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Abstract

In their landmark paper [1], Bray and Savin note that the constant parameters model used by their

agents to form expectations is misspecified and that, using standard econometric techniques, agents may be

able to determine the time-varying nature of the model’s parameters. Here, we consider the same type of

model as employed by Bray and Savin except that our agents form expectations using a perceived model

with parameters which vary with time. We assume agents use the Kalman filter to form estimates of these

time-varying parameters. We find that, under certain restrictions on the structure of the stochastic process

and on the value of the stability parameter, the model will converge to its rational expectations equilibrium.

Further, the restrictions on the stability parameter required for convergence are identical to those found by

Bray and Savin.

1 Introduction

Modern stochastic macroeconomic models typically include, among the factors governing their dy-

namics, dependence upon the predicted values of endogenous variables. The standard method of

analysis of such models comes from the theory of rational expectations. According to this theory,

economic agents are assumed to form predictions using conditional mathematical expectations; when

these conditional expectations are formed with respect to the distributions of the actual stochas-

tic processes generating the data, the economy is said to be in a rational expectations equilibrium

(REE). This notion of equilibrium is well established as the discipline’s benchmark; however, it is

not without criticism. In [3], Evans and Honkapohja note on page 453,
∗I would like to thank George Evans for many valuable discussions. All errors are mine.
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rational expectations . . . assumes that agents know the true economic model generating

the data and implicitly assumes coordination of expectations by the agents.

Further, examples of macroeconomic models with multiple rational expectations equilibria are abun-

dant; the theory gives no indication as to which equilibrium is likely to govern the behavior of the

economy. To address these criticisms, some economists choose to weaken the notion of rationality.

Instead of assuming agents know the true economic model generating the data, researchers assume

agents are boundedly rational. The manifestation of this assumption in models of statistical learning

is that agents know the structure of the rational expectations equilibrium and form estimates of the

relevant parameters adaptively, using statistical algorithms. With these estimates, agents form their

expectations of the values of the endogenous variables. One can then consider whether the economy

eventually approaches a rational expectations equilibrium, that is, do the parameter estimates even-

tually converge (in some probabilistic sense) to the corresponding rational expectations equilibrium

parameter values.

The first authors to consider such a model were Bray and Savin. In their landmark paper

[1], they showed that if the economy is governed by a simple cobweb model, and if agents have a

perceived model of the same linear functional form as the rational expectations equilibrium, and

if agents estimate the parameters of this model using ordinary least squares, then the estimates

indeed converge to the associated REE values, for appropriate values of the stability parameter.

Their method of proof was quite technical and based on the theory of Martingales. Marcet and

Sargent, [7], were able to extend this result to more general linear models using Ljung’s theory on

recursive stochastic algorithms, [6]. Evans and Honkapohja derived a Ljung type result designed

specifically for application to economic models and subsequently extended these convergence results

to multivariate linear models. See [4] for details. Much further work has been done. For a survey

and brief history see [3].

All the results mentioned in the previous paragraph are derived assuming agents use OLS as

their method of estimation. Implicit, then, is the presumption by agents that the parameters of the

model are constant. However, since the estimates themselves necessarily affect the true values of the

parameters, these constant parameter beliefs by agents are erroneous. Bray and Savin knew this to

be a concern and used simulations to consider whether agents could detect the time-varying nature

of the parameters. They found that for certain initial conditions and parameter values, agents may

in fact determine that the model is misspecified. Since it may be possible for agents to realize
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that the parameters are not constant, it is important to analyze models in which agents believe the

parameter values vary with time, thus the topic of this paper.

The behavior of an economic model based on agents with time-varying parameter beliefs has

been considered by Jim Bullard, [2]. Bullard uses a general linear reduced form model, of which the

above mentioned cobweb model is a special case, to show that if agents believe the parameters of the

perceived model follow a random walk with i.i.d. noise term, then the economy never converges to

the REE. This result is not surprising: if agents believe the parameters of the economy will not settle

down, then their estimates of these parameters will not settle down because the agents will always

attribute some of the noise in the model to movement in the parameter values. We conclude that for

convergence to a rational expectations equilibrium to occur, the agents must believe the conditional

variance of the time-varying parameters decreases to zero.1 And this is a natural assumption for the

agents to make. In particular, if agents initially use OLS to form their estimates, then the results of

Bray and Savin tell us that the conditional variance of the process describing the actual parameters

will decrease to zero.2

In this paper, we analyze the asymptotic behavior of an economy described by a simple cob-

web model with agents who have time-varying parameter beliefs. We find that if they believe the

parameters of the economy follow a random walk, and if the conditional variance of this random

walk decreases rapidly enough, then convergence to the rational expectations equilibrium obtains

for appropriate values of the stability parameter.

This paper is organized as follows: Section 2 begins with a review of the simple cobweb model

and results of Bray and Savin and then presents the modification of the model which allows for time-

varying parameter beliefs. A change of variables is presented which allows for simpler analysis of

the stochastic processes. The main result of the paper ends the section. In Section 3 a more general

cobweb model is considered and tools from the theory of stochastic approximation are used to show

convergence in this case. A connection with E-stability is also discussed. Section 4 concludes. Most

of the technical proofs are relegated to the Appendices.
1This conclusion is explained more fully in Section 2 below.
2Margaritis, [8] also considers a model with time-varying parameters. For convergence to a point to obtain, his

results require that the gain of the adaptive algorithm tends to zero. As we note in Section 2.2.2, and as was shown

by Bullard in [2], this can not hold in our model if the conditional variance of the time-varying parameters is positive

definite.
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2 Bray and Savin’s Cobweb Model

2.1 Constant Parameter Beliefs

In this section, we consider the same cobweb model as analyzed by Bray and Savin. The reduced

form of this model is3

yt = x′tm+ aE
∗
t yt + νt, (1)

where yt is the endogenous variable, xt ∈ Rn is an exogenous i.i.d. process observed at time t,

the first component of which is 1, νt is an unobserved white noise shock, and E∗
t yt is the agents’

expectation of the value of yt formed using information up to and including time t. The model is

closed by specifying the form of the expectations operator. Provided agents behavior rationally,

E∗
t yt = E (yt|Ωt) ,

where Ωt represents the agents’ information set. The unique rational expectations equilibrium, that

is, the final form of the model consistent with the assumption of rationality, is then easily computed

to be

yt = x′t

(
m

1− a
)
+ νt.

To weaken the assumption of rationality and subsequently incorporate learning into their model,

Bray and Savin postulate agents believe

yt = x′tβ + εt

but are unaware of the value of β. Further, Bray and Savin assume their agents use OLS to estimate

β and then use this estimate to form their expectations. Specifically, let bt be the OLS estimate

of β using data (x1, y1), · · ·, (xt, yt). Then E∗
t yt = x′tbt−1. Agents’ expectations feed back into the

reduced form model, (1), to yield the actual data generating process

yt = x′t(m+ abt−1) + νt. (2)

Notice the parameter modifying xt, namely (m+abt−1), is time dependant, contrary to the assump-

tion of the agents.

To complete their analysis, Bray and Savin use recursive least squares, together with true process

(2), to write the sequence of estimators, bt, as

bt = (I + (a− 1)1
t
Vtxtx

′
t)bt−1 +

1
t
Vtxtx

′
tm+

1
t
Vtxtut,

3For a careful derivation of this reduced form, see [1].
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where Vt = t
(∑t

i=1 xix
′
i

)−1

. Their main result is as follows.

Theorem 1 (Bray and Savin, 1986) If a < 1 then bt → m
1−a almost surely.

It is important for our work to observe that the proof of this theorem does not rely on the structure

of the process Vt, but only that it converges to (Extx
′
t)

−1 almost surely.

2.2 Time-Varying Parameter Beliefs

In this section we alter the model of Bray and Savin by allowing the parameters of the agents’

perceived model to vary with time. We then attempt to analyze the resulting asymptotic behavior

of the economy. This analysis requires imposing a structure on the believed process describing the

time-varying parameters. Here we consider the process to be a random walk with potentially variable

conditional variance. The reasons for choosing a random walk are fourfold: first, a random walk is

a standard model of time-varying parameters; second, it is consistent with the learning literature,

see, for example, [2]; third, if the conditional variance is zero then the random walk reduces to

the constant parameter model considered by Bray and Savin; and fourth, its simplicity allows for

analytic tractability.

We modify Bray and Savin’s model as follows. Assume agents believe

yt = β′txt + εt

βt+1 = βt + ηt

and that xt and βt are independent. We assume var(ηt) is positive definite. Denote by bt the

estimate of βt+1 using data available at time t. Then Etyt = b′t−1xt.4 Inserting this into equation

(1) yields the true data generating process

yt = (m+ αbt−1)′xt + ut. (3)

Given agents’ beliefs, the Kalman filter is a natural estimator for bt5. The recursions for the filter
4Agents are free to use xt in their estimation of bt−1 but the independence assumption made above implies that

the realization of xt will not alter their estimates.
5If the xt and ut are normal, it is the optimal estimator.
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are given by

Kt = Pt−1[σ2 + x′tPt−1xt]−1 (4)

bt = bt−1 +Ktxt[yt − b′t−1xt] (5)

Pt = Pt−1 −Ktxtx
′
tPt−1 + var(ηt) (6)

where yt is given by (3). Like Bray and Savin, our goal is to analyze the process bt and determine

under what conditions it converges to m
1−a .

We first prove a few results concerning the process Pt. Because it will be used repeatedly, we

state the well known matrix inversion lemma here.

Lemma 2 Let W,X, Y, Z be conformable matrices. Then, provided the indicated inverses exist,

[W +XY Z]−1 =W−1 −W−1X [ZW−1X + Y −1]−1ZW−1.

Lemma 3 The matrix Pt is symmetric and positive definite provided P0 is positive definite.

Proof. This is surely well known, but we provide a proof here for completeness. The proof is by

induction. Since var(ηt) is symmetric and positive definite, equation (6) shows it suffices to prove

Pt−1 − Pt−1xtD
−1x′tPt−1

is symmetric and positive definite, where D = σ2+x′tPt−1xt > 0. Symmetry is trivial. By induction,

the matrix inversion lemma may be applied to show

[Pt−1 −Ktxtx
′
tPt−1]

−1 = P−1
t−1 +

xtx
′
t

σ2

thus showing [Pt−1 −Ktxtx
′
tPt−1]

−1 is positive definite and the result follows.

Lemma 4 [Pt − var(ηt)]
−1 = P−1

t−1 +
1

σ2 xtx
′
t.

Proof. It is not obvious that Pt − var(ηt) is invertible. However, since Pt−1 is invertible, Lemma 2

applies to the expression Pt−1 − Pt−1xtDx
′
tPt−1 and the result follows by induction.

We now transform the Kalman filter recursions so that the proof of Bray and Savin may be

applied directly. To this end, set

Rt =
σ2

t

[
P−1

t−1 +
1
σ2
xtx

′
t

]
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Note that by the above lemmas, Rt is symmetric and positive definite6.

Lemma 5 1
tR

−1
t xt = Ktxt.

Proof. This is simply algebra. Notice, by Lemma 4

1
t
R−1

t =
1
σ2
(Pt − var(ηt)) (7)

which, by recursion (6), shows

1
t
R−1

t xt =
1
σ2

[
Pt−1 − Pt−1xtD

−1x′tPt−1

]
xt

=
1
σ2
D−1

[
Pt−1xt

[
σ2 + x′tPt−1xt

] − Pt−1xtx
′
tPt−1xt

]

= D−1Pt−1xt = Ktxt.

This lemma allows us to write equation (6) as

bt = bt−1 +
1
t
R−1

t xt

[
yt − b′t−1xt

]
. (8)

Notice that if Rt = 1
t

∑
xix

′
i then equation (8) coincides with the RLS estimator of the linear

model yt = β′xt + εt. Furthermore, using the substitution Vt = R−1
t , and plugging in the true

data generating process (3), we see that recursion (8) is identical to recursion (2), up to the process

Vt. As we mentioned previously, the proof of Bray and Savin’s main result depended not on the

specific process Vt, but only its almost sure convergence to (Extx
′
t)−1. Thus, to show almost sure

convergence of the process (8) to m
1−a , it suffices to show Rt converges to Extx

′
t almost surely.

Analysis of Rt is simplified using the following result.

Lemma 6 The recursion for Rt may be written

ρt(Rt−1, var(ηt−1)) = − t(t− 1)
2

σ2
Rt−1

[
t− 1
σ2

Rt−1 + var(ηt−1)−1

]−1

Rt−1 (9)

Rt = Rt−1 +
1
t
(xtx

′
t −Rt−1) +

1
t2
ρt(Rt−1, var(ηt−1)). (10)

Proof. Recall

Rt =
σ2

t

[
P−1

t−1 +
1
σ2
xtx

′
t

]
.

6This variable transform was used by Margaritis, [8]
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Also, by (7),

P−1
t−1 =

[
σ2

t− 1R
−1
t−1 + var(ηt−1)

]−1

.

Now simply apply Lemma 2 to complete the proof.

2.2.1 Back To Bray and Savin

Bray and Savin considered the case in which agents believed the parameters of the model to be

constant. This is equivalent to the agents in our model believing that var(ηt) = 0. However, while

Bray and Savin’s agents used OLS to form their estimates, our agents use the Kalman filter. In this

subsection, we show these estimators are equivalent.7 This is not difficult. Indeed,

lim‖var(ηt−1)‖→0 (ρt(Rt−1, var(ηt−1))) =

lim‖var(ηt−1)‖→0

(
t(t−1)2

σ2 Rt−1var(ηt−1)
[

t−1
σ2 Rt−1var(ηt−1) + I

]−1
Rt−1

)
= 0

The recursions defining the Kalman filter estimator, then, reduce to

yt = (m+ αbt−1)′xt + ut

bt = bt−1 +
1
t
R−1

t xt

[
yt − b′t−1xt

]

Rt = Rt−1 +
1
t
(xtx

′
t −Rt−1).

These recursions are the same as those obtained by Bray and Savin and show that their model is a

special case of the model we consider here.

2.2.2 The Bullard Result

In [2], Bullard showed, for a class of models which includes ours, that if agents believe the parameters

of the perceived model to follow a random walk and if the conditional variance of the random walk

is constant, then convergence to REE can not obtain. The idea behind this result is quite simple.

For convergence to obtain (and to apply the main results of the theory of stochastic approximation)

it must be the case that the gain of the algorithm goes to zero. In the Kalman filter recursions, this

gain is represented by

Kt = Pt−1[σ2 + x′tPt−1xt]−1.

7This type of equivalence was noted in a different model by Bullard, [2].
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For this term to go to zero (almost surely) it must happen that Pt, as given by

Pt = Pt−1 −Ktxtx
′
tPt−1 + var(ηt),

goes to zero (almost surely). But if var(ηt) = Q > 0, this can not happen. Note that Pt represents

the agents’ perceived mean square error at time t. If agents believe the parameters of the model

will always have some non-zero constant conditional variance, they will always believe the MSE

is non-zero, and in fact, bounded away from zero by the conditional variance of the parameters.

Further, if their perceived MSE is strictly positive and bounded away from zero, agents will always

be willing to adjust their estimates in the presence of forecast error; forecast error which will occur

because of the stochastic nature of the model. Thus the agents estimators can not possibly converge

to a constant value.

Also, we note here that if var(ηt) does not converge to zero, then Bullard’s result still holds. To

show this, it suffices to show that, in this case, Pt does not converge to zero. Since var(ηt) does not

converge to zero, there is a subsequence, indexed, say, by t(k), which is bounded away from zero.

Since Pt ≥ var(ηt), it follows that Pt(k) is bounded away from zero, and thus Pt can not converge

to zero.8

2.2.3 Vanishing Variance

The results of the previous section indicate that a necessary condition for convergence to the REE

is that the conditional variance of the random walk be decreasing to zero. And, as mentioned in

the introduction, we believe this is a reasonable assumption to make, for if agents initially use OLS

to estimate their parameters then Bray and Savin’s result implies that the conditional variance of

the parameters does decrease (eventually) since convergence of the agents’ estimators to a constant

value does obtain. In this section, we take as given that agents believe the conditional variance of

the random walk is decreasing to zero and consider what rate is sufficient to guarantee convergence

to the REE.

Recall the recursion describing Rt is given by

Rt = Rt−1 +
1
t
(xtx

′
t −Rt−1)− 1

t2
ρt(Rt−1, var(ηt−1)) (11)

Further, we have seen that the form of the Kalman filter recursions, properly transformed, together

with the proof of Bray and Savin’s main result, shows that if a < 1 then convergence of bt to m
1−a

8The notion of “greater than” for matrices is reviewed in Appendix A.
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occurs with probability one provided Rt converges to Extx
′
t almost surely. Analysis of stochastic

processes of the form (11) may be done using the theory of stochastic approximation. Under certain

restrictions on the functions ρt, a differential equation may be analyzed to determine possible points

of convergence. Unfortunately, due to the form of ρt, only local convergence results may be applied

and the restrictions on the conditional variance are strong. This is discussed in detail in Section 3

of this paper. Fortunately, it is possible to prove global convergence (in the sense described below)

with weaker restrictions, using a less direct approach. Specifically, we obtain the following result.

Lemma 7 If R1 is positive definite and symmetric, and

limsuptt
2‖var(ηt)‖ = 0 (12)

then Rt converges to Extx
′
t almost surely.

The proof of this lemma is in Appendix A. The implication of restriction (12) is that the norm

of the conditional variance must die just a little faster than 1
t2 . Also, the convergence is global with

respect to the initial condition subject to the restriction that the initial condition is symmetric,

positive definite. Note that R1 is symmetric, positive definite provided P0 is, and that P0 represents

the agents’ perceived mean square error of their initial belief, b0. We conclude that this is not a

significant restriction.

Lemma 7 together with the observations above concerning the application of Bray and Savin’s

proof to our recursions yields the following theorem which is the main result of this paper.

Theorem 8 If P0 is positive definite and

limsuptt
2‖var(ηt)‖ = 0

then bt → m
1−a almost surely, provided a < 1.

Observe that the restriction on the parameter a, called the stability parameter, is the same as

obtained by Bray and Savin. This is not surprising. The recursions describing the time path of bt is

the same for both models, except for the value of the positive definite matrix modifying the forecast

error. Specifically, both recursions may be written as

bt = bt−1 +
1
t
Vtxt((1 − a)b′t−1xt +m′xt + ut),
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and the only difference will be the values of the positive definite matrix Vt. The restriction on a

guarantees bt moves toward its REE value. Because Vt is positive definite in both models, its specific

value does not affect this direction.

The theorem predicts convergence obtains provided agents believe the conditional variance of

the random walk eventually decreases a little faster than t−2. Also, as Bullard showed, convergence

does not obtain if the conditional variance is constant. What happens when the conditional variance

decreases to zero at a rate less than or equal to t−2 has not been determined analytically. In a

companion paper, [9], we report the results of simulations indicating convergence can obtain for

rates of decrease slightly less than t−2 and also that for slow rates of decrease, say t−.5, convergence

does not appear to obtain.

3 A More General Cobweb Model

The analysis of stochastic recursive algorithms is usually done using the theory of stochastic approx-

imation. For economic models, the standard is to use the results of Ljung, [6], Marcet and Sargent,

[7], and Evans and Honkapohja, [4], which tell us to associate with the given stochastic process

a differential equation. It can then be shown that, under certain conditions, possible convergence

points of the process correspond to stable fixed points of the differential equation.9 In this section,

we apply the theory of stochastic approximation to the sequence of estimators obtained from a more

general cobweb model. We obtain local convergence results provided stronger restrictions are placed

on the rate of decrease of the conditional variance.

3.1 The Model

We generalize the model used by Bray and Savin to include serially correlated observable shocks.

Specifically, we consider a reduced form Muth-model as given by

yt = aE∗
t−1yt + λ′xt (13)

xt = Bxt−1 + νt,

9Note the power of this type of result. It tells us not only that convergence occurs, but also yields the possible

limit points. And, being fixed points of differential equations, these limit points are often not difficult to compute.
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where xt ∈ Rn is an asymptotically stationary process with first component equal to one and

yt ∈ R. For technical reasons, we require the i.i.d. process νt to be almost surely uniformly bounded.

Deviating slightly from the assumptions of the previous model, we assume the expected time t value

of the endogenous variable is formed with respect to information available at time t − 1. This

information includes xt−1. This form of the model has been studied by, for example, Evans and

Honkapohja, [4].

The unique rational expectations equilibrium for this model is given by

yt =
λ′B
1− axt−1 + λ′νt.

To incorparate learning into the model, we assume agents believe the final form of the model to be

yt = β′txt−1 + εt, (14)

βt+1 = βt + ηt.

Notice this is the same form of beliefs as in the previous model, except for the timing of the exogenous

variable.

Given the beliefs of the agents, the natural estimator is again given by the Kalman filter. Denote

by bt the Kalman filter estimate of βt+1 using information available at time t. Then, at time t− 1,
agents believe yt will be determined by the following equation called the perceived law of motion,

or PLM:

yt = b′t−1xt−1 + εt. (15)

Using the PLM, agents determine E∗
t−1(yt) = b′t−1xt−1. This may be inserted into equation (14) to

obtain the actual data generating process. Define the map T : Rn → Rn by

T (b) = ab+ λ′B. (16)

Then the data is generated by the following equation called the actual law of motion, or ALM:

yt = T (bt−1)′xt−1 + λ′νt. (17)

The map T takes the perceived parameters to the actual parameters. When the perceived paramters

equal the actual parameters, the model in is a rational expectations equilibrium; and thus a fixed

point of the T −map determines an REE.

The recursions describing the agents’ estimators may now be reported. Since the state space

model (15) describing agents beliefs is identical, up to timing, to the state space model considered
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earlier, the recursions describing the Kalman filter estimator are identical up to timing as well. We

obtain

Kt = Pt−1[σ2 + x′t−1Pt−1xt−1]−1 (18)

bt = bt−1 +Ktxt−1[(T (bt−1)− bt−1)′xt−1 + λ′νt] (19)

Pt = Pt−1 −Ktxt−1x
′
t−1Pt−1 + var(ηt) (20)

where the actual law of motion has been inserted for yt. As before, our goal is to analyze the

asymptotic behavior of bt.

3.2 E-stability

The notation developed above allows us to make an important link to the learning literature. To

determine the stability under learning of a given REE, the industry standard is to use the theory of

E-stability.10 This theory tells us to consider the differential equation11

db

dτ
= T (b)− b. (21)

Notice that an REE, b∗, is a stationary solution to this differential equation. The REE is said to be

E-stable provided it is locally asymptotically stable. The E-stability Principle says that an E-stable

REE is locally stable under learning provided a reasonable learning algorthim is employed. This

intuition behind this principle is not difficult. Suppose that by reasonable learning algorthym it is

meant that the new parameter estimates are obtained by moving in the direction of the forecast

error redirected appropriately by the value of the regressor12. Given the actual law of motion, this

product may be written

xt−1x
′
t−1(T (bt−1)− bt−1) + xt−1ν

′
tλ.

Because xt−1x
′
t−1 is positive definite, the components of the vector determined by above expression

will, on average, have the same signs as the components of T (bt−1)− bt−1. Thus, if the differential

equation above is locally asymptotically stable at b∗, then moving according to the learning algorithm

should, on average, result in convergence to b∗. It should be noted that the E-stability Principle is

not a general result, and so, whenever possible, convergence should be proven using other techniques.
10Originally coined by George Evans.
11The T − map, and hence E-stability, may be defined for many different types of models. Also, the T − map

depends only on the reduced form equation and the agents’ perceived beliefs and thus is independent of parameter

estimation proceedure.
12Both the OLS estimator and the Kalman filter estimator behave in this manner.
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Recall that a differential equation of the form (21) is locally asymptotically stable at b∗ provided

the eigenvalues of the derivative have real part less than zero. In our case, the derivative is DT − I
so local asymptotic stability requires that the eigenvalues of DT must have real part less than one.

Since DT = aI it follows that the REE is E-stable provided a < 113. It is well known that a < 1

implies convergence to REE of the least squares learning algorithm: see, for example [4]. Thus, E-

stability determines convergence when least squares learning is used. We will show that E-stability

determines convergence when Kalman filter learning is used, provided the conditional variance of

the random walk decreases rapidly.

3.3 Convergence

To analyze the asymptotic behavior of the agents’ estimators we use the theory developed in Evans

and Honkapohja [4]; for a summary, see [3]. Consider a recursive stochastic algorithm of the following

form:

θt = θt−1 +
1
t
H(θt−1, wt) +

1
t2
ρt(θt−1, wt) (22)

wt = A(θt−1)wt−1 +B(θt−1)µt

where µt is white noise. To this process is associated a differential equation as follows. Set

h(θ) = limt→∞E (H(θ, xt)) . (23)

The differential equation is
dθ

dt
= h(θ). (24)

The main result of the theory says that if θ∗ is a locally asymptotically stable fixed point of this

differential equation, and H and ρt satisfy some nice properties in some neighborhood of this fixed

point, then the process (22) converges to θ∗ with probability one, provided a projection facility is

used; see Appendix B for details.14

To employ the theory described above, we must put our algorithm into the form (22). This is

done using the same variable substitution that was used to analyze the previous model. Specifically,
13Of course this is the same restriction on the stability parameter as obtained by Bray and Savin for their slightly

different model
14Informally, a projection facility puts the process back near the fixed point if it wanders too far away. For details,

see Appendix B. Projection facilities we introduced by Ljung, [6] and Marcet and Sargent, [7]. Evans and Honkapohja,

[3][4], also show how weaker results can be obtained if the projection facility is dropped.
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set

Rt =
σ2

t

[
P−1

t−1 +
1
σ2
xt−1x

′
t−1

]
.

Then the Kalman filter recursions may be rewritten as

ρ̂t(bt−1, Rt−1) = − t(t− 1)
2

σ2
Rt−1Qt−1

[
t− 1
σ2

Rt−1Qt−1 + I
]−1

Rt−1 (25)

Rt = Rt−1 +
1
t
(xt−1x

′
t−1 −Rt−1) +

1
t2
ρ̂t(bt−1, Rt−1) (26)

bt = bt−1 +
1
t
R−1

t xt−1 ((T (bt−1)− bt−1)′xt−1 + λ′νt) (27)

where Qt = var(ηt). The dependence of bt on Rt forces us to make the standard variable change

St−1 = Rt. Letting θt = [b′t, S′
t]′ then allows us to write the Kalman filter recursions in the form

(22)15 where wt = [x′t, x
′
t−1, νt]′,

H(θt−1, wt) =


 S−1

t−1xt−1 ((T (bt−1)− bt−1)′xt−1 + λ′νt)

(xtx
′
t − St−1)


 , (28)

ρt(θt−1, wt) =


 0

−
(

t
t+1

) [
t3

σ2St−1Qt

[
t

σ2St−1Qt + I
]−1

St−1 + xtx
′
t − St−1

]

 . (29)

Having placed our stochastic algorithm in the correct form, we now consider its associated dif-

ferential equation. It is easily computed to be

db

dτ
= S−1M (T (b)− b)

dR

dτ
= M − S

where M = limt→∞Extx
′
t exists and is positive definite because xt is asymptotically stationary.

Just as in the previous model, the Kalman filter estimator reduces to the OLS estimator as

‖Qt‖ → 0. Since Qt is only present in the ρt term, it does not affect the functional form of the

associated differential equation. Thus we are not surprised to find that the differential equation

above is identical to the one obtained when least squares learning is modeled. And, as has been

shown in the literature on least squares learning, the unique fixed point of the above system is

b∗ = λ′B
1−a and S =M , and this fixed point is locally asymptotically stable provided a < 1.

According to the previous paragraph, to show convergence to REE, it suffices to restrict the

model so that the technical conditions on H and ρt are satisfied. As mentioned, the form of H seen
15We are being a little sloppy here. Technically the theorems apply to vector processes θ, but in our case R is a

matrix. The complication is avoided via application of the column operator which takes a matrix to the associated

column vector. We suppress this for notational simplicity as is standard in the literature.
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here is not new, it is identical to the H obtained from least squares learning models. In particular,

that it satisfies the appropriate conditions is well known: see, for example, [4]. On the other hand,

the form of ρt is new and thus the restrictions must be considered.

The result of Evans and Honkapohja requires ρt to be bounded in t by a simple function of w

for all S in compact sets surrounding the fixed point. Specifically, we must show there is a U with

M ∈ U so that given compact K in U there are constants C and q so that for all t and for all S ∈ K

|ρt(S,w)| ≤ C(1 + |w|q).

It is easier to work with matrix norms. The following lemma, which is surely well known, allows us

to do that16.

Lemma 9 Let A ∈ Rn×n, xn ∈ Rn and ‖A‖ = sup|v|≤1|Av| be the usual matrix norm. Then

1. n||A||2 ≥ (col(A))2

2. ‖xx′‖ ≤ n2|x|2

Proof. 1: It can be shown that ‖A‖ = maxi

∑
j |aij |. Thus

n‖A‖2 = nmax
i

∑
j

|aij |2 +
∑
j 
=k

|aijaik|

≥ nmax
i

∑
j

|aij |2 ≥
∑
ij

|aij |2 = (col(A))2.

2:

‖xx′‖ = max
i

∑
j

|xixj | ≤
∑
ij

|xixj |

≤ n2max
ij

|xixj | = n2max
i
x2

i ≤ n2|x|2.

For ρt to be bounded in t it is clear we must have the conditional variance decreasing like 1
t3 . To

this end, we make the following assumption:

supt>0t
3‖Qt‖ = σ2k <∞. (30)

16By “surely well known” I mean that it is easier to prove than try to look up, but I deserve no credit for its

discovery.
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Now pick an open set U aboutM which is contained in the set of invertible matrices and let K ⊂ U
be compact. Let

C1 = max
S∈K

(k‖S2‖+ ‖S‖).

and C =
√
nmax{C1, n

2}. We may now show that the above restriction bounds ρt appropriately.

As in the first model, Rt and hence St is symmetric, positive definite provided R0 is. Using this

fact, together with Lemma 13 in the Appendix, we have

|ρt(S, x)| ≤ √
n‖ρt(S, x)‖ ≤ √

n
(
k‖S2‖+ ‖xx′‖+ ‖S‖)

≤ √
n

(
C1 + n2|x|2) ≤ C(1 + |x|2).

We may summarize the implications of the above observations in the following theorem.

Theorem 10 If the economy is given by the model (14) and if agents have beliefs given by (15)

together with the restriction on the conditional variance, (30), and if agents use the Kalman filter

to obtain their expectations, and if the value of the stability parameter, a is less than one, then the

economy will converge to the REE with probability one provided the learning algorithm is augmented

with a projection facility.

4 Conclusion

Since its conception, the assumption of rational agents has been criticized as being too strong. The

landmark paper of Bray and Savin, and the learning literature published since, has given credence

to the rational expectations hypothesis because it has shown that, for many models, weakening the

assumption to that of boundedly rational agents preserves rational expectations equilibria asymp-

totically. However, these least squares learning models have plagued by the same criticism originally

borne by the simple adaptive models which predated and, in fact, led to the rational expectations

hypothesis: why would reasonable agents make systematic errors?17

In this paper we have begun the process of addressing the issue of model misspecification. We

have allowed our agents to increase their sophistication by postulating a time-varying process for

the parameters of the model. We have shown that, for certain restrictions on the postulated process,

convergence to REE still obtains. This further strengthens the learning literature’s justification
17The error in the models of least squares learning, the misspecification of the model, is, admittedly, more subtle

than before, but still sometimes detectable using standard econometric techniques.

17



for continued analysis of REE. And these results are in contrast to the non-convergence result

obtained by Jim Bullard. He shows that if the conditional variance of the random walk is constant

then convergence can not possibly obtain. We have argued that it is more natural to consider the

specification that the conditional variance decreases to zero and subsequently over-turned his result.

The results of this paper are not complete. Several important questions remain. First: what is

the asymptotic behavior of the economy if the conditional variance of the random walk decreases to

zero more slowly that the restrictions required for our results? Simulations which are reported in a

companion paper suggest that convergence does obtain for rates of decrease which are slower, but

not all such rates. Second, what is effect of altering the assumption that the parameters follow a

random walk? Bray and Savin suggest a return to normalcy process; such a process with constant

conditional variance is analyzed by Bullard and he again obtains a non-convergence result. Analysis

of such a model with decreasing variance has proven difficult because the form of the resulting

recursions are not addressed by the stochastic approximation literature. Simulations reported in

the companion paper suggest that convergence to REE obtains provided the conditional variance

decreases rapidly enough and that the restrictions on this rate of decrease may be weaker than the

analogous restrictions in the random walk model. Finally, our agents, just like Bray and Savin’s,

have a misspecified model. Can the agents use some natural econometric technique to detect this

misspecification? We are working on this problem currently.
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Appendix A: The Convergence of Rt

The argument that follows will repeatedly use the probabilistic notion of event. We employ the

following notation: let x be a random variable and P be some property which realizations of x

may or may not have. The E = {x has P} means E is the event that the realization of x has the

property P . Further, if E and F are events then E ⊂ F means the event F occurs whenever the

event E occurs. Also, for a given random variable w, denote by w̃ a particular realization. Notice if

E = {x has P} and x̃ has P then E has occured.

The following results concern almost sure convergence of stochastic processes. Recall that the

process xn converges to x almost surely (that is, with probability one) provided the event that the

sequence of realizations of xn converges to the realization of x occurs with probability one. In the

sequel we make repeated use of the following lemma which is surely well known.

Lemma 11 The sequence of random variables xn converges almost surely to the random variable x

if and only if for any ε > 0 and any p ∈ (0, 1) there is an N so that

Pr{‖xn − x‖ ≤ ε ∀n ≥ N} > p.

Proof. (Necessity) Since xn → x almost surely, it follows that ‖xn−x‖ → 0 almost surely. let ε > 0

and p ∈ (0, 1) and for any N define the event A(N) as follows:

A(N) = {‖xn − x‖ < ε ∀n ≥ N}.

Set A = ∪NA(N). Let E be the event that the realizations of xn converge to the realization of x.

Suppose E occurs. Then there is some M so that n > M ⇒ ‖x̃n − x̃‖ < ε which implies the event
A(M) occurs. Thus E ⊂ A and so Pr(A) = Pr (∪NA(N)) = 1. A well known result from measure

theory tells us that if M > N implies A(N) ⊂ A(M) then

Pr (∪NA(N)) = lim
N
Pr(A(N)).

Since the inclusion requirement holds in our case, we see limN Pr(A(N)) = 1 which proves necessity.
(Sufficiency) Choose an increasing sequence pj ∈ (0, 1) so that pj → 1 and a decreasing sequence

εk > 0 so that εk → 0. Let N(pj , εk) be so that Pr(AN(pj ,εk)) > pj where

AN(pj ,εk) = {‖xn − x‖ ≤ εk ∀n ≥ N(pj , εk)}.

Set

A =
⋂
k

⋃
j

AN(pj ,εk).
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Let x̃n and x̃ be realizations and suppose A occurs. I claim E occurs, that is, x̃n → x̃. Let ε > 0

and pick k so that εk < ε. Since A occured, so too did ∪jAN(pj ,εk) and so there is some j so that

AN(pj ,εk) occured. Then n > N(pj , εk) ⇒ ‖x̃n − x̃‖ < ε which shows E occured. To complete the

proof, we must show that the measure of A is one. Fix k. Then it suffices to show the probability of

∪jAN(pj ,εk) is one. Let p < 1. Choose j so that pj > p. Then Pr(∪jAN(pj ,εk)) > Pr(AN(pj ,εk)) > p.

We say a matrix is positive if it is symmetric and positive definite, and non-negative if it is

symmetric and positive semi-definite. If A and B are symmetric, we say A < B if B −A is positive
(or written B −A > 0) and we say A ≤ B if B − A is non-negative (or written B −A ≥ 0.) These

relations induce partial orderings on the set of symmetric matrices. It is well known that a matrix

is positive (non-negative) provided all eigenvalues are positive (non-negative and real).

The recursion Rt is defined as follows. Let xt ∈ Rn be i.i.d.. Then

ρt(Rt−1, Qt−1) =
(t− 1)2
σ2

Rt−1Qt−1

[
t− 1
σ2

Rt−1Qt−1 + I
]−1

Rt−1

Rt = Rt−1 +
1
t
(xtx

′
t −Rt−1)− 1

t
ρt(Rt−1, Qt−1).

We assume that Qt is positive for all t. We take the initial condition of the recursion to be a positive

matrix and recall the previously mentioned implication that with probability one, all elements of

the sequence Rt will be positive. Assume lim supt t
2‖Qt‖ = 0 and set E(xtx

′
t) = Ω. Our goal is to

prove the following result.

Theorem 12 If R0 is positive then the process Rt converges to Ω almost surely.

This will be facilitated by the following lemma on positive matrices and the induced partial ordering.

Lemma 13 Let A, B, and C be positive conformable matrices.

1. If A ≤ B then AC ≤ BC.

2. If A ≤ B then B−1 ≤ A−1.

3. A ≤ ‖A‖I.

4. If A ≤ B then ‖A‖ ≤ ‖B‖.

These results are standard. The first three may be found in [5]. To prove the fourth, proceed as

follows: Statement 3 implies A ≤ ‖B‖I. Note that λ is an eigenvalue of A if and only if ‖B‖ − λ
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is an eigenvalue of ‖B‖I − A. Also, since A is symmetric, ‖A‖ = maxi ‖λi‖ where λi varies over

the eigenvalues of A. Let λm be the eigenvalue of maximum modulus. Note that it is also real and

positive. Since ‖B‖I−A ≥ 0, its eigenvalues must be non-negative. Thus ‖B‖−‖A‖ = ‖B‖−λm ≥ 0.

The following result relating the partial ordering on symmetric matrices to convergence is needed.

Lemma 14 Suppose xn is a sequence of stochastic matrices which are almost everywhere positive

and which converge almost surely to the positive matrix x. Fix some δ > 0 and for given N define

the event E as

E(N) = {xn ≤ (‖x‖+ δ)I ∀n ≥ N}.

Then for any p ∈ (0, 1), there exists N so that Pr{E(N)} > p.

Proof. Define the event F as follows:

F (N) = {‖xn‖ ≤ ‖x‖+ δ ∀n ≥ N}.

Because xn → x a.s. we make choose N so that Pr{F (N)} > p. Now notice that whenever F (N)
occurs,

xn ≤ ‖xn‖I ≤ (‖x‖ + δ)I, ∀n ≥ N

which implies F (N) ⊂ E(N).

The next lemma will be used to provide an upper bound for the sequence Rt. Define a new

sequence as follows:

R̂t = R̂t−1 − 1
t
(xtx

′
t − R̂t−1).

Note that R̂t = 1
t

∑t
i=1 xix

′
i so that, by the law of large numbers, R̂t converges to Ω almost surely.

Lemma 15 Rt ≤ R̂t.

Proof. The proof is by induction. First notice ρt(Rt−1, Qt−1) is positive. Thus

R1 = x1x
′
1 − ρ1 ≤ x1x

′
1 = R̂1.

Assume Rt−1 ≤ R̂t−1. Then

Rt = Rt−1 +
1
t
(xtx

′
t −Rt−1)− 1

t
ρt(Rt−1, Qt−1)

=
t− 1
t
Rt−1 +

1
t
xtx

′
t −

1
t
ρt(Rt−1, Qt−1)

≤ t− 1
t
R̂t−1 +

1
t
xtx

′
t = R̂t.
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Now that we have established an upper bound for Rt we begin work on the lower bound. Fix

δ > 0 and let ξ = ‖Ω‖+ δ, andM(T ) = supt>T
t2

σ2 ‖Qt‖. Notice that, by assumption, M(T )→ 0 and

is decreasing. For each T we define a new sequence as follows:

St(T ) =



Rt if t ≤ T
St−1(T ) + 1

t (xtx
′
t − St−1(T ))− 1

tM(T )ξ
2I else

It is simple to show that St(T ) converges to Ω−M(T )ξ2I almost surely. Indeed, a straightforward
induction argument shows St(T ) = 1

t

∑t
i=1 xix

′
i−M(T )ξ2I, and the law of large numbers completes

the result. The following lemma relates these sequences to Rt.

Lemma 16 Let p ∈ (0, 1) and

E(T ) = {St(T ) ≤ Rt ∀t}.

Then there exists a T̂ so that T ≥ T̂ implies Pr(E(T )) > p.

Proof. Set

F (T ) = {R̂t ≤ ξI ∀t ≥ T }.

By Lemma 14 there is a T̂ so that Pr(F (T̂ )) > p. To complete the proof then, it suffices to show

that T2 ≥ T1 ⇒ F (T1) ⊂ E(T2). The proof is by induction. Assume F (T1) occurs. By construction

St(T2) ≤ Rt for t ≤ T2. So let t > T2 and assume St−1(T2) ≤ Rt−1. Since F (T1) occured and

t > T2 > T1 it follows, using Lemma 13, that

ρt(Rt−1, Qt−1) =
(t− 1)2
σ2

Rt−1Qt−1

[
t− 1
σ2

Rt−1Qt−1 + I
]−1

Rt−1

≤ M(T2)Rt−1

[
t− 1
σ2

Rt−1Qt−1 + I
]−1

Rt−1

≤ M(T2)R2
t−1 ≤M(T2)ξ2I.

It follows that

St(T2) = St−1(T2) +
1
t
(xtx

′
t − St−1(T2))− 1

t
M(T )ξ2I

=
t− 1
t
St−1(T2) +

1
t
xtx

′
t −

1
t
M(T )ξ2I

≤ t− 1
t
Rt−1 +

1
t
xtx

′
t −

1
t
M(T )ξ2I

≤ t− 1
t
Rt−1 +

1
t
xtx

′
t −

1
t
ρt(Rt−1, Qt−1) = Rt.
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We are now ready to prove the main result.

Proof. Let p ∈ (0, 1) and ε > 0. As usual, we have

‖Rt − Ω‖ ≤ ‖Rt − St(T )‖+ ‖St(T )− R̂t‖+ ‖R̂t − Ω‖.

Set

D(K) = {‖R̂t − Ω‖ < ε

3
∀t ≥ K}

and choose K̃ so that Pr(D(K̃)) > 2+p
3 . Choose T1 so that M(T1)ξ2 < ε

6 and choose T2 > T1 so

that Pr(E(T2)) > 2+p
3 where E(T ) is the event as defined in Lemma 16. This fixes the sequence

St(T2). Define the event F by

F = {0 ≤ ‖Rt − St(T2)‖ ≤ ‖R̂t − St(T2)‖ ∀t}.

Notice that, by statement four of Lemma 13, E(T2) ⊂ F .

Since St(T2)→ Ω−M(T2)ξ2I and R̂t → Ω almost surely, it follows that ‖R̂t−St(T2)‖ →M(T2)ξ2

almost surely. Let

G(K) = {‖R̂t − St(T2)‖ < M(T2)ξ2 +
ε

6
∀t ≥ K}.

Then we may choose K̂ > K̃ so that Pr(G(K̂)) > 2+p
3 .

Now let H(K) be the following event:

H(K) = {‖Rt − Ω‖ < ε ∀t ≥ K}.

The main result is proved by showing we may choose K so that Pr(H(K)) > p. We claim K̂ suffices.

To see this, first notice G(K̂) ∩ F ∩ D(K̃) ⊂ H(K̂). Indeed, suppose G(K̂) ∩ F ∩ D(K̃) occurs.
Then, for all t > K̂

‖Rt − Ω‖ ≤ ‖Rt − St(T2)‖+ ‖St(T2)− R̂t‖+ ‖R̂t − Ω‖

≤ M(T2)ξ2 +
ε

6
+M(T2)ξ2 +

ε

6
+
ε

3
< ε.
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Finally, note

Pr(G(K̂) ∩ F ∩D(K̃)) = 1− Pr
((
G(K̂) ∩ F ∩D(K̃)

)c)

= 1− Pr
(
G(K̂)c ∪ F c ∪D(K̃)c

)

≥ 1−
[
Pr(G(K̂)c) + Pr(F c) + Pr(D(K̃)c)

]

≥ 1− 3
[
1− 2 + p

3

]
= p
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Appendix B: Results on Stochastic Approximation

The main result of Section 3 was proved using a theorem by Evans and Honkapohja. We present

the remaining details of that theorem’s use here. We placed our algorithm in the required form,

repeated here for convenience:

θt = θt−1 +
1
t
H(θt−1, wt) +

1
t2
ρt(θt−1, wt).

To apply the results of Evans and Honkapohja, it must be shown that H and ρt satisfy certain

conditions. These conditions are carefully reported in [4]. The form of H in our model is not new; it

is well known, and shown in [4], that H has the appropriate properties. The form of ρt was shown,

in Section 3, to have the appropriate properties, provided the conditional variance decreased to zero

rapidly enough. We may now proceed to state and apply the result of Evans and Honkapohja.

The differential equation, (21) is locally asymptotically stable at (b∗,M) provided a < 1. Let

D be an open domain of attraction of (b∗,M). By the converse to Lyapunov’s theorem (see [4],

Proposition 5.9) there is a Lyapunov function U : D → R with the following properties:

1. U(b∗,M) = 0 and U(θ) > 0 for all θ �= (b∗,M)

2. U(θ)→ ∞ as θ → ∂D.

For c > 0 set K(c) = {θ : U(θ) < c}. Note that c1 ≤ c2 ⇒ K(c1) ⊂ K(c2) ⊂ D. For fixed c2 and

c1 < c2 define the projection facility as follows:

P (θ) =



θ if θ ∈ K(c2)
∈ K(c1) if θ /∈ K(c2)

The theorem of Evans and Honkapohja allows us to conclude that if the algorithm is augmented

with the above projection facility, then the process θt =


 bt

St


 converges almost surely to (b∗,M).
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