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Standard endogenous growth models rely on the arbitrary assumption that the tech-

nology has exactly constant returns with respect to producible inputs. Can this knife-

edge restriction be relaxed by including non-renewable resources as necessary inputs in

production? In a one-sector optimal growth model, we find that the strain on the

economy imposed by the need to extract successively smaller amounts of the non-

renewable resource can offset the potentially explosive effects of allowing for increasing

returns to producible inputs. However, growth in per capita consumption will be

unstable unless there is population growth. Thus, the knife-edge problem of (strictly)

endogenous growth reappears as an instability problem. But a ‘semi-endogenous’

growth framework turns out to be an attractive alternative, relying on less restrictive

parameter values, maintaining stability, and allowing a rich set of determinants of long-

run growth.

1. Introduction
The purpose of the present paper is twofold. First, the purpose is to study the

properties of an endogenous growth model where the ‘growth engine’ depends on a

non-renewable natural resource. Non-renewable resources are clearly an important

element in the technologies of present-day economies, and their special properties

make relevant an examination of the consequences for endogenous growth of

introducing these resources. Indeed, while in recent years an increasing number

of countries have managed to achieve a growing per capita output, the sustain-

ability of such growth is bound to depend on the ability of the economic system,

through substitution and technical progress, to overcome the constraints implied

by scarce natural resources.

The second purpose of the paper is related to the non-robustness problem of

standard endogenous growth models (Lucas, 1988; Romer, 1990; Rebelo, 1991).

This problem arises from the fact that these models have a knife-edge character

because they rely on the seemingly arbitrary assumption that there is exactly con-

stant returns with respect to the producible inputs (at least asymptotically). We

want to investigate whether introducing non-renewable natural resources into these

models will make them more robust.
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As to the first mentioned, more general purpose of the paper, the aim is to fill a

hole in the literature on endogenous growth. Stiglitz (1974) presented a basic one-

sector optimal growth model with non-renewable resources which relies on exo-

genous technical progress to generate growth. A number of later papers like Robson

(1980), Takayama (1980), Jones and Manuelli (1997), Aghion and Howitt (1998,

pp. 163–4), Scholz and Ziemes (1999), and Schou (2000) have examined the

implications of the presence of non-renewable resources in various endogenous

growth models. However, common to these papers is the fact that natural resources

do not appear in the core sector (the growth engine)1 of the model (not even

indirectly in the sense of resources being a necessary ingredient in the production

of physical capital goods which are then used in the growth-creating sector, e.g. a

research sector). This is a crucial feature compared with the model of the present

paper and clearly an unrealistic one. It seems unlikely that the growth-creating

sector should be completely independent of physical capital and thus ultimately of

the non-renewable resource. After all, most production sectors, including educa-

tional institutions and research labs, use fossil fuels for heating and transportation

purposes, or minerals and oil products for machinery, computers, etc.2

In contrast to the ‘Schumpeterian’ model of the above mentioned section of the

1998 book by Aghion and Howitt, another section of that book presents a growth

model with non-renewable resources entering the growth engine (Aghion and

Howitt, 1998, pp. 162–3). The authors consider a one-sector AK-model with the

resource added in a Cobb-Douglas fashion. In that model, however, it turns out

that sustained growth is impossible without exogenous technical progress. The

present paper shows how this result may be reversed (without violating stability)

by introducing population growth and an explicit productive role for labour. Also,

in Rebelo (1991) there is a short section on a kind of AK-model with natural

resources. As we shall see (Section 2 below), some of Rebelo’s observations on

this model need qualification if the natural resource is a non-renewable resource.

While our model will be presented and discussed as if the natural resource

involved is a non-renewable resource in the usual meaning (i.e. fossil fuels, miner-

als), there is an alternative interpretation of the model. Instead of thinking of the

reserves of, say, oil in the ground, one could think of the stock of environmental

quality. When pollution is an inevitable by-product of economic activity, and when

abatement possibilities are insufficient, the environment represented as a stock of

‘natural capital’ will be gradually exhausted in more or less the same way as a

traditional non-renewable resource stock. In this spirit, Stokey (1998) and

Aghion and Howitt (1998, pp. 157–60) present growth models where the modelling
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1 We define the growth engine of a model as the set of capital-producing sectors or activities using their

own output as an input; of course, this set may consist of only one sector such as the educational sector

in Lucas (1988) producing human capital or the R&D sector in Romer (1990) producing ‘knowledge
capital’.
2 An early contribution that indeed does take account of this fact is Chiarella (1980). In Section 4 below

we comment on the ‘paradoxical’ comparative statics implied by the Chiarella model.



of pollution is quite similar to usual representations of a non-renewable resource.

In these models, sustained growth is either not possible or at least non-optimal

when there is no exogenous technical progress. Our paper indicates that these

results may not necessarily hold when population growth and increasing returns

with respect to producible inputs are allowed.

As to the second purpose of our paper, the non-robustness problem of standard

endogenous growth models resides in the fact that exactly constant returns to

scale with respect to the producible factors in the growth generating sector of

the economy are required (at least asymptotically) for sustained per capita

growth. Slightly increasing returns would lead to explosive growth (infinite

output in finite time), whereas slightly decreasing returns lead to growth petering

out unless some exogenous factor (e.g. population) grows. This is what we label the

‘knife-edge problem’ of standard endogenous growth theory. It is a serious

challenge to the theory, as it implies lack of robustness to even slight parameter

changes, as pointed out by, e.g. Solow (1994a).

Now, intuition suggests that the introduction of non-renewable resources could

alleviate this knife-edge problem because the strain on the economy imposed by the

need to extract successively smaller amounts of the resource might offset the

potentially explosive effects of increasing returns to scale with respect to the repro-

ducible factor(s) of the model. And even if this intuition may be valid as far as

the pure technical feasibility of growth is concerned, the problem of examining the

restrictions required for optimality and stability still remains.

Thus, this paper examines whether robust results can be obtained in a model

where non-renewable natural resources are a necessary input into the growth

engine and where there is utility discounting and consumption smoothing. Our

approach to this problem is based on an extension of the model by Stiglitz (1974)3.

Stiglitz concentrates on the case of constant returns with respect to capital, labour,

and the resource taken together. We extend this analysis, characterizing steady

growth paths for a broader range of parameter values. In particular, in line with

endogenous growth theory, we allow for a constant or increasing marginal product

of capital.

Indeed, a constant marginal product with respect to (some kind of) capital is

essential to standard endogenous growth models (those that display balanced

growth). These models may be divided into two sub-classes: models relying on

pure capital accumulation of some sort, and models describing the process gen-

erating technical progress. However, a decisive feature common to both types of

models is that steady growth relies on the above-mentioned knife-edge property.4
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3 Dasgupta and Heal (1974, Section 1) analyzes a rather similar model. For convenience, in the following

we refer generally only to Stiglitz (1974).
4 This is also true for the so-called quality ladder models of Aghion and Howitt (1998) and Grossmann

and Helpman (1991), although in a more disguised form. Indeed, in these models it is assumed that

every new innovation raises quality (or productivity) by a constant factor � > 1. Given a constant cost of

innovation, this assumption provides automatically for exponential growth.



Because of this, we believe that the distinction between models stressing capital

accumulation and models stressing technical innovation is not important for the

questions discussed in the present paper, even though the distinction may have

serious implications for other questions such as market failures or consequences of

various government policies.

It is often argued that a non-decreasing marginal product of capital is not so

unrealistic when one recognizes the existence of externalities or if ‘capital’ is inter-

preted broadly as a combination of physical capital, technical knowledge, and

human capital. In our view, if a constant marginal product of capital is accepted

(at least asymptotically), a slightly increasing marginal product should be allowed

as well. Obviously, such conditions may not be consistent with a laissez-faire

market economy with perfect competition. However, in the growth literature

imperfect competition and/or tax and subsidy interventions à la Pigou are often

viewed as institutions that bring about an allocation approximating the social

optimum.

It should be recognized, of course, that there exists a class of endogenous growth

models that generate balanced growth only asymptotically when time approaches

infinity: These ‘convex models of endogenous growth’ rely on constant returns to

scale with respect to producible inputs to hold only asymptotically for the capital

input approaching infinity (Jones and Manuelli, 1990, 1997). This assumption,

though somewhat more robust, is still debatable. When extended to cover the

case of non-renewable resources entering the growth engine, this approach requires

the non-renewable resource to be non-essential (not necessary for production). In

contrast, we want to study instances where the non-renewable resource enters the

growth engine in an essential way. In this case, as we shall see, either (a) increasing

returns to capital (read ‘broad capital’), or (b) increasing returns to capital and

labour taken together combined with population growth, is needed for sustained

per capita growth to be technically feasible. On top of either of these conditions

further parameter restrictions are required for sustained growth to be optimal.

Finally, it turns out that stability is possible only if condition (b) holds. This implies

that in the absence of population growth, the knife-edge problem of endogenous

growth theory reappears as an instability problem.

By emphasizing the importance of increasing returns and population growth for

stable positive per capita growth (when there is no exogenous technology growth),

our analysis has affinity with what has been called semi-endogenous growth as

distinct from (strictly) endogenous growth. The defining characteristic of (strictly)

endogenous growth models (surveyed in Barro and Sala-i-Martin, 1995) is that per

capita consumption in the long run grows at a constant positive rate, even in the

absence of any exogenously growing factor. It is this type of model that suffers from

the non-robustness problem described above.5 In contrast, weakly endogenous
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this only transforms it into an instability problem as long as population growth is absent.



growth (Groth 1992) or semi-endogenous growth (Jones 1995) is defined as growth
in per capita consumption in the long run at a constant positive rate, even without

any exogenously given technology growth. An early example of a semi-endogenous

growth model in this sense is the famous learning-by-doing paper by Arrow (1962);
other examples are the modifications of the Romer 1990 R&D model suggested by

Groth (1992) and Jones (1995). These conventional semi-endogenous growth

models (surveyed in Eicher and Turnovsky 1999) differ from their (strictly) endo-
genous-growth relatives in two important ways: (a) They are less demanding with

respect to returns to producible inputs; and (b) they imply long-run growth rates

that are independent of preference parameters. As we shall see, however, letting
non-renewable resources enter the growth engine brings good news: Property (a) of

the semi-endogenous framework is preserved, while property (b) is circumvented.

Indeed, semi-endogenous growth now assigns a role to preference parameters—
hence also a role to incentives and, e.g. fiscal policy—as a determinant of the long-

run growth rate.

The organization of the paper is as follows. The next section presents the tech-
nological aspects of the extended Stiglitz model and describes aspects of technically

feasible paths. In Section 3, an intertemporal utility function is added in order to

study aspects of optimal growth; existence and properties of steady states are
analysed and the transitional dynamics described. Section 4 studies the special

case of no population growth where the knife-edge reappears in the form of

instability. A summary of the conclusions is given in the final section.6

2. Technically feasible paths
To ensure that the non-renewable resource is necessary for production, but does

not a priori rule out sustainable (non-decreasing) consumption in the long run, we

follow Stiglitz and assume an aggregate production function, F; of Cobb-Douglas
form

YðtÞ ¼ FðKðtÞ;NðtÞ;RðtÞÞ ¼ AKðtÞ�NðtÞ�RðtÞ�;A; � > 0; 0 < � < 1; 0 < � < 1

ð1Þ
where YðtÞ is output, KðtÞ is the capital stock, and RðtÞ is input of the non-

renewable resource (henceforth, simply called the resource) at time t. In contrast

to Stiglitz (1974), we ignore exogenous technical progress. More importantly, we
impose no upper bound on �. While Stiglitz (1974) and others7 focused on

�þ � þ � ¼ 1; a case can be made for the parameters �; �; and � summing to
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6 Some of the more technical parts of the analysis (proofs of lemmas etc.) are given in Supplementary

material (2002) which can be found at http: //www.oep.oupjournals.org
7 Dasgupta and Heal, in the relevant chapters of their 1979 book, concentrate on the case �þ � þ � ¼ 1.

In their 1974 paper, however, Dasgupta and Heal consider the case �þ � ¼ 1. Still, decreasing returns to

capital (� < 1) is implied and a further difference with the present paper is that the roles of � and

population growth are ignored.



some larger value.8 A constant marginal product with respect to some kind of
capital (i.e. � ¼ 1) in the sector(s) constituting the growth engine is indeed stan-

dard, and essential to all basic endogenous growth models displaying balanced

growth. As emphasized in the introduction, though we name K ‘capital’, one
may interpret K as ‘broad capital’ including technical knowledge and human

capital. The separate argument N in the production function should then be

interpreted as representing the role of raw physical labour. The reasoning of
Mankiw (1995) suggests that the output elasticity, �; with respect to this factor

is at least 0.2. In any case, we emphasize that if � ¼ 1 is accepted, values slightly

above unity should be allowed as well.
As to the output elasticity with respect to the natural resource, empirical exam-

inations of resources such as minerals and fossil fuels usually consider � to be

relatively low, say less than 0.05 (cf. Nordhaus and Tobin, 1972, p. 419 ff., and
Neumayer, 2000, p. 322). Nevertheless, as mentioned in the introduction, an alter-

native interpretation of the resource makes the potential value range of � larger: R

could be taken to represent a pollution flow considered as an inevitable by-product
of production which may imply a value of � somewhat above 0.05. In a situation

with insufficient abatement possibilities, all pollution detracts from the quality of

the environment, considered to be part of the stock of ‘natural capital’. If cumu-
lative pollution becomes high enough, then at a certain point a critical ecological

threshold will be reached, below which environmental quality cannot fall further

without entailing a prohibitive cost in the form of an ecological catastrophe.9

Though this interpretation is possible, in the remainder of this paper we will

refer to R as an input of a non-renewable resource. In any case, it seems reasonable

to assume � < 1 as in (1).
Whatever the interpretation of R, output is used for consumption and for

investment in capital goods, so that10

_KK ¼ Y � C � 	K � I � 	K; Kð0Þ ¼ K0 > 0; 	5 0 ð2Þ
where C � cN is total consumption, I is gross investment, 	 is the capital deprecia-

tion rate (disregarded in Stiglitz, 1974), and K0 is given. Labour N is supplied

inelastically, and the labour force grows at a constant exogenous rate n5 0; i.e.
N ¼ Nð0Þent ;Nð0Þ ¼ N0 > 0; where N0 is given. The resource stock S diminishes

with resource extraction

_SS ¼ �R; Sð0Þ ¼ S0 > 0 ð3Þ
where S0 is given. Like Stiglitz we abstract from extraction costs as well as uncer-

tainty.
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8 Empirical evidence furnished by, e.g. Hall (1990) and Caballero and Lyons (1992), suggests that there
are quantitatively significant increasing returns to scale or external effects in U.S. and European manu-

facturing.
9 This is similar to the way in which Aghion and Howitt (1998, pp.157–60), inspired by Stokey (1998),

present a growth model with pollution.
10 From now on we will suppress the time argument when not needed for clarity.



A path (C;Y ;K;R; SÞ1t¼0 is called feasible if: (a) K and S are continuous functions
of t; ðb) C;Y ; and R are piecewise continuous functions of t; (c) the path satisfies

(1) for all t 5 0; and it satisfies (2) and (3) for all t 5 0; except at points of

discontinuity of C and R; and (d) the path satisfies the non-negativity constraints

C;R5 0 for all t 5 0 ð4Þ
(for the directly controllable variables) and

K; S5 0 for all t 5 0 ð5Þ
(for the state variables). The conditions (3), (4), and (5) on a feasible path imply

the restriction ð1
0

RðtÞdt 4 Sð0Þ ð6Þ

showing the finite upper bound on cumulative extraction of the resource over the

infinite future. Obviously, from this restriction it follows that resource use must
approach zero for t ! 1:

A feasible path (C;Y ;K;R; SÞ1t¼0 is called a balanced growth path (henceforth

abbreviated BGP) if C;Y ;K;R; and S are (strictly) positive for all t 5 0 and change
with constant relative rates (some or all of these rates may be negative). Let gx

denote the growth rate of the variable x > 0; that is gx � _xx=x.

Lemma 1 In a BGP the following holds: (a) gS ¼ gR < 0; (b) Rð0Þ ¼ �gRSð0Þ; and

lim
t!1

S ¼ 0 ð7Þ

Proof See Supplementary material. &

It is because our definition of a BGP includes the requirement that gS is constant,

that a BGP implies that the resource is exhausted in the limit.
The output-capital ratio, the consumption-capital ratio, and the resource extrac-

tion rate will be called z; x; and u; respectively, i.e.

z � Y

K
; x � C

K
; u � R

S
ð8Þ

These ratios turn out to be central to the analysis. We may write (2) as

gK ¼ z � x � 	 ð9Þ
Similarly, by (3)

gS ¼ �u ð10Þ
In a BGP, by definition, z; x; and u are always positive. A priori x > z is not

excluded; that is, we allow gross investment Ið� Y � CÞ to be negative (capital

can be ‘eaten’).

Lemma 2 In a BGP, gY ¼ gC � g; and u is constant. If, in addition, gK ¼ g; then

also z and x are constant. A sufficient condition for gK ¼ g in a BGP is I 6¼ 0 in

some non-degenerate time interval (gross investment non-vanishing).
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Proof See Supplementary material. &

Differentiating (1) logarithmically with respect to time, we get

gY ¼ �gK þ �n þ �gR ð11Þ
We will define a steady state as a feasible path where C;Y ;K;R; and S are (strictly)

positive for all t 5 0 and change with constant (though not necessarily positive)
rates, say gC; gY ; gK ; gR; and gS; and where z and x are constant. That is, a steady

state is a BGP such that z and x are constant (in addition to u constant as in any

BGP, cf. Lemma 2).11 By definition of z and x; a steady state has gC ¼ gY ¼ gK ¼ g;
a constant. A steady state is therefore well described by the constant values of g, gR,

z, x, and u, i.e. a quintuple (g*; gR*; z*; x*; u*Þ where u* ¼ �gS* ¼ �gR* > 0 (from

(10) and Lemma 1) and where also z* and x* are positive (by definition of a BGP).
The growth rate gc of per capita consumption satisfies gc ¼ gC � n; and in a BGP,

still denoting the common growth rate for C and Y by g, we have

gc ¼ g � n ð12Þ
Intuitively, to avoid decreasing per capita consumption, some positive net invest-

ment (I � 	KÞ is always needed to offset the diminishing resource use over time.

Indeed:

Lemma 3 In a BGP with gc 5 0; net investment, I � 	K; must be positive for all t.

Proof See Supplementary material. &

We now pose the question: Is it possible, from a purely technical point of view,
that capital accumulation can support steady per capita growth? Indeed, intuition

suggests that the answer is yes since two counterbalancing forces are at hand. First,

one should expect that the strain on the economy imposed by the need to extract
successively smaller amounts of the resource can be offset by increasing returns to

capital. Second, the potentially explosive effects of this type of increasing returns

might be exactly counterbalanced by the diminishing resource use. The following
proposition shows that this intuition is correct.

Proposition 1 There exists a BGP with gc > 0 if and only if

� > 1 or ð�þ � � 1Þn > 0 ð13Þ
Proof ‘If ’: See Groth (2001) where a slightly stronger statement is proved. ‘Only if ’:

Consider a BGP with gc > 0: Then, by Lemma 3, I > 	K 5 0 for all t: Now, from

Lemma 2, gK ¼ gY ¼ g, and (11) reduces to ð1 � �Þg � �gR ¼ �n: By Lemma 1,
gR < 0; and therefore ð1 � �Þg < �n. By (12) this implies ð1 � �Þgc <

ð�þ � � 1Þn: Now, since gc > 0; �4 1 is seen to imply ð�þ � � 1Þn > 0: &
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The proposition tells us that for the technology to allow steady per capita growth
(with an indispensable resource and without exogenous technical progress), either

increasing returns to capital and labour together combined with population growth

or increasing returns to capital itself is needed. At least one of these conditions is
required in order that capital accumulation can offset the effects of the necessarily

diminishing resource use over time.12 That is why our study need taking popula-

tion growth into account and has to consider a larger range of values for � than in
Stiglitz (1974) and Dasgupta and Heal (1974, 1979).13 Though one might find

n > 0 (in the very long run on a limited earth) as well as � > 1 debatable

assumptions,14 an analysis of these cases is of theoretical interest for an evaluation
of the robustness problem of endogenous growth theory.

3. Optimal paths
We now add preferences to the model. Assume utilitarian preferences with a

constant rate of time preference �: Let instantaneous utility of the representative
infinitely-lived household be UðcÞ ¼ ðc1�" � 1Þ=ð1 � "Þ where " > 0 is a constant,

the numerical value of the elasticity of marginal utility. The intertemporal utility

function then is ð1
0

cðtÞ1�" � 1

1 � "
NðtÞe��t dt; � > n5 0 ð14Þ

where N is now interpreted as household (or family) size which grows at the rate n (the

population growth rate); we assume � > n to ensure convergence of the integral.

The social planner wants to maximize (14) subject to the conditions (1)–(5).15

It can be shown that along an optimal path, if one exists, c;R;K; S;Y > 0 for all

t 5 0 (see Supplementary material): Hence, we may safely concentrate on interior

solutions. The current-value Hamiltonian for the social planner’s problem is

394 non-renewable resources

..........................................................................................................................................................................
12 Of course this presupposes an elasticity of substitution between the resource and the other inputs not

larger than one as implied by the Cobb-Douglas specification (1). Historical evidence for the US may
indicate otherwise (Nordhaus, 1992). In any event, it is difficult to predict the technological substitution

possibilities one century ahead.

Proposition 1 sharpens a remark made by Rebelo (1991, pp.518–19) on growth with a non-repro-
ducible factor (in a Cobb-Douglas technology); indeed, when the non-reproducible factor is a non-

renewable resource and n ¼ 0, to offset the diminishing resource use over time, � > 1 is needed, not just

�5 1 (as claimed by Rebelo).
13 Interestingly, in Stiglitz (1974) there is, on p.131, a short remark on feasible growth paths in the case of

increasing returns ð�þ � þ � > 1Þ. That remark is close to the ‘only if ’ part of our Proposition 1, but

ignores implicitly the possibility of � > 1; hence, (strictly) endogenous growth is precluded. The same

applies to Withagen (1990, p.391).
14 Indeed, for � > 1 it turns out that any positive constant consumption growth rate is technically

feasible (Groth, 2001); though not implying infinite output in finite time (as would be the case if, in
addition to � > 1, � ¼ 0), this still sounds too good to be true (to paraphrase Solow, 1994b, p.377).
15 If either " > 1 or UðcÞ ¼ ln c (corresponding to " ¼ 1), the restriction on C � cN in (4) should read

C > 0.



H ¼ c1�" � 1

1 � "
N þ 
1ðFðK;N;RÞ � cN � 	KÞ � 
2R ð15Þ

where 
1 and 
2 are the co-state variables associated with physical capital and the
resource stock, respectively. Necessary conditions for an interior solution are given

by the following first order and transversality conditions

c�" ¼ 
1 ð16Þ

1FR ¼ 
2 ð17Þ

_

1 ¼ �ðFK � 	Þ
1 þ �
1 ð18Þ
_

2 ¼ �
2 ð19Þ

lim
t!1

e��t
1K ¼ 0 ð20Þ

lim
t!1

e��t
2S ¼ 0 ð21Þ

We observe that (19) implies 
2 ¼ 
2ð0Þe�t : Inserting this into (21) gives

limt!1 
2ð0ÞS ¼ 0; which, since 
2ð0Þ > 0; from (17) and (16), is equivalent to

lim
t!1

S ¼ 0 ð22Þ

saying that optimality requires, of course, that no finite part of the resource stock

will be left unused forever.
Differentiating (16) logarithmically with respect to time and combining with

(18) gives the Keynes-Ramsey Rule

gc ¼
1

"
ðFK � 	 � �Þ ¼ 1

"
ð�z � 	 � �Þ ð23Þ

where the last equality comes from using the Cobb-Douglas specification of F and
the definition z � Y=K: Similarly, differentiating (17) logarithmically with respect

to time and combining with (18) and (19) gives the Hotelling Rule for optimal

extraction of a non-renewable resource

_FFR

FR

¼ FK � 	 or gY � gR ¼ �z � 	 ð24Þ

using again the Cobb-Douglas specification of F:

3.1 Optimal steady states

Because of the wide parameter range and the drag on growth implied by the

diminishing resource use, the analysis is somewhat more complicated than usual

steady state analyses. In particular, we must pay attention to the definitional strict
positivity of certain key variables in a steady state (the output-capital ratio z, the

consumption-capital ratio x, and the extraction rate u). To put it differently, we

must keep track of the difference between a (true) steady state and the conceivable
asymptotic stationary states where z; x; and/or u approach zero.

We shall proceed step by step. First, a feasible path satisfying the first order

conditions (16)–(19) will be called an optimal growth candidate. An optimal
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growth candidate must satisfy the transversality conditions (20) and (21) to be an
optimal growth path.

Lemma 4 Let (C;Y ;K;R; SÞ1t¼0 be an optimal growth candidate such that limt!1
gC ¼ limt!1 gY ¼ limt!1 gK ¼ �gg. Then: (a) for some �ggR 4 0; limt!1 gR ¼ �ggR;

and �gg and �ggR satisfy

ð1 � �Þ�gg � ��ggR ¼ �n ð25Þ

ð"� 1Þ�gg þ �ggR ¼ "n � � ð26Þ
and (b) if, in addition, the transversality conditions (20) and (21) hold, then

limt!1 gS ¼ �ggR < 0:

Proof See Supplementary material. &

In Section 2 we defined a BGP as a feasible path along which Y ;K;C;R; and S are

positive and change with constant (though not necessarily positive) rates. It is

useful to introduce the slightly more general concept of an asymptotic path.
A feasible path (C;Y ;K;R; SÞ1t¼0 is called an asymptotic path if there exists

constants �ggC , �ggY , �ggK , �ggR; and �ggS; such that along the path (C;Y ;K;R; SÞ1t¼0,

(gC; gY ; gK ; gR; gSÞ ! (�ggC; �ggY ; �ggK ; �ggR; �ggSÞ for t ! 1: Similarly, an optimal growth
candidate which is an asymptotic path will be called an asymptotic optimal growth

candidate. The limiting growth rates �ggC; �ggY ; �ggK ; �ggR; and �ggS are called asymptotic
growth rates.

Lemma 5 Let (C;Y ;K;R; SÞ1t¼0 be an asymptotic optimal growth candidate with
asymptotic growth rates �ggC; �ggY ; �ggK ; �ggR; and �ggS: Assume �ggC ¼ �ggY ¼ �ggK ¼ �gg: Then:

(a) limt!1ðz; x; uÞ ¼ ð�zz; �xx; �uuÞ; where

�zz ¼ 1

�
ð�gg � �ggR þ 	Þ ð27Þ

�xx ¼ 1

�
�ð1 � �Þ�ggR þ �n þ ð1 � �Þ	½ � ð28Þ

�uu ¼ ��ggS ð29Þ
(b) �ggR 4 0: If �ggR < 0; then the transversality condition (20) is satisfied; and

(c) �ggS 4 0: If �ggS < 0; then the transversality condition (21) is satisfied.

Proof See Supplementary material. &

Corollary Under the conditions of (a) of Lemma 5, the following holds:

(i) �gg 5 �ggR � 	;
(ii) �zz > 0 if and only if �gg > �ggR � 	;

(iii) If �ggR < 0; then �xx > 0 if and only if either �4 1 or � > 1 ^
	 < �ð1 � �Þ�ggR=ð�� 1Þ þ �n=ð�� 1Þ.
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Proof (i) and (ii) By definition, �zz 5 0; hence, by (27), �gg 5 �ggR � 	 and �zz > 0 if and

only if �gg > �ggR � 	: (iii) When �ggR < 0; (28) implies that if and only if either �4 1

or � > 1 ^ 	 < ð1 � �Þ�ggR=ð1 � �Þ � �n=ð1 � �Þ, then �xx > 0. &

In Section 2 we noticed that a steady state, defined as a BGP such that z and x are

constant (in addition to u constant which is satisfied by any BGP); has gC ¼ gY ¼
gK ¼ g; a constant. Therefore, a steady state is well described by its constant values

of g; gR; z; x; and u; i.e. the quintuple (g*; gR*; z*; x*; u*Þ: Similarly, Lemma 5

implies that certain asymptotic paths with C;Y ; and K having the same asymptotic

growth rate �gg imply asymptotically constant z and x (and also asymptotically

constant u; triviallyÞ. In this case, the limiting state of the economy is well described

by a quintuple (�gg; �ggR; �zz; �xx; �uuÞ: The limiting state, (�gg; �ggR; �zz; �xx; �uuÞ; of an asymptotic

path such that: (i) C;Y ; and K have the same asymptotic growth rate �gg; and (ii) z

and x are asymptotically constant, will be called an asymptotic steady state. In

contrast to a (true) steady state, the asymptotic steady state associated with a

given asymptotic path need not itself be a feasible path (since �ggR; �zz; �xx; and/or �uu

could be zero); in addition, it need not have �uu ¼ ��ggR (though this equality must

hold for an optimal asymptotic path, cf. (29) and (b) of Lemma 4).

Lemma 5 and its corollary provide an easy way to check whether an asymptotic

steady state satisfies the strict positivity conditions required by a (true) steady state

and the transversality conditions required by an optimal steady state. The useful-

ness of the criteria in the corollary derives from the fact that �ggR and �gg; as deter-

mined by (25) and (26), are independent of the rate of capital depreciation 	.

Further, the ‘only if ’ part in (iii) of the corollary points to the fact that if and

only if � > 1; then it is possible to choose 	 large enough such that an otherwise

valid asymptotic optimal growth candidate ends up having �xx < 0: On the other

hand, if 	 is ‘small’, then this problem cannot arise. (Since Stiglitz, 1974, and many

other papers assume � < 1 and/or 	 ¼ 0; the problem never arises there.) The

upper bound for 	 reflects the fact that, given gR; sustaining any given output

growth rate gY requires a certain amount of capital accumulation (net investment),

as shown in (11). Now, the replacement part of gross investment is an increasing

linear function of 	 and an arbitrarily large 	 would engender a risk that gross

investment absorbed total output, leaving no room for consumption, as shown in

(9); however, that risk cannot materialize as long as � < 1 since in that case, the

output-capital ratio z adjusts more than one to one to an increase in 	; by the

Hotelling Rule (24).

With respect to (27) of Lemma 5, and (i) and (ii) of its corollary, given gR;

consistency with the Hotelling Rule implies that for the return on capital (�z � 	Þ
and the return on leaving the marginal unit of the resource in the ground to be

simultaneously positive (indeed equal to each other), a not too negative rate of

output growth is required.

Explicit solutions for the growth rates can be derived from (25) and (26). Let D

be the determinant of that linear system
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D � 1 � �þ ð"� 1Þ� ð30Þ
Observe that the determinant does not depend on �; �; n; and 	: Now, let us
concentrate on the generic case D 6¼ 0: Indeed, D > 0 seems to be the most realistic

case since D4 0 requires a considerable amount of increasing returns

(�þ �5 1 þ "�Þ: But we will not a priori exclude the case D < 0 which, at least
from a theoretical point of view, deserves some interest because it implies very

different dynamics (as shown in the next section).16 Given D 6¼ 0, solving the

system (25) and (26) gives the following growth rates in an asymptotic steady state

�gg ¼ ð� þ �"Þn � ��

D
ð31Þ

�ggR ¼ "ð1 � �� �Þ þ �½ �n � ð1 � �Þ�
D

ð32Þ

Using these solutions we easily find the values of the output-capital ratio, the

consumption-capital ratio, and the resource extraction rate in an asymptotic steady

state, when D 6¼ 0. Inserting (31) and (32) into (27) gives

�zz ¼ ð�þ � þ � � 1Þ"n þ ð1 � �� �Þ�
�D

þ 	

�
ð33Þ

By (32) and (28)

�xx ¼ "ð�þ � þ � � 1 � ��Þ � ��½ �n þ ð1 � �Þð1 � �Þ�
�D

þ 1 � �

�
	 ð34Þ

Finally, in an asymptotic steady state with �ggS ¼ �ggR, we have, from (10) and (32)

�uu ¼ ��ggR ¼ "ð�þ � � 1Þ � �½ �n þ ð1 � �Þ�
D

ð35Þ

The expressions (31), (32), (33), (34), and (35) are straightforward generaliza-

tions of corresponding expressions in Stiglitz (1974). The interesting question is

how the larger range allowed for the parameters affects the existence and character
of optimal steady states, remembering that a candidate path, to be a (true) steady

state, must have the output-capital ratio, the consumption-capital ratio, and the

resource extraction rate strictly positive. We may summarize the answer to the
existence question in the following proposition.

Proposition 2 Given the model (1)–(5) and (14), assume D � 1 � � þ
ð"� 1Þ� 6¼ 0: Let �gg, �ggR, �zz, �xx, and �uu be defined as in (31), (32), (33), (34), and

(35), respectively. Then: (a) there exists a steady state (g*; gR*; z*; x*; u*Þ fulfilling
the first-order and transversality conditions above if and only if the parameters

�; �; �; "; �; n; and 	 take values such that: (i) �ggR < 0; (ii) �zz > 0; and (iii) either

�4 1 or � > 1 ^ 	 < �ð1 � �Þ�ggR=ð�� 1Þ þ �n=ð�� 1Þ. This set of parameter
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�n ¼ ��ð"n � �Þ. In most of this paper we will assume D 6¼ 0. In Stiglitz (1974), since

�þ � þ � ¼ 1, D > 0 always.



values has a non-empty interior; and (b) the steady state (g*; gR*; z*; x*; u*Þ is

unique and equal to (�gg; �ggR; �zz; �xx; �uuÞ.

Proof See Appendix.

Remark 1 In the special case, �þ � þ � ¼ 1; analysed by Stiglitz (1974), (a.ii) and

(a.iii) are automatically satisfied. In this case the only thing to check is (a.i).

Evidently, a case violating (a.i) for any � 2 ð0; 1Þ is: "n > � > n > 0; 0 < � < 1;

0 < �4 ð"n � �Þð1 � �Þ= ð"� 1Þn½ �: A case violating (a.ii) for any � 2 ð0; 1Þ and

any � > 0 is: n ¼ 	 ¼ 0; �þ � > 1; " > ð�þ � � 1Þ=�:

Remark 2 Proposition 2 speaks only of ‘a steady state fulfilling the first order and

transversality conditions’ and not of an optimal steady state. This is so because

outside the case �þ �4 1 we have not been able to prove that the steady state in

question is optimal (using Arrow’s sufficiency condition, see Supplementary

material). We conjecture that even for �þ � > 1 (at least as long as D > 0; i.e.,

�þ � < 1 þ "�Þ, a steady state growth path fulfilling the first-order and transvers-

ality conditions above is indeed optimal; alternatively, no optimal steady state exists.

Our focus will be on economic growth (or at least non-contraction). It turns out

in this case to be no serious limitation to restrict the attention to steady states (and

their transitional dynamics which is the topic of the next section) instead of

asymptotic steady states in general. Indeed, the following lemma shows that,

given an optimal asymptotic path with asymptotic steady state (�gg; �ggR; �zz; �xx; �uuÞ
such that �gg 5 0, then, generically, (�gg; �ggR; �zz; �xx; �uuÞ is a (true) steady state.17 Similarly,

because we focus on optimal growth, it is no limitation to restrict our attention to

steady states instead of balanced growth paths in general. In fact, any optimal BGP

is an optimal steady state:

Lemma 6 (a) given an optimal asymptotic path (C;Y ;K;R; SÞ1t¼0 with asymptotic

steady state (�gg; �ggR; �zz; �xx; �uuÞ; then: (i) �uu ¼ ��ggR > 0; (ii) �zz > 0 when �gg 5 0; and

(iii) �xx > 0; except in the knife-edge case where simultaneously � > 1 and

	 ¼ �ð1 � �Þ�ggR=ð�� 1Þ þ ð�n=�� 1Þ; and (b) given an optimal BGP (C, Y , K ,

R, SÞ1t¼0, then z; x; and u are constant and positive.

Proof See Supplementary material. &

In contrast to (a) of Lemma 6, when � ¼ 0 (zero rate of time preference) there

may exist asymptotic optimal paths with �gg ¼ �zz ¼ �xx ¼ �uu ¼ 0. For the case

�þ � þ � ¼ 1; 	 ¼ 0; no population growth, and no technical progress, this was
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n5 ��=ð� þ "�Þ is allowed if and only if ð1 � "Þ� < �. From an empirical point of view, this restriction

is hardly problematic.



shown by Solow (1974) and Dasgupta and Heal (1979, p. 303 ff.) under the proviso
that � > �; and " > ð1 � �Þ=ð�� �Þ:

Now, inserting (31) into (12) gives the per capita growth rate in a steady state

which satisfies the first order and transversality conditions

gc* ¼ g* � n ¼ ð�þ � þ � � 1Þn � ��

D
ð36Þ

Proposition 3 Given the model (1)–(5) and (14), assume D � 1 � � þ
ð"� 1Þ� 6¼ 0: Then there exists a steady state with gc* > 0, satisfying the first

order and transversality conditions, if and only if, in addition to (a.i) and (a.iii)

of Proposition 2, the parameters satisfy

ð�þ � þ � � 1Þn � ��

D
> 0 ð37Þ

Proof See Appendix. &

Corollary If D > 0; then a steady state, fulfilling the first order and transversality

conditions, has gc* > 0 if and only if

�þ � > 1 and n >
��

�þ � þ � � 1
ð38Þ

Proof Assume D > 0: Then, by (36), gc* > 0 , ð�þ � � 1Þn > �ð�� nÞ: Since
� > n; the last inequality is equivalent to (38). &

The implication of the corollary to Proposition 3 is that when D > 0; optimal
sustained per capita growth requires two things: increasing returns to capital and

labour together and a sufficient amount of population growth. From Proposition 1

we know that only either � > 1 or �þ � > 1 and n > 0 is needed to offset the
effects of the decreasing input of the natural resource and make sustained per capita

growth technically feasible. We conclude that there exist parameter constellations

such that sustained per capita growth is technically feasible, but not viable when
preferences involve utility discounting and consumption smoothing, both of which

bias the ‘growth incentive’ downwards. We defer an examination of an example of

this until after a presentation of the transitional dynamics.

3.2 Transitional dynamics

From (9) follows, using the identities x � C=K and z � Y=K

_xx ¼ ðgC � z þ x þ 	Þx ð39Þ

_zz ¼ ðgY � z þ x þ 	Þz ð40Þ
Inserting (9) and the Hotelling Rule, (24), into (11) yields

gY ¼ �z � �

1 � �
x þ �n þ ð� � �Þ	

1 � �
ð41Þ
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Using this expression in (40), we find

_zz ¼ ð�� 1Þz þ 1 � �� �

1 � �
x þ �n þ ð1 � �Þ	

1 � �

� �
z ð42Þ

Inserting gC ¼ gc þ n and the Keynes-Ramsey Rule, (23), into (39) gives

_xx ¼ �

"
� 1

�
z þ x � 	 þ �

"
þ n þ 	

� �
x

�
ð43Þ

Differentiating the identity u � R=S with respect to time and using (3), we get

_uu ¼ ðgR þ uÞu ð44Þ
By (24) and (41), this gives

_uu ¼ ��

1 � �
x þ �n þ ð1 � �Þ	

1 � �
þ u

� �
u ð45Þ

The dynamics of z; x; and u are completely described by the system (42), (43),
and (45). To get an overview, we will utilize the fact that the system is decom-

posable: (42) and (43) constitute a dynamical subsystem for z and x alone. In a

steady state, _zz ¼ _xx ¼ 0. We form the Jacobian evaluated in a steady state18

J ¼

@ _zz

@z

@ _zz

@x

@ _xx

@z

@ _xx

@x

2
664

3
775 ¼

ð�� 1Þz*
1 � �� �

1 � �
z*

�

"
� 1

� 

x* x*

2
64

3
75

The trace of J is ð�� 1Þz* þ x* ¼ �z* � g* � 	 ¼ �gR* > 0; by (9), (27), and (a.i)
of Proposition 2. Hence, at least one eigenvalue is positive (or has positive real

part). The determinant, �; of J is

� ¼ �
D

� � 1ð Þ" z*x* ð46Þ

where D is given by (30). � is negative (hence, implying real eigenvalues of
opposite sign) if and only if D > 0: In the case of constant returns to scale

(�þ � þ � ¼ 1Þ, the condition D > 0 is automatically satisfied. But as mentioned

in the previous section, if there is a sufficient amount of increasing returns with
respect to K and R; then D could be negative.

In Fig. 1, a phase diagram is drawn for a particular constellation of the par-

ameters satisfying inter alia n > 0; � > 1; and D > 0 (the last condition obtains
when " > � >� 1Þ: Since the growth rates of z and x are linear functions of z and x;

the isoclines _zz ¼ 0 and _xx ¼ 0 are straight lines.

In a neighbourhood of the steady state, along the saddle path (the stable mani-
fold) we have approximately

_zz ¼ �ðz � z*Þ ð47Þ

x ¼ f ðzÞ ð48Þ
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where the constant � is the negative eigenvalue of J, and f is a linear function that
can be determined by standard methods.

From this fact, we can construct a phase diagram in z and u (Fig. 2), using (47)

and (45), where x is replaced by f ðzÞ from (48). The Jacobian of this system,
evaluated in a steady state, has eigenvalues � and u* (� < 0 < u*Þ: The isoclines
_zz ¼ 0 and _uu ¼ 0 are straight lines.

Even though z; x; and u are all ‘jump variables’, by substituting uS for R in the
production function (1) we get

z ¼ AK��1N�u�S� ð49Þ
showing that, given K;N; and S; the values of z and u are not independent; indeed,
initially, with Kð0Þ ¼ K0;Nð0Þ ¼ N0; and Sð0Þ ¼ S0; we have u0 ¼ A�1=� K

ð1��Þ=�
0

L
��=�
0 S�1

0 z0
1=� � Bð0Þz1=�

0 : This boundary value condition is represented by the

stippled curve in Fig. 2. The intersection between this curve and the saddle-path
determines uniquely (at least locally) the initial values, z0 and u0, required for

convergence to the steady state. The unique intersection between the line z ¼ z0

and the saddle-path in Fig. 1 gives the required x0. Then the movement of the
economy over time is along the saddle-paths of Figs 1 and 2 towards the steady

state.19
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Fig. 1. Dynamics of z and x (when n > 0, � > 1, and D > 0).

..........................................................................................................................................................................
19 All other paths are either infeasible or sub-optimal. Indeed, these paths have the unstable manifold as
their asymptote. Therefore, either x ! 1 (in fact, x=z ! 1) for t ! 1 and then K becomes negative

in finite time, by (9). Or x ! 0 for t ! 1 in which case, by (45), _uu ! ½ð�n þ ð1 � �Þ	Þ=ð1 � �Þ þ u�u
for t ! 1; it follows (at least for 	 ‘small enough’) that either u ! 1 and the resource stock is

exhausted in finite time or u ! 0 and some of the resource is left totally unused for ever.



The slopes of the _xx ¼ 0 and the _zz ¼ 0 lines in Fig. 1 may be either positive or

negative, depending on the parameters; in the case shown, � is (slightly) above 1 so
that the slope of the _zz ¼ 0 line is positive (though less than 1) and " is sufficiently

above � so that the _xx ¼ 0 line is steeper than the _zz ¼ 0 line (which, when � > 1; is

required for stability of the steady state). The case shown in Fig. 2 is one of an
initially ‘resource-poor’ economy since Bð0Þz�1=� > u*: (In the opposite case, that

of a ‘resource-rich’ economy, the stippled curve would cross the saddle path to the

right of the steady-state point.)
In view of the boundary value condition arising from (49), we shall define the

original three-dimensional dynamical system as ‘saddle-point stable’ if and only if

its Jacobian has one negative eigenvalue and two positive eigenvalues (or two
eigenvalues with a positive real part). On the other hand, we shall call a dynamical

system totally unstable if all the eigenvalues are positive or have positive real parts.

Proposition 4 The dynamics of the model (1)–(5) and (14) is described by the

differential equations (42), (43), and (45). A steady state (z*; x*; u*Þ is saddle-

point stable if and only if Dð� 1 � �þ ð"� 1Þ�Þ > 0; and it is totally unstable
if D < 0:

Proof See Appendix. &

Corollary A saddle-point stable steady state has gc* > 0 if and only if

�þ � > 1 and n >
��

�þ � þ � � 1
ð50Þ
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Proof By the proposition, a saddle-point stable steady state has D > 0: Now use

the corollary to Proposition 3. &

Together, the Propositions 2 and 4 imply the existence of a stable steady state

even outside the range of parameter values examined in Stiglitz (1974).20 Indeed,

Figures 1 and 2 illustrate that the existence of this stable steady state is compatible

with values of � above unity, so that there can be increasing returns to scale with

respect to capital. Further, the implication of the corollary to Proposition 4 is that

stable optimal per capita growth calls for two features to be simultaneously present:

increasing returns to capital and labour taken together and a sufficient amount of

population growth.21 On the other hand, if D < 0 there exist parameter constella-

tions such that steady per capita growth is both technically feasible and satisfies the

first order and transversality conditions (arising from utility discounting and con-

sumption smoothing), but nevertheless the steady state is not stable: After a dis-

turbance in one of the predetermined variables, K;N; or S; it is not optimal for

(z; x; uÞ to move back to (z*; x*; u*Þ. The next section gives an example of this.

Before considering this example, we may relate the above results to the ongoing

discussion on endogenous growth. In the introduction we defined (strictly) endo-

genous growth as growth in per capita consumption in the long run at a positive

constant rate, even in the absence of any exogenously growing factor. Likewise,

weakly endogenous or semi-endogenous growth (as introduced by Groth, 1992,

and Jones, 1995) was defined as growth in per capita consumption in the long run

at a positive rate, even without any exogenously given technology growth. With

these definitions, Proposition 4 and its corollary have the following interesting

implications:

Main result For a Cobb-Douglas one-sector optimal growth model with non-

renewable natural resources, the following holds: (a) a stable steady state with

(strictly) endogenous growth does not exist, not even as a knife-edge case; (b) a
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20 As mentioned in footnote 13, Stiglitz has in his analysis of technically feasible growth paths a short
remark on the case �þ � þ � > 1, but the CRS assumption ð�þ � þ � ¼ 1Þ is maintained throughout

his analysis of existence and stability of optimal growth.
21 One of the models examined in Aghion and Howitt (1998, pp.162–3) is an AK model with a non-
renewable resource ð� ¼ 1, � > 0Þ. In that model, however, labour does not appear in the production

function ð� ¼ 0Þ. Because of this specification, positive long-run growth is not possible. By introducing

population growth and an explicit productive role for labour, the present model reverses this result

(without violating stability).
Aghion and Howitt carry on with another model based on what they call a Schumpeterian approach

to non-renewable resources (Aghion and Howitt 1998, pp.163–4). Here the economy has two sectors, a

manufacturing sector and an R&D sector, both with constant returns to scale to producible inputs. The
authors find that now growth is possible (without population growth) and they ascribe this to the

Schumpeterian approach as distinct from the AK approach. In our view, the key is rather that the

‘growth engine’ (the R&D sector) is modelled without any dependence on the resource (not even

indirectly since the R&D sector does not use capital).



stable steady state22 with semi-endogenous growth exists if and only if (i)

�þ � < 1 þ "� (i.e. D > 0Þ; and (ii) there is simultaneously increasing returns

to capital and labour taken together and enough population growth. Numerical

example: � ¼ 0:90; � ¼ 0:25; � ¼ 0:02; � ¼ 0:01; n ¼ 0:01; " ¼ 2:00, and 	 arbi-

trary; then the steady state is stable and has gc* ¼ 0:013; and (c) semi-endogenous

growth features the property (similar to that of strictly endogenous growth) that

the long-run per capita growth rate depends on technology as well as preference

parameters.23

This last observation, which follows from (36), allows a potential for tax and

subsidy policies to influence not only the ‘level’ along which growth occurs, but

also the long-run growth rate in a market economy.24 This is in contrast to con-

ventional semi-endogenous growth models (e.g. those surveyed in Eicher and

Turnovsky 1999) where policy has only level effects. This difference derives from

the fact that in these models non-renewable resources do not enter the growth engine.

4. The Case of no population growth
To get a more concrete picture of the character of steady states that are unstable, let

us study the special case of no population growth. Unless otherwise indicated,

when speaking of a ‘steady state’ we still understand a steady state satisfying the

first order and transversality conditions.

Proposition 5 Assume n ¼ 0. Then: (a) in view of � > 0; there can be no steady

state with gc* ¼ 0: When Dð� 1 � �þ ð"� 1Þ�Þ ¼ 0; there exists no steady state at

all; (b) when D 6¼ 0, there exists a steady state with gc* > 0 if and only if � > 1;

D < 0; and 	 < �ð1 � �Þ�=D; and (c) a steady state with gc* > 0 is totally unstable.

Proof See Appendix.

We already know from Proposition 1 that when n ¼ 0; the mere technical

feasibility of sustained growth requires the strong assumption of increasing returns

to capital ð� > 1Þ: But as Proposition 5 reminds us, the realization of this potential

growth depends on preferences. The aversion towards consumption variation (that

is the elasticity of marginal substitution, "Þ must be not too large (since D < 0

requires " < 1 þ ð�� 1Þ=�Þ: And, given the positive rate of time preference, �; the

drain of investment represented by capital depreciation must not be too large.
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mentioned in Remark 2 to Proposition 2 should be kept in mind.
23 Stiglitz (1974) shows this feature to hold in the case where �þ � þ � ¼ 1 with exogenous technical

progress.
24 In Groth and Schou (2001) the potential for economic policy are explored in detail.



The requirement of increasing returns to capital is due to the fact that � > 1 is
needed to make the Keynes-Ramsey Rule support sustained growth when n ¼ 0. If,

on the contrary, �4 1; then the marginal product of capital tends to zero as capital

accumulates, labour input stays constant, and resource use diminishes.
In any case, due to its lack of stability, the steady state with growth is not very

appealing. Its realization requires appropriate initial conditions to be satisfied.

Indeed, for any given K0 and N0; S0 should satisfy the boundary value condition

K0
��1N0

�S0
� ¼ z*u*�� ð51Þ

from (49). Consider the following thought experiment where, for ease of exposi-
tion, we let 	 ¼ 0 (in addition to n ¼ 0Þ: Suppose, that by some exceptional coin-

cidence the economy has been in the steady state (z*; x*; u*Þ until time t1; that is, in

(z; uÞ space, the point ðz*; u*Þ in Fig. 3. In the corresponding phase diagram for z
and x (which we don’t show), the steady state point (z*; x*Þ is a source (totally

unstable). Figure 3 presupposes z ¼ z* and x ¼ x* for all t < t1: Then an unfore-

seen shift upwards in the rate of time preference � occurs, implying that z*; x*; and

u* shift upwards in the same proportion, as shown by (33), (34), and (35) with
n ¼ 	 ¼ 0, i.e. the shift would be along a line like OA in Fig. 3. Imagine for a

moment that the jump variables z and x immediately shift to their new steady state

values z� 0 and x� 0. The arrows in Fig. 3 show the direction of movement of u after
t1 according to the differential equation _uu ¼ ð��x� 0=ð1 � �Þ þ uÞu which is the

same as (45) when n ¼ 0 ¼ 	 and (z; xÞ ¼ ðz� 0; x� 0Þ: This implies a vertical move-

ment upwards starting at the point B in Fig. 3 (B is the point where the stippled
curve representing the boundary value condition (51), with z* and x* replaced by z

and x; respectively, crosses the vertical line z ¼ z� 0Þ: The increasing extraction rate
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Fig. 3. Dynamics of u in the unstable case n ¼ 0 (and 	 ¼ 0).



u will cause the resource stock to be exhausted in finite time which cannot be
optimal. In the opposite case where at time t1 the rate of time preference � shifts

downwards, the point B would be below the new steady state point (z� 0; u� 0Þ so that

the resulting movement of u will be downwards leaving some of the resource stock
totally unused forever. Therefore, the provisional assumption that at time t1; z, and

x shift to their new steady state values is refused; after a disturbance the economy

does not return to the (new) steady state.
The lesson to be learnt from this is that not only does a desire for consumption

smoothing combined with utility discounting restrict the viability of sustained

growth; it also excludes stability of such paths when n ¼ 0.
We conclude that when non-renewable resources enter the growth engine in an

essential way strictly endogenous stable growth does not exist, not even as a knife-

edge case. One might alternatively say that a knife-edge reappears in a different and
even more precarious form: Steady growth without the exogenous stimulus of

population growth requires not only the strong assumption of � > 1; but also

that the initial conditions exactly ‘match’ the steady state conditions as shown by
(51).25

A further problem is the well-known fact that when there is instability, com-

parative statics do not give fruitful results. Indeed, in the present case we get
paradoxical results such as: More impatience leads to higher consumption

growth, a higher elasticity of marginal utility leads to larger differences in the

consumption level over time, etc.26 Due to the instability of the steady state with
growth, such comparative statics are not useful.

5. Conclusion
We have studied a Cobb-Douglas one-sector optimal growth model with non-

renewable resources and no exogenous technical progress. A stable steady state

exists for a larger range of parameter values than examined in Stiglitz (1974).
Indeed, the existence and stability of a steady state is shown to be compatible with

increasing returns to the reproducible factor, capital. A high output elasticity of

capital need not lead to explosive growth paths because the increasing need to use
the natural resource sparingly has a counter-balancing effect. However, population
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25 The implication we want to draw is not that absence of population growth necessarily makes an
economy unstable, but rather that one should not expect continuing exponential growth if the real world

in the long run is characterized by (i) an elasticity of substituion between non-renewable resources and

other inputs not above one; (ii) a strictly positive rate of time preference, and (iii) a non-increasing

population and no exogenous technical progress.
26 The same kind of ‘pathological’ behaviour is implied by the Chiarella model (Chiarella, 1980), men-

tioned in the introduction. The paper is an early endogenous growth contribution with an R&D sector
which indirectly depends on inputs of a non-renewable resource. Having no population growth, the

model can be seen as an extension of the case considered here. The dynamics of the model is, however,

complex and its analysis not complete. Seemingly, the steady state is unstable though the author claims

the contrary.



growth is a necessary condition for stable sustained per capita growth. This means that
the extended Stiglitz optimal growth model presented in this paper does not underpin

endogenous growth in the strict sense of the word, i.e. the model cannot generate

positive and stable per capita growth without relying on population growth.
Therefore, the challenge of generating a generic model with strictly endogenous

growth is not met by simply including non-renewable resources as necessary inputs

in production. On the contrary, in this setting the knife-edge problem of endo-
genous growth is turned into a stability problem unless there is population growth.

Hence, to the extent that the presence of such indispensable natural resources in a

macro production function is considered realistic, the analysis has identified a new
problem for the concept of strictly endogenous growth: It does not seem possible to

have stable, strictly endogenous growth when non-renewable resources enter the

growth engine in an essential way. This also applies, then, to market economies if
they are considered to be replica, through tax and subsidy interventions, of social

optima.

It is a possibility (but we think an unlikely one) that this negative conclusion
could change in a multi-sector model where the reproducible asset(s) generating

growth would depend on the resource (possibly indirectly). (The multi-sector

endogenous growth models with non-renewable resources mentioned in the intro-
duction all share the feature that the growth engine is not dependent on the

resource).27 This problem is left for future research. Similarly, it would be inter-

esting to extend the analysis to cover the case where capital is required in order to
exploit the natural resource.

The more positive aspect of our analysis is its calling attention to semi-endogen-

ous growth. The semi-endogenous framework requires a less extreme value of the
share of producible inputs in production. We showed that with non-renewable

resources entering the growth engine, existence and stability of optimal sustained

per capita growth requires only increasing returns to capital and labour taken
together—albeit combined with population growth above some minimum. In

this setting semi-endogenous growth features the property that the long-run per

capita growth rate depends on technology as well as preference parameters, a
property which has often been seen as belonging exclusively to models of strictly

endogenous growth.

Supplementary material
Supplementary material can be found at http: //www.oep.oupjournals.org/cgi/data/

54/3/386/DC1/1
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Appendix
Proof of Proposition 2

By definition of a steady state, z and x are constant; hence, gC ¼ gY ¼ gK ¼ g; a constant. In
addition, being a special case of a BGP, a steady state has gS constant and gS ¼ gR < 0, from
Lemma 1. (b) Therefore, the conditions of Lemma 5 are satisfied by an optimal steady state,
(g*; gR*; z*; x*; u*Þ; if one exists, and given D 6¼ 0; it equals (�gg; �ggR; �zz; �xx; �uuÞ; hence it is unique.
(a) By definition, a steady state requires �uu; �zz; and �xx > 0. Hence, the ‘only if ’ part of
(a) follows from (29) (since �ggS ¼ �ggR < 0Þ and (28) of Lemma 5, (28) giving �xx > 0 only if
(a.iii) holds. On the other hand, suppose �; �; �; "; �; n; and 	 are such that (a.i), (a.ii),
and (a.iii) hold. Then, by the corollary to Lemma 5, �xx > 0: We can now construct a BGP
satisfying the first order conditions by determining �gg from (27) and putting gC ¼ gY ¼
gK ¼ �gg and gS ¼ ��uu ¼ �ggR < 0 . By (b) and (c) of Lemma 5, the two transversality conditions
also hold. This proves the ‘if ’-part. Finally, to see that the set of allowed parameter values has
a non-empty interior, let �; �; and � be such that �þ � þ � ¼ 1; then �zz > 0; D > 0; in
addition, let 0 < n < ð1 � �Þ�= "ð1 � �� �Þ þ �½ �; then �uu ¼ ��ggR > 0; and �xx > 0 by the
corollary to Lemma 5, since � < 1: &

Proof of Proposition 3

We already know from Proposition 2 that a steady state, fulfilling the first order and
transversality conditions, exists if and only if (a.i), (a.ii), and (a.iii) of Proposition 2 are
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satisfied. In such a steady state, by (36), gc* > 0 if and only if (37) holds. Finally, from (a) of
Lemma 6 we see that (a.ii) of Proposition 2 is automatically satisfied when gc* > 0 since this
implies �gg ¼ gc* þ n > 0: &

Proof of Proposition 4

The Jacobian of the dynamical system for z; x; and u, evaluated at the steady state, is

�JJ ¼

@ _zz

@z

@ _zz

@x

@ _zz

@u

@ _xx

@z

@ _xx

@x

@ _xx

@u

@ _uu

@z

@ _uu

@x

@ _uu

@u

2
66666664

3
77777775
¼

ð�� 1Þz*
1 � �� �

1 � �
z* 0

�

"
� 1

� 

x* x* 0

0
��

1 � �
u* u*

2
666664

3
777775

ðA1Þ

The trace is

ð�� 1Þz* þ x* þ u* ¼ 2u* > 0 ðA2Þ
by (9), (27), and Proposition 2. The determinant, ���; is

��� ¼ �
1 � �þ ð"� 1Þ�

� � 1ð Þ" z*x*u* � �
D

� � 1ð Þ" z*x*u* ðA3Þ

From (A1) we see that u* is an eigenvalue, i.e. at least one eigenvalue is real and positive. If
and only if D > 0; then ��� < 0. Hence, if and only if D > 0; there will be one negative
eigenvalue and two positive real eigenvalues. In view of the boundary value condition (49)
this implies saddle-point stability.

Assume, on the contrary, D < 0: Then ��� > 0, and on the face of it there are two

possible cases: either all three eigenvalues are positive (or have positive real part) or
there is one positive eigenvalue and two eigenvalues with non-positive real part.

But this last-mentioned case can be excluded since the trace of the upper left 2 � 2
submatrix of �JJ equals �gR* ¼ u* > 0 as shown in Section 3.2. Hence, the system is

totally unstable. &

Proof of Proposition 5 (the case n ¼ 0)

Assume n ¼ 0: (a) If D 6¼ 0; then gc* 6¼ 0; from (36). If D ¼ 0; then (25) and (26) imply non-
existence of a steady state when n ¼ 0: (b) The statement is a special case of Proposition 3.
Indeed, (37) shows: gc* > 0 , ���=D > 0 , D < 0: When D < 0, by (32), gR* < 0 ,
� > 1. Furthermore, for D < 0 and � > 1; by (34), x* > 0 , 	 < �ð1 � �ÞgR*=ð�� 1Þ
, 	 < ð1 � �Þ�=ð�DÞ from (32): (c) From (b), a steady state with gc* > 0 presupposes
D < 0: Then, by Proposition 4, the steady state is completely unstable. &
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