0 is

<1—€a
n

—. (25)

On the other hand, it is easy to construct cases where, for n sufficiently large,
by < 0. As an example, for 6§ = 1 we get

l—-ca vL
b= pr(1—e)st (e —n) (26)

1 a—¢€
= — (1 L 1—¢)d —L —
o |Atea)p +evl + (=€) +(——7L—pn|,
which, for € > «, can always be made negative by choosing 7 very large.
Fortunately, however, we can show that at least when 6 = 1, by < 0 implies b; < 0.
Indeed, the general formula for b, is

B _ 1—ca vLu
by = ela—1)ze+( T (0 —¢)—(1—0)en) T
l—ca vL
HEE2 )l -0
which, for § = 1, reduces to
o 1—-ca 1—ca ~vL
by =e(a—1)zc+ 1 (1 —e)yLuz+ ( 1 —n)p—u, (27)
- - a
where
1 (1—¢e)ayL—(1—a)p
== -_— 2
2= o+ o S L), (28)
from (17) and (22) when 6 = 1.
For 6 = 1, by (26), we have that by, < 0 =
1l—-ca vL
=, < _
2y < -2 (20)

o o> 11—5a+a[p+(1—6)z]
—«

vLu

l—ea (1-¢)a
> = 1>1. 30
1« l—« + (30)
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From (27) and (29),

1 —ca
l—«o

b

IN

ela—1)zc+ (1 —e)yLuz —plp+ (1 —€)z]
= [(1—e)yL—e(l —a)p—e(l —a)(l —ea)z]z — p* (by (19) and (22) with § = 1)
= {l-el—e(l-a)

1““[(1—ea><p+6>+<<1—e>aw—<1—a>p> L }}z—p (by (28))

l—«

- {[(fem%p]un)%<lea>6}zp2<o,

by A4 and (30).

Hence, given A3 and A4, each of the conditions (25) and § = 1 are, separately,
sufficient for the existence of a unique convergent solution. With o« = .4 and € < .95,
we have (1 —ea)/(1 — ) > 1.02, a number that seems beyond realistic values of 7. In
this way we have established uniqueness of the convergent solution (that is, saddle-
point stability) at least within the empirically relevant domain of the parameter space.



