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Abstract

Consider an individual repeatedly facing a decision in which he has two actions to choose from.
All the individual knows ex-ante is the bounded interval that contains the random payoffs
generated. We propose a distribution free method for selecting among behavioral rules for any
given discount factor. Selection of behavior is illustrated for simple learning rules that are based

on automata where transitions are linear in payoffs and only occur to “neighboring states”.
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1 Introduction

Decision making is arguably the most basic task in economics and sociology. The prevalent
theory (von Neumann-Morgenstern 1944, Savage 1972) requires for the decision maker to assess a
prior probability to any state that may occur. Consequently, finding optimal choices is extremely
intricate (if not unsolvable for the average economic theorist) even in the simplest situations
involving repeated decision making. Simon (1955, 1982) was among the first to call for alternative
models of economic decision making. A prominent approach to boundedly rational decision
making is to specify a more or less arbitrary parametrized functional form for a learning rule
that does not rely on prior probability distributions, e.g., the Cross Learning Rule (Cross, 1973,
see also Bush and Mosteller, 1955), the Payoff Sum Learning Rule! (Erev and Roth, 1998) and
the Logit Choice model (Block and Marshak, 1960). General models for selecting behavior have
been developed for individuals who can observe behavior of others (e.g., Schlag, 1998) or who
can recall own experience in similar decisions (Gilboa and Schmeidler, 1995).

Erev and Roth (1998) emphasize that the Payoff Sum Learning Rule is not the only plausible
ones, just that its generalizations are very effective in predicting play in games. Never-the-less,
this rule is prone to the criticism of being arbitrary. Even observations of human decision mak-
ing that have been the basis of the Cross Learning Rule (see Bush and Mosteller, 1955) can
only reveal qualitative, not quantitative properties. Small differences can drastically change the
predicted long run outcomes (e.g., see Arthur, 1993). Our aim is set up a theory for selecting
boundedly rational behavior to avoid such problems. The idea is to select among a class of sim-
ple rules the ones with the most appealing theoretical properties. Given an understanding that
behavior is not necessarily adjusted to each situation, we search for rules with universal prop-
erties. The selected rule should perform well when repeatedly facing any decision that involves
two actions where each action yields a payoff in (0,1). We consider the simplest informational
setting and assume that after each choice the individual only observes the random payoff realized
by the chosen action.?

Two major criteria for evaluating the performance of decision rules can be found in the
literature. A rule is maximizing (Borgers et al. 1998) if the action with the highest expected
payoffs is selected in the long run. A rule is improving (Schlag 1998, or absolutely expedient,
Borgers and Sarin, 1997) if expected payoffs obtained in the next round are larger than the
expected payoffs of the current round conditional on the present state. The first condition
has the flavor of an infinitely patient individual while the second seems more appropriate for

a myopic individual. Both conditions are required to hold in any decision, unlike the classic

! Terminology due to (Selten 1999).
2 An alternative setting is to assume that a random payoff of each action including those not chosen is observed

(see Rustichini, 1999, Easley and Rustichini, 1999).



approach where priors lead to taking weighted averages over possible decisions.

Rustichini (1999) shows that the Payoff Sum Learning Rule is maximizing. Arthur (1993)
provides a similar rule with this property. Rustichini’s analysis also reveals that the Payoff Sum
Learning Rule is not improving. Bérgers and Sarin (1997) find that the Cross Learning Rule is
improving but that it is not maximizing. Boérgers et al. (1998) characterize the set of improving
rules and show that these are generalizations of the Cross Learning Rule. They find that any
of these rules will select the best action in the long run with arbitrarily high probability given
that the adjustment between rounds is sufficiently sluggish.

The present paper uses a similar approach to the one followed in (Schlag, 1998). The
innovation is that we weaken objectives by measuring expected payoffs in a given round from the
ex-ante viewpoint of the individual before he makes the first choice. We refer to this context by
using the term “ex-ante”, e.g., ex-ante improving. Dominance arguments are used to discriminate
among ex-ante improving rules. Finally, a maxmin type of argument is used to compare “ex-ante
undominated” rules.

We apply our selection technique to a simple class of rules that we call linear reinforcement
rules and that are based on automata. There are a countable set of states indexed by the
integers. In each state the individual chooses action one with a given probability where this
probability is increasing in the index of the state. Transitions between states only occur to the
neighboring states and involve linear transition probabilities. The only difference to the basic
structure underlying the Cross Learning Rule is that here transition only occurs to a limited set
of states.

We first consider selection of rules with either two or four states and then consider rules
with a countable set of states. For each class of rules we consider selection both under myopia
and under complete patience. In addition, for the rules with only two states we also consider
intermediate discount factors.

The rest of the paper is organized as follows. Section two introduces the basic decision
problem together with the relevant existing rules from the literature. Section three explains the
criteria for selecting rules. In Section four linear reinforcement rules are defined. In Section five
linear reinforcement rules for two and four states and various discount parameters are selected.
Section six then considers selection when there is a countable number of states. Section seven

contains the conclusion and the appendix contains the proof for selection given four states.

2 The Setting

Consider a single individual that repeatedly faces a decision with two actions enumerated 1 and

2. Choice of action 7 yields a random payoff in a given bounded open interval according to the



payoff distribution P;. Using a linear transformation we can assume without loss of generality
that this interval equals (0,1). The set of such decision problems will be denoted by D.

The above decision is like a two-armed bandit except that there is no prior distribution over
the possible payoff distributions P;. Instead, we assume as in Schlag (1998) that the individual
only knows that payoffs are contained in (0, 1), i.e., the individual could be facing any decision
with this property.

Let m; = [xdP; (x) denote the expected payoff of choosing action i. Assume that payoffs
realized by choosing action ¢ in round n are independent of previous choices and realizations.
We assume that the individual prefers higher expected payoffs and discounts payoffs over time
with a discount factor 6 € [0,1]. In this sense we will call action ¢ the better (worse) action if
7 > mj (m; < ;) where {i,5} = {1,2}. Our analysis also applies to agents that are not risk
neutral by replacing payoffs with von Neumann-Morgenstern utilities.

A behavioral rule is the formal description of how an individual makes his choice as a function
of his previous experience. Here we model this rule as a triple (S, f, g) where S is a countable
set of states, f : DU S x {1,2} x (0,1) — AS is the transition function and ¢ : S — A{1,2}
is the choice function where AZ denotes the set of probability distributions with support Z.

The interpretation is as follows. When in state s, g (s),

; is the probability of choosing action

i. f(0), is the probability of being in state s in the first round. After choosing action ¢ in
state s and receiving a payoff z, f (s,4,2), is the probability of being in state s’ in the next
round. Consequently, 2/ (s) = Y27, g(s) fze(O,l) Yoesf(5:4,2)y g(s)dP; (x) is the expected
mixed action chosen in the next round after being in state s. Let (") denote the expected action
chosen in round 7 from the standpoint of before the first choice. So 2 =3~ ¢ f (8), g (s) and

22 =% o f (D)2 (s). Let 2(>) = lim,,_, (™) whenever this limit exists.

2.1 Some Examples

In the following we present the most popular boundedly rational decision making rules.

Under the Cross Learning Rule (see Borgers and Sarin, 1997), S = A{1,2}, g(s) = s
and f(s,i,z); = v + (1 —x)s;. Notice that this rule is based on positive reinforcement as
f(s,i,z); > 5;. Then

Z(s);=s1(m+ 1 —m1)s1)+(1—51)(L—m2)s1 =81+ (w1 —72) 81 (L —81). (1)

Thus, given f (0)(50.5 = 1 we obtain 22 = 0.5+ 0.25 (11 — m2).

Under the Payoff Sum Learning Rule of Erev and Roth (1998), an individual essentially
chooses an action in a given round with probability proportional to the sum of payoffs it has
generated in the past. More specifically, let Sp (i) > 0 be given and let S, (i) — Sp (¢) be the

sum of payoffs obtained from choosing action ¢ up to and including round n. The rule prescribes



to choose action ¢ in round n + 1 with probability Sy, (i) / (Sn (1) + Sn (2)) . Notice that this
rule is also based on positive reinforcement. Consider behavior where the individual randomizes
equally likely in the first round, i.e., 2(1) = (0.5,0.5),. Then Sy (1) = So(2) = b. Consider a
decision in which P; (1) =1—P;(0) = X and P, (y) = 1. Then

A0 = 05
b b+1 1 b 1
@ = 05——+05A——405(1-A\)==05{ —— + 05+ A———
© By g TSN By T
and it is easily verified that 22 < 21 holds when 77 = 79 (i.e., A =y). Under the Logit Rule
(Block and Marshak, 1960) an action is chosen with probability proportional to the exponential
transformation of the sum of payoffs it has previously generated.

An alternative rule is to choose each action equally often in the first 2k rounds and then to
choose the action that yielded the highest sum of payoffs. This rule is used by Osborne and
Rubinstein (1998) to analyze boundedly rational play in games. With appropriate randomization
this yields z(® = (0.5,0.5) for 4 < 2k. Consider the same decision as in the previous paragraph

and assume y > 0.5. For k = 1 we obtain 23 = \, for k = 2 we obtain 2 = )\2.

3 Selection

For s € S let Em(s) = g(s); m1 + g(8), T2 be the expected payoff achieved in state s. We will
simplify notation and for n € Nlet En(n) = z%”)m + Zén)ﬂ'g be the expected payoff in round n.
Let En’(s) = 2{m + z4my be the expected payoff in the next round after being in state s. Let
Enf = (1-6)3%2, 8" 1En (k) be the ex-ante future value of expected payoffs where ex-ante
refers to the fact that payoffs are evaluated from the perspective before making the first choice.
Let En®(n) = (1—6) 352, 6" "Er (k) be the ex-ante future value of expected payoffs for an
individual in round n, so Ex® (1) = Ex®.

Our individual has no prior distribution over the probability distributions underlying the
choice of a given action. Never-the-less, a Bayes’ian would specify some subjective distribution
and then aim to maximize expected payoffs. Along the lines of Schlag (1998) we choose a
distribution free approach.> The following definitions may seem a bit intricate but the latter
analysis will make them clearer.

In the literature we find two relevant definitions. A decision rule f is called improving (or
absolutely expedient, Narendra and Thathachar, 1989) if for any decision in D (i.e., for any
payoff distributions P; that yield payoffs in (0,1)) and for any state s € S that occurs with

3The artificial intelligence literature refers to a model free approach.



positive probability when using f,
En'(s) 2 Em(s) , (2)

i.e., conditional on the current state the payoffs from are expected to increase in each round. A
decision rule f is called mazimizing (Borgers et al. 1998)* if for any decision in D

TLILIEO E7n(n) = max{m,m1} as.,

i.e., almost surely the behavioral rule eventually chooses the better action.

Now we introduce our new definitions. In our setting the two actions are a priori identical
which makes it plausible that an individual who is not willing or able to learn about payoffs
chooses each action equally likely. Our first definition requires that the individual always does
better than to ignore previous experience and to just randomize. In this sense, a behavioral rule
f is called an ex-ante learning rule for discount factor ¢ if for any decision in D and any round
n

Er®(n) > (m1 4+ m2) /2.

Consider an individual using an ex-ante learning rule for 6 = 0. Then z%l) = 0.5 and consequently,
En%(2) > Ex® (1) = (71 + m2) /2.

Our next definition concern situations where § < 1 and requires that ex-ante expected payoffs
are monotone increasing. A behavioral rule f is called ez-ante improving for discount factor &

if for any decision in D and any round n,
En®(n+1)> Ex®(n) . (3)

(1

Notice that an ex-ante improving rule with 2; ) = 0.5 is an ex-ante learning rule.
Consider the special case where § = 0. Then the definition of ex-ante improving is analogous

to the above definition of improving except that here payoffs are calculated ex-ante. It is
(n)

equivalent to requiring that z;/ is monotone increasing in n whenever m; > m;. When the
individual is myopic, dynamic inconsistency cannot arise. The plan of future behavior made in
round n will not be regretted once round n + 1 arises as decisions made after round n are only
guided by payoffs achieved in round n + 1. This is no longer necessarily true when 6 > 0. Now
the rule has a sequential nature, anticipating when making decisions before round one the goals

the individual will set in later rounds. Notice that when 6 € (0,1) then (3) is equivalent to

Ex®(n) > En(n) ,

*This criterion is called “optimality” in (Rusticini, 1999) and in the machine learning literature (e.g. Narendra
and Thathachar, 1989).



i.e., for any decision and in any round the individual prefers an ex-ante standpoint to apply the
rule to never changing actions again in the future.

Next we introduce a concept of dominance. We say that f ez-ante dominates g for discount
factor § if for any decision there exists n € NU {oo} such that Eﬂ‘} (k)= Eﬂg (k) for k < n and
Eﬂ‘} (n) > Eﬂg (n). Accordingly, f is ez-ante undominated if f ex-ante dominates g whenever
g ex-ante dominates f.

We immediately obtain the following relationships:

Remark 1 (i) Consider a rule f that is both ex-ante improving and ex-ante undominated when
6 = 0. If g ex-ante dominates f for all sufficiently small 6 then Eﬂ‘} (1) = Eﬂg (1) holds in any
decision whenever 6 is sufficiently small.

(i) If f is maximizing then f ex-ante dominates any other rule for 6 = 1.

Looking back at the rules presented in Section 2.1 we find that only the Cross Learning Rule
is ex-ante improving. In fact, it follows immediately from (1) that the Cross Learning Rule is
improving (see Borgers and Sarin, 1997).

Ex-ante dominance does not induce a complete order over the set of rules. In order to select

unique behavior we add the following criterion for comparing ex-ante undominated rules.
Ap (m1,m2) = max{mi, T2} — Ex® (n)

measures the incentives for learning in round n + 1. Let p be the smallest upper bound for A,,,
i.e., p =supp {A, (m1,72)}. For given p € (0, p) one may choose to compare rules according to
the minimal increase in expected payoffs among all decisions relative to the maximal increase
A,,. For a given decision rule f and n > 1, let d;ﬁ“ : (0, p) — [0, 1] be defined by

d;ﬁ“ (p) = i%f {E7T6 (n+1) — Ex®(n) st. A, = p} .

We say that f outperforms g for fized differences in round n+1 if d;ﬁ“ > dg“, ie.,if d;ﬁ“ (p) >
dg“ (p) holds for all p € (0,p). Again this does not yield a complete order but we find that this
condition suffices in most applications.

When calculating d} we now need a benchmark to compare the discounted future payoffs
starting round one to. Here we choose 0.5 (71 + 72) which means that Ag = 0.5 |1 — 72| . Condi-
tions substantially simplify when § = 1. Here, d! (p) = 2pinf {‘z%oo) - 0.5‘ s.t. |m —ma| = Qp}.
f is mazimizing (Borgers et al. 1998) if m; > 7; implies that zi(”) converges to one almost surely

(

as n tends to infinity (i.e., zioo) = 1). Notice that any rule f with this property is ex-ante
improving in round one and outperforms any other rule for fixed differences in round one. In

this case, d} (p) = p.



4 Linear Reinforcement

We will consider a specific class of behavioral rules. There is a countable set of states S C
{s:,4 € NU—N} where s; € § implies s_; € S. To simplify notation, let 7; = g(s;); be the
probability that the individual plays action one in state s;. We add the following assump-
tions. 7; is increasing in i and 7; =1 —7_; forall i € N. f (@)SO = 1if 55 € 5, otherwise
f (@), = f(®),_, =0.5. After being in state s; the individual transits to a neighboring state in
{si-1, 8;, si41} using the following linear transition rules: f (s;,1,x);,., = f(5-4,2,7)_;_; = o
and f(si,1,2);_1 = f(5-4,2,2)_;1 = 7;(1 —x) where a;,y; € [0,1]. Of course, o; and ,
only yields switching with positive probability if 7; > 0. A behavioral rule (S, f,g9) = (S, f,7)
with these properties will be called a linear reinforcement rule. We say that (S, f,7) uses
positive reinforcement in state s; after receiving payoff z from choosing action one if 7; > 0,
o (Tie1 —Ti) +v; (L —2) (75-1 — 73) > 0 and 75_1 = 7541 > 0 implies oz > v, (1 — ), ie.,
(1) if the player is more likely to choose the same action (here action one) in the next round
and (ii) if the neighboring states have the same values of 7 then the player will be more likely
to switch to a state with a higher index than to one with a lower index. (S, f,7) uses negative
reinforcement in state s; after receiving payoff x from choosing action one the two inequalities in
the definition above are reversed. Analogously these terms are defined with respect to behavior
after choosing action two. We add the term “maximal” if the associated variables are equal to
one. xg € [0, 1] will be called the aspiration level of action k in state s; if all payoffs above/below
xo of action k receive positive/negative reinforcement in state s;. Notice that v; = 0 (o = 0)
holds if and only if (S, f,7) uses positive (negative) reinforcement in state s; after any choice
and payoff realization.

Notice the Cross Learning Rule is very similar to a linear reinforcement rule except for the
following. In a linear reinforcement rule, transition is random to one of two given states where
payoffs received influence transition probabilities. Under the Cross Learning Rule transition
occurs to a unique state where this state depends on the payoff received in the present round.
In fact, there is a continuum of possible states in the second round if all payoffs in (0,1) are in
the support of P; and P,. This is one of the complex features of the Cross Learning Rule that
has lead us to define and analyze the simpler class of linear reinforcement rules.

We immediately obtain:

Proposition 1 Linear reinforcement rules are ex-ante learning rules.

Proof. Let p, (7) be the probability of being in state s; in round n. Then z§”) = s.e5Pn (1) Ti-

If w1 = mo then the symmetry property of linear reinforcement rules implies that p, (—3) = py, (7)

holds for all n and all s; € S. Thus, z§”) = 0.5 when 71 = 9. For given o, if 71 is increased



starting at m1 = mo then the transition probabilities to states with higher (lower) indices are
increased (decreased). Consequently, p, (1) > pn (—i) for ¢ > 0 which implies z§”) > 0.5 and
hence Em(n) > 0.5(m1 + m2). As this holds for any round n, we obtain the ex-ante learning

property. W

5 Bounded Complexity

The number of states is a reasonable measure of the complexity of a linear reinforcement rule.

In this section we illustrate which of the simplest rules with either two or four states is selected.

5.1 Two states

Below we select the rule with maximal negative reinforcement.

Proposition 2 There is a two state linear reinforcement rule that ex-ante dominates all other
two state linear reinforcement rules if § < 7/9 = .7 and which outperforms all other two state
linear reinforcement rules for fized differences if 7/9 < § < 1. This rule satisfies (t1,7v,) = (1,1),

generates

—(7T1—|—7T2—1)n_1
2—71'1—71'2

E7T6(1) = 0.5(7T1—|—7T2)—|—5(7T1 —7T2)2

1
z%n) = 0.5+0.5(m —m)

0.5
1—|—5(1—7T1—7T2)

and satisfies d* (p) = 2p?6/ (1 + 6 (1 — 2p)) for 0 < p < 0.5 where d¥ (0) = 46/ (1 +§).

Proof. Let p, (1) be the probability of being in state $; in round n. Let ¢, be the probability of
leaving state s; where ¢ € {—1,1}. Using the fact that pp11 (1) = (1 — ¢1) pn (1)+é_1 (1 — pn (1))

it is easily verified by induction that

n—2

pa(l) = 05405 (- —¢1)> (1—o_y— 1)’
=0

= 05405 (¢, ¢1)1_(1;j+1¢1¢1)

Consequently,

Exf(1) = (1-9¢) Z S (a1 + (L —pn) (1 —71)) 71 4+ (1 = pn) T1 + Pn (1 — 71)) 72)

= mmp+(L—T1)m+ (21— 1) (m —m2) (1= 8) Y _ 6" 'pa(l)



$_1— ¢
1-6(1—¢_1—¢1)
(11— 05) (117 + (1 —71) o1)
1—646m171(2—m1 —7m2)+6(1—71) a1 (m1 +72)

= 0.5(7T1—|—7T2)—|—5(T1 —0.5) (71'1 —7T2)

= 0.5(m +m) +68(m1 —m2)?

and

¢_1—
1-6(1-¢_1—¢)

d" (p) = 6 (11 — 0.5) min {(m — o) s.t. |m1 —me| = 2p}
where we use the fact that ¢ = 71y (1 —m) + (1 —71) a—1m2 and ¢_; = 71y, (1 —m2) +
(1 — Tl) d_17T1.

Since E7® (1) is monotone in y; and a_; we obtain three candidates for ex-ante undominated
rules:

(i) v1 =1 and a—1 = 0 yields
(T1 — 0.5) 71

En® (1) = 0.5 (1 + m2) + 6 (11 — ma)? Ty p————

and

d' (p) = 4p?6 (11 —0.5) 11
P T 5+ 6r12(1—p)

where both expressions are monotone increasing in 71 so 71 = 1 is best which yields

0.5

En® (1) =0.5(my +m2) + 6 (m — 7r2)2 1—646(2—m —m) @
and 2p26
1 o P

d’ (p) = T16(1—2p) )

(ii) vy =0and a_; =1 (and 6§ < 1 or 71 < 1) yields
En® (1) = 0.5 (m1 + ma) + 8 (11 — 7a)° 1= 5(11 5_(?'3)7(11)?7:111 ) (6)

and 4026 0.5) (1
2 (p) = 200D 0T @

S 1-64+6(1—-71)2(1—p) "

In order to show for which values of § (4) is always greater than (6), notice that

0.5 B (t1—0.5)(1 —71)
1—5—|—5(2—7T1—7T2) 1—5—|—5(1—T1)(7T1—|—7T2)

is increasing in (71 + 72) so the worst case is m1 = w9 = 0 which yields

05 (r1—05)(1—-7)_ 05 .0625 7-96
> — = .0625——
146 1-6 =146 1-6 1— 62

9



and hence (6) is strictly smaller than (4) if § < 7/9.
It is easily shown that (7) is smaller than (5), strictly if 6 < 1. If § = 1 then 71 = 1 is
best which yields the same values as (5), however 71 = 1 is not feasible here as this means that
¢ =0.
(iii) a—1 =y, = 1 yields
71— 0.5

4 — o 2
En® (1) = 0.5(m 4+ m2) + 6 (71 —72) Ry Py  Spa——" R 3 P r—

(8)

where it is straightforward to show that (8) is smaller than (4), strictly smaller if 71 < 1. Notice

that if 71 = 1 then the rules in (i) and (iii) have the same behavior. W

Corollary 3 Consider 7/9 < 6 < 1. A rule is ex-ante undominated if and only if it satisfies the

description in Proposition 2 or it satisfies v, =0, a—_1 =1 and

. 1-vI—6 5—17/9
75 < < — —6—————, 0. e .
075_7’1_mm{1 v1—6 55 ,075<1+ iE )} 9)

In particular, undominated linear reinforcement rules with two states have either positive or
negative reinforcement in all states.” The upper bound in (9) as a function of § is graphed in

the figure below:

0.78 0.8 0.820.840.860.88 0.9 092094096098 1

Proof. For given (m + m2) > 0 and ¢ it is easily shown that

(11 —0.5) (1 —71)
1—5—|—5(1—T1)(7T1—|—7T2)

(10)

is single peaked in 71 on [0.5, 1] with maximum at

o= m (5(m+ms) 4150520~ 0) B (m1 + 1) 201~ 9)))

>The proof also reveals that smaller values of 71 perform better for smaller values of 71 + 7.

10



and monotone increasing (decreasing) for 71 < 77 (71 > 7). Moreover, 7] is monotone in
(m1 + m2) and takes values in [0.7 5,1—v/1-6 %61?‘5 . Hence, following (6), a rule is undom-
inated in the class of case (ii) from the proof of Proposition 2 if and only if 0.75 < 71 <
1— vT—ol=yl=t,
Using the same argument as in the proof of the proposition above we obtain that (4) is

greater than (6) for all m; and 7 if and only if

0.5 S (11 —0.5) (1 —7q)

146~ 1-6

which holds if and only if
§—17/9
VI+§

Combining these two arguments completes the proof of the statement. H

Ir1 — 0.75] < 0.75

Remark 2 Consider now 6 = 1. Formally there is no rule that is undominated among the rules
with positive reinforcement. Following (10) it is best if T1 is maximal, however 1 = 1 yields
Exl (1) = 0.5(m1 + m2) as (10) is not defined for § = T1 = 1. However, given an exogenous
upper bound T on 71 with T < 1 in addition to the negative reinforcement rule of Proposition 2

there is a single alternative undominated rule with v; =0, a_1 =1 and 71 = T.

A linear reinforcement rule with two states and 71 = 1 is a special case of a pure strategy
behavioral rule as defined in Bérgers et al. (1998). The only difference to our rule is that they
allow for more general switching probabilities between states. Borgers et al. (1998) find that
no sequence of pure strategy behavioral rules will find the better action with arbitrarily high
probability in each decision. This result is confirmed for a more limited set of behaviors in the
proposition above. Since only one of the two rules in parts (i) and (ii) of the proof above are
candidates for maximizing the probability of choosing the better action among the improving

rules, we obtain

1 — mi a
ax mm{m,ﬂg}’ max {71, o}
2—7 1 — T2 T + o
as an upper bound on the probability of choosing the better action among the improving rules.

Proposition 4 (i) The rule selected in Proposition 2 fails to be ex-ante improving for any 6 < 1
as Er®(2) > Ex®(3) holds whenever w1 # 7o and 71 + mo < 1.

(1) The two state linear reinforcement rule with (11,7v,) = (1,0.5) is ez-ante improving for
any 0, it dominates any other ex-ante tmproving rule for 6 < 0.75 and outperforms all other

ex-ante improving rules for fized differences when 0.75 < § < 1. It generates

1—(0.5(my +m2))"

(n) _ _
z7 . = 0.5+0.5(m —m) pp——
E7T6(1) = 0.5(7T1—|—7T2)—|—5(7T1—7T2)2L
2—5(7T1—|—7T2)

11



(1) “Do not switch” is the only two state improving rule.

Proof. It is eagily verified that

§(1—¢_1—¢)
1—6+06¢_1+ 66

holds when 6 > 0 and ¢_; 4+ ¢; > 1. Notice that this is true for the rule selected in Proposition

Er®(2) — En(2) = (11 — 0.5) (11 — 72) (¢_1 — 1) <0

2 when 71 + 72 < 1. In order for a linear rule to be ex-ante improving we need that
1>2¢_1+¢; =717 (2—m1 —m2) + (1 —71) a1 (m1 +72)

is true in any decision with w1 # 72 which holds if and only if 71-y; < 0.5. Notice that ¢_;+¢; <1
is also sufficient as this implies that p, is monotonically increasing (decreasing) whenever 71 > 7o
(m < ma).
Using the monotonicity we obtain analogous to case (i) in the proof of Proposition 2 above:
(") 7171 = 0.5 and a_q1 = 0 yields
71— 0.5

Ex® (1) = 0.5 (w1 + m2) + 0.56 (m1 — 7m2)* 1—0.56 (w1 + )

which is monotone increasing in 71 so 71 = 1 is best which yields

1
Er (1) =0. 2 — m)”
7 (1) = 0.5(m1 + 72) + 0.256 (11 — 72) =056 (1 & 72)
and 5.2

& (p) = L. 11

V=175 (1)

We find that this rule is better than a rule (y;,a—_1,71) if
0.25 (11 —0.5) (1 —71)

1-056(m +7mg) 1—64+60—71)(m+m) ~
where the left hand side is increasing in (71 4+ 7m2) so entering the worst case m; = 7o = 0 yields

(T1—0.5)(1—T1)
1-9¢

0.25 — > 0.

Setting 71 = 0.75 we obtain the worst case which gives us the condition 0.25 — % > 0 which
implies 6 < 0.75.
(iii’) 717, = 0.5, @—1 = 1 and 71 < 1 yields
(T1 - 0.5) (1.5 - Tl)
1—5(T1—0.5)(7T1—|—7T2)

En® (1) = 0.5 (m1 +m2) + 6 (m1 — ma)?

where it is easily verified that the rule in (i’) dominates this rule.
Subtracting (7) from (11) and then setting the “worst” case p = § = 1 we find that (11) is
always greater than (7). H

12



5.2 Four states

Next we consider the case of four states. We skip the analysis of three states as our symmetry
condition requires that 79 = 0.5 which gives less degree of freedom when constructing good
rules. Consider linear reinforcement rules with four states where f (0); = f (#)_; = 0.5 that are

parametrized by 71, 72 and «; for i € {~2,-1,1} and v, for j € {-1,1,2}.

5.2.1 Myopia

Proposition 5 Consider 6 = 0. There is a unique linear reinforcement rule that is ex-ante
undominated among the ex-ante improving rules. It satisfies 11 = 1o =7, = a1 =1, 79 =10

and yields

k k
Z§2k) _ sz“) =0.54+0.5(m — 72) (11 (11 F;)) 8 :2; )
_ —m — n2

Notice that the extreme states s_o and s5 of this rule selected are absorbing. In round two
it yields the same expected payoffs as the two state ex-ante learning rule selected in Proposi-
tion 2 and yields larger expected payoffs than the two state ex-ante improving rule selected in
Proposition 4.

Proof. For¢ > 0let \; = 7; — 0.5 so that our assumptions on 7; imply that 0 < A\; < A < 0.5.

Consider round two. Tedious calculations show

5 (e = M) (01 +7v_4) ) .

2 _
27 =54+ .5(m —m
! m ?) ( +M1 (A2 — M) (@1 —v_1) + (@c1 +71) M+ 2 (7 —a-q) Y,

Assume that (S, f, 7) is ex-ante undominated. Since (S, f,7) is improving,
A=) (Blar+vg) + A (e —v1)) +Mlec1+7 +2(y —a-1) M) > 0.

If \y < o then a; = v_; = 1. If Ay > O then a_; = v, = 1. This yields 2{? = 5+
S(mp—m2) (A1 4+ A2). If Ay = Ag = 0.5 then z§2) = .5+ .5 (m1 — m2) y; which implies y; = 1.
Comparing these two cases we find that the fact that (S, f, 7) is ex-ante undominated in round
two implies A1 = Ay = 0.5 and v; = 1. In particular, there are no restrictions on a_1, o and
Y-1-

Now consider rounds three and higher and assume y; = 1. Since A; = 0.5 means by
assumption that A\; = 0.5 and 7; = 1 for all ¢ > 0. Hence, for ¢ > 0, a_; and ~y_; play
no more role as action 1 (action 2) is never chosen in states s_; (s;) for ¢ > 0. Let py (7)
be the probability of being in state s; in round n. In the following we will use the fact that
A" Y = pa (<) (1= 72) —pa (1) (1= ).

13



For round three we obtain p2 (1) = 0.5 (1 — 72) + 0.5(1 — 1) 71 so that

2V = 5+ 5(m —m) (o1 + (1 - a1) (m1 + 7m2))
= z§2) +.5(a1 — 1) (1 —my —mo) (w1 — m2) .
This means that ex-ante improving requires oy = 1 which yields z§3) = zf).

Now assume o1 = 1 and consider round four. ps (2) = 0.571 and
p3(1) =0.5(1 —71) (1 —m2) +0.5m179 (L — 1) = 0.5(1 —71) (1 + yom1 — 72)
S0
z§4) — z§3) = .5(m —m2) (1 —m1) 1 —ma) + 75 (=14 2m +2mp — 7 —mma —73))  (12)

where <z§4) — z§3)> (m1 — m2) > 0 holds for all v, as it is linear in 75 and holds for both v =0
and v, = 1.

Consider round five. For general v, we find
p3(2) = 05(1—mo)m +0.571 (1 —v5(1 —m1))

pe(1) = 051 —m2) (14 vgme—m1) (1l —m2)+ (0.5(1 —mo) w1 + 0.5m1 (1 — 9 (1 —71))) v2 (1 — 71)
= 0.5(1+7yme —m1) (1 —m2)* +0.5(2—mg — v (1 — 1)) o1 (1 — m1)

and

5y @ -1 7T% + 21 + 279 — MW — ﬂ%
+ (1 — 73 — 3ma + 373 + 3mimy — M3 — 3wy + 37F — wamy — 73) o
In order for (zf’) — z§4)> (m1 —m2) > 0 to hold for v, > 0, the last factor on the right hand
side must be non-negative. Checking 71 = w9 = 0 we find that v4 = 1 but then checking for
m =72 < 0.5 we obtain a violation and hence vy, = 0.

Now consider later rounds. For any positive integer & we obtain

par (1) = 0.5 (1 — 7)1 (1 = 72)", porsa (1) = 0.5(1 — m1)" (1 — m2)”

and hence z§2k+1) = sz) and z§2k+2) - z§2k+1) = pog+1 (1) (m1 — m2) which means that this rule
1—(1—m)*(1—ma)®
1—(1—mq){(1—m2)

is ex-ante improving. Using the fact that pogy1(2) = 0.571 (2 — 72) the value

of 72+

is easily verified. W

Next we consider improving rules. Notice that the rule selected in the proposition above is
not improving. For a rule to be improving in state s; the decrease in the probability of playing
action one (due to switching to state s_; which is possible given y; > 0) has to be offset by
an increase in the probability whenever m; = ma. However, such an increase is not possible as

T1:1.
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Proposition 6 Assume 6 = 0. The linear reinforcement rule with vo = 0, 71 = —% + %\/5 ~
618, o=y 1=a1 =7 =1, a1 = % (3 — \/5) ~ .382 ex-ante dominates all other improving

rules. This rule induces
A2 =05+ (JS - 2) (71 — 7a) 2 0.5 + 0.236 (711 — 72)
Proof. Improving requires o_g = 9 = 0. Let
hi (w1, 7m2) = (101w 4+ (1= 71)v_1 (1 = m2)) (T2 — T1)+H{T171 (1 — 71) + (1 — 71) a—17m2) (1 — 271)

then improving in state s; implies hq (71, 72) * (71 — 72) > 0. Consequently,

h1(7'l'1,7'l'1) = 7T1((T2—T1)T10£1—|—(1—T1)(1—2T1)Oz_1)
+ (1 =m) ((r2 = 71) L= 71) 1 +71 (1 = 271) 74)
=0
and hence
(tro—71)(L=71)vy_1 = 71(2r1 —1)7; and
(TQ-Tl)TlOfl = (1—7’1)(27’1—1)01_1

which means that hy = (12 — 71) (T1OZ1 +(1—m71) 7_1) (m1 — ma).

The analogous analysis for state s_1 leads to the definition of h_; (71, m2) where
h_1(m1,m2) = ((1 —m1) ac1m1 + 7171 (1 — m2)) (271 — 1)+((1 —71)v_1 (1 —m1)+ T10£17T2) (t1—-1)

Notice that h_1 (71, m2) = —hq (72, 71) so there are no additional conditions for state s_1.
Undominated implies (79 — 71) @1 and (72 — 71) y_; maximal for given 71. Thus 79 = 1 so
ar; < % andy_; < mjn{rzirrllgl , 1} where %2_7;%51—2 < 1 holds if and only if 71 < —%4—%\/5.
v_1=1and 71 > —% + %\/5 yields h/ (w1 —m2) = (1 — 71) 71 which obtains its maximum
VB-2atT =11 1/5

_ 11(271-1)
1= R
wheny_;=1. &

and 71 < —3+3v/5 yields h/ (w1 — m2) = 271 —1 which obtains its maximum

Interesting results can also be obtained by searching for rules that are undominated among
a subset of linear reinforcing rules. The following results are easily verified. Among the set of
rules that satisfy v; = «, the rule with 71 =2/3, v; = @1 = 0.5 and y_; = @_1 = 1 that yields
z?) = 0.5+ .2 % (w1 — m2) is selected. Among the rules that satisfy v_; = v; and a_1 = a3, the
rule with @ =0, vy =1 and 71 = — + 21/5 where zf) ~ 0.5 4 0.1459 * (11 — 72) is selected.
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5.2.2 Patience

Now consider a patient individual with § = 1. In the following we will consider for simplicity
only rules with 79 = 1 so a—o plays no role. We will also restrict attention to small v, and
evaluate performance taking the limit as 7y, tends to zero. We will refer to this limit as “for

vanishing v,”.

Proposition 7 The unique ex-ante undominated improving rule for fived differences and van-
ishing vy is to set a_1 = a1 =1, {y_1,71} = {0,1} and 71 = 0.5 which in the limit as vy — 0

yields
Lo0) _ (1 —mo)m1 (1 + 7 — )
1 (1—7T1)7T2(1—|—7T2—7T1)—|—(1—7T2)7T1(1—|—7T1—7T2)

and d* (p) = 2p213j—épp2§ with d" (0) = 12.

The proof of this proposition given in the appendix actually reveals many other ex-ante

) and the second

undominated rules. For each of these rules we present the quotients z§°°) /2
derivative of d' at p = 0 as a rough measure of their performance. Each of them satisfies
d' (0) = 0, d¥ (0) = 0 which follows from the fact that action one is played in each round with

probability 0.5 when 71 = 7o.

Corollary 8 The following rules are ex-ante undominated for vanishing v, and satisfy d* (0) =
d(0)=0:

i)v_1 =71 >0 and a_1 = a1 = 0 yields w; d" (0) = 6) (negative reinforcement
1 1 (1—7r1)
(i) v1 >0, a1 = 1 and 71 = 1 yields % (d" (0) = 11.657)
(1)) y_1 =7 =0, a_1 =01 >0 and 71 < 1 yields %% (d" (0) = 11.657)
2

For our general analysis we assumed 7o = 1 and only consider the limit as 7, tends to 0.
However, the effect of weakening these assumptions on the above rules is easily analyzed. In
fact the above rules remain ex-ante undominated if this is relaxed. It is easily verified (checking
case by case) that any of the above rules for v, > 0 ex-ante dominates any choice of 74 > v,.
Now assume that 72 < 1. Then this lowers the probability of choosing action one in state so
and raises it by the same amount in state s_o. As m; > w9 implies that state so has higher
probability in the stationary distribution than s_s we find that setting 5, = To7y9+ (1 — 72) a2
and 7o = 1 yields better performance. Of course, relaxing the assumption 79 = 1 introduces
additional undominated rules. It is easily verified that v, = 0, a; = 1, 71 < 1 (only positive

reinforcement) yields for 75 — 1 an undominated rule with relative performance (7 /72)> .
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6 Unbounded Complexity

6.1 An Example

Consider the following linear reinforcement rule with maximal switching probability in each state
that we call the Gradual Confidence Rule. It is defined by setting 7; = 1 (and hence 7_; = 0)
fori >0, f(0)_; = f(®), =05 and a; =~; = 1 for ¢ > 0. The behavior of this rule is easily
described in words. In each round the individual either plays action one or action two with
probability one (there is no mixing in a given state). Play of action 7 is associated to a level of
confidence ¢ where ¢ = 1,2, ... The individual starts out equally like with each action and with
confidence one. With probability equal to the payoff x obtained, the same action is played again
and confidence is increased by one. If current confidence is above one then with probability 1—z
the same action is played again and confidence is decreased by one. If current confidence equals
one then with probability 1 — « the individual keeps ¢ = 1 and plays the other action in the next
round. Consequently, the aspiration level of each action in each state is 0.5. Calculating ex-ante

probabilities of choosing action one in the first seven rounds we find

z%l) = 0.5
z§2) = 0.5+0.5(mr —m2)
z§3) _ z§2)
z§4) = z§2) +0.5(m —m) (m (1 —7m1) + 2 (1 — 7))
NONNNCY
6) _ @ _ 21 _ )2 _ _ 201 \2
2y = 2z +(m —m2) (71'1 (I —m) " +mme(l—m1) (1 —m2)+75(1—m2) )
NUNNNC

§”) have a regular pattern for n < 7, this pattern does not continue
for rounds n > 8 so while we conjecture that z§2k+1) =

Although the expression for z
sz) holds in general a proof is still

missing.

6.2 Myopia

In the following we will show that the Gradual Confidence Rule is selected among the linear

reinforcement rules for its behavior in the first five rounds.

Proposition 9 Let (S, f,7) be a linear reinforcement rule that is ex-ante undominated in the
first five rounds. Then the Gradual Confidence Rule ex-ante dominates (S, f,T) in rounds two,
three and five. In round four the Gradual Confidence Rule outperforms (S, f,T) for fized differ-

€nces.
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Proof. The derivation of the terms for the first four rounds is as in the proof of Proposition 5.
Here we add some calculations to the fourth round as we wish to select a single .

The term in (12) with v, cannot be signed as it is negative for 71 = w9 = 0 and positive for
w1 = mo = 0.5. Given m1 > ma, Az = (w1 — 72) (1 — z§3)> = 0.5(m —72) (1 — (w1 — 7w2)) which
takes values in [0,0.125] and is symmetric in (71 — 72) around (71 — m2) = 0.5.

Assume that m1 = 72 + € for given ¢ € (0,1) . Then

®3)

= Z§4) 21

h(7T2a’72a€)
= .be ((1 —my—€) (1 —m2) + 79 (—1—|—27T2—|—2€—|—27T2 — (mg+ &) — (ma+e)mo —F%))
= 0.5¢ (1 — 2y 4 T3 — € + Mg — Yo + 4y + 2798 — 3yoma — 3y9EMy — ’7262)

For 79 > 1/3, h(%,74,€) is concave and candidates for minima with respect to mo are
0.5 (1 —€) (1 —5(1 —¢)) at ma = 0 and 0.5¢%y, (1 — ¢) at g = 1 — & where

0.56 (1 —¢€) (1 =79 (1 —¢)) > 0.5ey, (1 —¢)

with equality holding if and only if v, = 1 so that ming,co,1- 7 (72, 72, €) = 0.5y, (1 —¢).

For v, < 1/3, h(*,74,€) is convex in mo but %h(ﬂg,yg,e) lro=1—e = —€ — 2779 + 37196 < 0
so {1 —e} =argming,cp1-¢ {h (72,79, €)} and ming, g 1- b (T2, 72,€) = 0.5y, (1 —¢).

Fix p € [0,0.125]. Then there exists x (p) € [0,0.5] such that A (m,7m2) = p if and only if
|m1 —ma) € {0.5— 2,054+ 2}. As 0.5 (0.5 — )% 7, (1 — (0.5 — 2)) < 0.5(0.5+2)% v, (1 — (0.5+ z))

the above calculations show that

d4 (p) = inf { (z§4> - z§3>) (m1 — ) st. Ag = p} = 0.5(0.5 — 2 (p))3 75 (1 — (0.5 — 2 (p)))
(13)
and hence y, = 1 maximizes d‘}.
Assume 75 = 1 and consider round five. Here the calculations are different than for the four

state rule as ag now enters the picture. We find

p3(2) = 0.5(1—me)m +0.572 (1 — az)
p4(1) = 0.5(1—7T2)(1—|—7T2—7T1)(1—7T2)—|—(0.5(1—7T2)7T1—|—0.57T%(1—012))(1—71'1)
= 05(1—m2) (1 —n5 — w5 +mm2) +0.5m% (1 —m1) (1 — aa)

and
z§5) — z§4) =(1—ag)(m —m2) (71'% + e + 7T% — .5m — .5me — .57T§ — .571'171'% — .571'271’% — .5#?)

where we find that third term in the above expression is negative for small 71 = 9. Thus,

ex-ante improving implies g = 1 and hence zf’) = z§4). [

18



Notice that the Gradual Confidence rule performs identically (in terms of 2(™) as the selected
myopic four state rule in the first three rounds and is not comparable according to dominance
in the fourth round. The reason we choose v, = 1 was because of our criterion of performance
based on fixed differences. Solving for = (p) defined in proof above, entering this in (13) and

setting v, = 1 we obtain
2
d*(p) = 0.25p (1 — /1 - 8p>

whereas the selected myopic four state rule has v, = 0 and hence d* (p) = 0.

6.3 Patience

Next we consider behavioral rules for an individual that is infinitely patient, i.e., he evaluates
future payofls with discount factor 1. Bérgers and Sarin (1997) mention that the Cross Learning
Rule is not maximizing. As we show below, neither does the Gradual Confidence Rule have this
property. On the other hand, Rustichini (1999) claims that the Payoff Sum Learning Rule is
maximizing when the payoff distributions have finite support. In the following we construct a
maximizing linear reinforcement rule.

Consider linear reinforcement rules and fix (7;), such that 7; € (0,1) for all ¢ and lim; oo 75 =
1. Let Ef(si); = Zizlg(si)kff(si,k,:c)j dP; (z) be the expected switching probability to
state s;. We will say that a linear reinforcement rule has the symmetric state switching prop-
erty if it transits from s; more likely to s;11 than to s;_1 (ie., Ef (si);; = Ef(s:);_1) if
and only if m; > w9 with strict inequalities whenever w1 > m9. This means that m;a;m +
(I—7)y_; (1 —ma) > (1 —7;) a—yma + 74v; (1 —71) holds whenever m; > 7o which implies
iy = (L —71;) oy, (L —71;)v_; = 74y; and oy + «y; > 0. This implies that the expected index
in the next round after being in state s; equals Ef (si),.1 — Ff (8i);_1 = 7i (@ + ;) (m1 — 72) .
The product of (71 — 72) and the index of the state measures the degree in which the individual

has learned which action is better.

Proposition 10 (i) The Gradual Confidence Rule is not mazimizing even if payoffs are re-
stricted to an open subset of (0,1).
(1i) Any linear reinforcement rule where T; € (0,1) for all i and lim; oo 7; = 1 that has

the symmetric state switching property is mazimizing. None of these rules is improving in each

1—7;

round. Given (7;);, the choice of a—; = y_; = 1 and o; = v, =

for ¢ > 0 maximizes
the product of (m1 — ma) and the expected state index in any given round among the linear

reinforcement rules that have the symmetric switching property.

Proof. Under the Gradual Confidence Rule, when in the states s; with ¢ > 0 the switching

process between states is a random walk with expected increase in the state index of w11 +
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(1 —m)(—1) = 271 — 1. The theory of random walks tells us that with positive probability
the individual will always choose action one if 1 > 0.5 even if w9 > 7. On the other hand,
if mg < w1 < 0.5 then with probability one there will never enter a state with arbitrarily high
(or low) index. Thus there is a limit distribution where both actions are chosen with positive
probability. This distribution is easily calculated but of no interest here because the existence
of this distribution shows that the rule will not select the better action.

With symmetric state switching property, again we have a random walk like process where
the expected increase in the state index is 7; (a; + ;) (w1 — m2). Assume m1 > 7wo. Assume
for a moment that 7;(c; + ;) does not depend on ¢ (which is of course not true). Then we
obtain that the random state index tends to infinity. In particular, for any ¢ > 0 there exists ¢
such that the probability that the state index is always greater than —i¢ is at least 1 — e. Now
notice that the probability of never reaching some state s_; does not depend on 7; (a; + ;) as
long as 7; (o; + ;) > 0. Therefore, even when 7; (; + 7y;) depends on 7 then with a given high
probability the process does not reach a state with a sufficiently small index. This means that
with probability one the random state index does not tend to minus infinity. On the other hand
the random state index cannot remain bounded with high probability as the expected change
of the index is strictly positive. Consequently the random state index tends to infinity with
probability one.

The change in the expected probability of choosing action one equals
Ti (01 + v (1 — m2)) (Tig1 — 73) + T (auma + 77, (1 — 1)) (Tom1 — T4)

which simplifies to 7; (7441 + Ti—1 — 27;) (71 + v; (1 — 1)) if m1 = mo. The fact that 7; — 1 as

i — oo implies that 711 + 7;-1 — 27; < 0 holds for some j. Improving implies that a; =; =0

and hence state s; is absorbing which however violates the symmetric switching property.

1—7;
-

If i > 0 then 7; > 0.5 and o, v, < I=Ti g9 a;=v_;=1land o; =; = maximizes
IYZ Ti ,y (3 (3

Ti (@i + ;) among these rules. Wl

7 Conclusion

The present paper is a first very preliminary approach to “optimal” boundedly rational decision
making. Analogous to the rational paradigm, methodology is presented for selecting a unique
behavior for a given discount factor. We choose a distribution free approach and rely on a
maxmin analysis.

Selection is illustrated in a particular class of behavioral rules. Many more results for more

general rules can be obtained although proofs are often tedious. We focus in this paper on few
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cages as they already bring the relevant issues concerning how to select to light. Moreover, we
find the present results interesting.

This is the first paper that presents a theory and analysis of boundedly rational decision
making when no additional information about other decisions or other individuals is present.
Other approaches add additional information about similar decisions (Gilboa and Schmeidler,
1995) or about the behavior of others (Schlag, 1998).

A related paper classifying boundedly rational decision rules with specific properties without
selecting among them is due to Borgers, Morales and Sarin (1998). They characterize improving
rules and thus present a first step in selecting for myopic behavior. Their rules are less attractive
for completely patient individuals as the best action will only be selected with high probability.

Notice that the rule we present in Section 6.3 is intuitively simpler and is maximizing.
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A Proof for four states

Assumes that parameters are such that the process is ergodic (e.g., o;,7; > 0). Let z; be the
probability assigned by the stationary distribution of being in state s;. Then (xg + 7121 + (1 — 71) £_1)
is the probability of choosing action one. As the individual is perfectly patient we only need to
consider payoffs in the stationary distribution.

It is easily verified that

Ty = (megma+ (1 -71)7L (1—m)) (1—711)alyme + 7171 (1= m1)) 75 (1 —m1) /N,
-1 = vp(l—m) ((1—71)alyme+ 7171 (1 —m1)) v (1 —m) /N,

22



g1 o= (1) (L —m) (L —m2) (1 —71) alym + 7171, (1 —72)) /N,

z2 = v (1—m) (L—71) el m + 7170 (1 —m2)) (Troqm + (1= 71) 71 (1 — m)) /N

where N is such that 37 ,x; = 1.

N(zo+ 7121 +(1—711)2_1)
= 7 (1—m)

((1 —71)elym + 71yl (1 - 772)) (7'10&”1 +(1—-r)y(1- 7T2))
74 (L =m) (11)° 7 (L= mo) + 71 (L= 71) (alym 494 (L= m)) + (1= 1) alymo)

Calculating the analogous expression N (z_2 + (1 — 71) z_1 + T121) for action two we obtain
the quotient of these two expressions

N(SC2+T1:C1—|—(1—T1)SC_1)
N{z_o+(1—T1)2z_1 +7T121)
(1—71'2)
(1—71'1)

((1 —r1)alim + 7yl (1 - 772)) (7'10&”1 +(1—r) (- 7T2))
7k (1= m1) (1) 7Ly (1= 72) + 71 (L= 1) (alyms + 91 (1= m) + (1= 71)*alymo)

(Tla%ﬂ'g +(1—-7m)v, (1 - 7T1)) ((1 —71) ol e + Ty (1 — 7T1))
4 (1= m2) ((r)* 33 (L= ) + 71 (1= 71) (@l ymp + 94, (1= m2)) + (1= 1)l ym)

where v — 0 yields a right hand side of

(1 —m2) (L =71)elym + 719l (1 = 7o) (meqms + (1 = 71) 73 (1 — 72))

(1-—m) (redme+ (1 —71) 7y, (1 =) (1 —71) alyme + 717) (1 — 1))
Improving requires that the term above equals one if 11 = 9. Our next results states a necessary
condition for this to be true.

Lemma 11 The condition that quotient equals 1 for m1 = wo requires

(1) v_q1 = 1 which yields

(riadm + (1= 71) 77 (1 — 7m2))
1 m \ 3 A=m) ()1 =m)+ 71 (1=

(«
)
(1—71'1) (
)

(1 —71)atym + 717, (1 — 7T2))
(a 1T+ (1 — 7T1)) +(1- 7'1)2 oz1_17rg>

(T10£17T2 +(1-—71)7(1—m )

—r)alime+ 1 (1 - 7T1))
7 (1= m2) ((r)? R (= m) + 71 (1= 7

(1
(Oz 172 + 7 (1—71'2)) +(1—7'1)20z1_17r1>
and for v, — 0

(1 —ma) (7'10‘%771 +(1—71)7: (1 - 7T2)) ((1 —7)aolm+ Ty (- 7r2))
(1—m1) (rradme 4+ (1 —71) 7 (L= m1)) (1 = 71) el yma + 7171 (1 — 1))
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or
(2) [r1 = 0.5 and a_1 = oq] which yields

(a1 +v_1 (1 —m2)) (a1m1 4+ 71 (1 — 72))
(1—my) +0.5v5 (1 —m1) (-1 ( )+ a1m1 +; (1 — 1) + g o)
(1—m1) (ama +v_1 (1 —m1)) (aame + 1 (1 —71))
+0.575 (1 — m2) (71 (1 —m1) + eqma + 72, (1 — 7m2) + afm)

1—71'2

and for y5 — 0
(1— o) (0am1 +7_1 (1 —m2)) (a1 + 1 (1 — m2))
(L—m1) (cama + 71 (L —m1)) (ama + 79 (L = 71))

Proof. (of Lemma) The requirement is

(1=71)atym + 7175, (1= m)) (riedm + (1 = 71) 1 (1 — 1))
g (L= m) (F) Ly (L= m) 71 (L= 71) 3 (L= 1) + (1= 1) ol yma )

:< (1= 1) alym + 719 (1 =) (raadm + (1= m1) 9L, (1 - m)) )
+y3 (1 —m1) (1 (L =m) + 71 (1 =71) 7L, (1 —m) + (1 = 71) ol ym)

(14)

so for w1 = 0 this means

Tyhvs + (L —71)71 (Y +73) = mvivs + (L= 711) 4L (v +73)

which is equivalent to (1 — 271) 7, (y1 — 7_1) = 0 so either 71 = 0.5 or y_; = ;.

If 71 = 0.5 then the requirement is 0 = m1 (1 —m1) (@—1 — 1) (y; —7_1) which is also
sufficient if o_1 = 0.

On the other hand, v_; = «y; implies that (14) holds with equality. W

Proposition 12 Best ex-ante undominated improving rule for fized difference for v, — 0 :
a1 =a1 =1, {’y_l,'yl} = {0,1} and 71 = 0.5 which yields

(1—7T2)7T1(1—|—7T1—7T2)
(1—m)ma(l4+ma—m1)+ (1 —m2)m (1+ 71 — 72)

3+4p?
where d* (p) = 2p21rT’;g.
Proof. Consider v, — 0 and y_; = 7y, then we aim to maximize

(1 —m)(rroami+ (1 =71) 71 (1 = m2)) (1 = 71) aamy + 7177 (1 — 72))
(1—=m)(rraame + (1 = 71) 1 (1 = m1)) (1 = 71) a—ame + 7177 (1 — 1))

subject to w1 > mo. Notice that this expression is monotone in «_1 and in ;. Taking a minimum

according to mo and a maximum according to the parameters shows that o1 and o1 are on the
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boundary. In the following we will calculate this expression for the extreme values of a—; and

a1 for given 71 and 7o and then derive d! (p) .

= oy = 0 yields =72, where d! = 2__
O{_l—Ofl—OYIG smwere —pm 1).

{o—1,01} = {0,1} yields

(rimi 4+ (L=71) v (1= 7)) (1 — mp)?
(rima+ (L= 71) v, (1 —m1)) (1 — m1)?

2
and hence using linearity the candidates are % with

(1-p- VP +2) (p—|—2—\/p2——|—2>2

P
dlz— —p
2 P24+ T —5/p? +2
(1—m3)®
o a=m)®

a_1 = o1 =1 yields

(1—mo) (mimi+ (1 —=71) 11 (1 =m2)) (1 =71) ™1 + 7171 (1 — 72))
(1—m1) (rame + (1 = 71) 71 (1 = m1)) (1 = 71) 2 + 71771 (1 — 1))

7r1(1—7r2)2
7T2(1—7T1)

(1—ma)r?

. . i . . 1 m1(1—mg)?
Given p, candidates are v, = 0 which yields = (same d" as 2 (Iom)?

1—m2)(m1+1—m2)? 1+2p)* . 7 _—
El—riigr:il—rj; (d* = Jﬁ—%l_’;ﬁgpp_élp — p) and 1, mo such that d;i/l = 0 which means 7L = —%_Wi
and hence w9 = 0.5 (1 — 2p) . Verifying dim =0 at 7 = 0.5 and p = 0 we find vy; = 1/3 which
(1—ma)(m1+(1—m2)/3)?

(1—m1)(ma+(1-71)/3)°

Consider v9 — 0, 71 = 0.5 and «—1 = a1 which yields

(1=ma)(m1+v, (1-72))*
(1—m1)(ma+y, (1-m1))*"

), 71 = 1 which yields

Candidates for extrema are 71 = 1 that yields

and 71 = 0.5 which yields

yields as candidate

(1—72) (cam +7_;1 (1 — m2)) (0171 + 77 (1 — 72))
(1—m1) (cama +7y_1 (1 = m)) (012 + 77 (1 — 1))

(1) y; =y_; is best if either oy = 0 or @1 = 1 which we already have above,

) {7_1,71} = {0, 1} yields zggggi}jﬁggjﬂ so best if a1 = 1 which yields gjﬂ:ggﬂ;:ﬁg

2 . . m1(1—mg)?
(d* = 2p2%g) or a; = 0 which yields ﬁg
Soa_1=a1 =1, {y_1,71} ={0,1} and 71 = 0.5 best as

(m14 (1 —m2) /3)° (1 — my)
(ma+ (1—m1) /3)° (1 —mp)’

7T1(7T1—|—1—7T2)(1—7T2)
7T2(7T2—|—1—7T1)(1—7T1)

>

71 (1 — mo)? S (ml- m2)? (1 — 72)
mo(1—m1)* = (mo+1—m)* (1 —m)

for 1 > m9 and it outperforms all other candidates above in fixed differences. B
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Proof. (of Corollary 8) In the proof of Proposition 7 we derived the candidates for maximizing
z%oo)/ zéoo) for given 1 and 7o with m1 > me. These four rules are described in Proposition 7
and in Corollary 8 (i)-(iii). If one of these rules is not ex-ante undominated then it must be
dominated by one of the other four candidate rules. However, we find that none of these four

rules dominates one of the others as t;i > (<) 2L implies

(1—mo)? 71 (1 —79)? T (m1 41 —m9) (1 —m2) 72 (1 — 7o)
(1—m)? > (<) T (1 —71)? T i —m) <) w3 (1—m1)
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