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Abstract

There is by now a large literature characterizing conditions under which
learning schemes converge to rational expectations equilibria (REEs). A
number of authors have claimed that these results are dependent on the
assumption of homogeneous agents and homogeneous learning. We study
stability analysis of REEs under heterogeneous adaptive learning, for the
broad class of self-referential linear stochastic models. We introduce three
types of heterogeneity related to the way agents learn: di¤erent perceptions,
di¤erent degrees of inertia in updating, and di¤erent learning algorithms.
We provide general conditions for local stability of an REE. Even though in
general hetereogeneity may lead to di¤erent stability conditions, we provide
applications to various economic models where the stability conditions are
identical to the conditions required under aggregation. This suggests that
heterogeneity may a¤ect the stability of the learning scheme but that in
most models aggregation works locally.
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1. Introduction

A signi…cant part of the rapidly developing learning literature has concentrated
on characterizing conditions under which learning schemes converge to rational
expectations equilibria (REEs). The importance of these contributions has various
dimensions. Not only does learning provide a conceptual improvement from the
by now standard assumption of rational expectations (RE), it also serves as a test
of robustness of equilibria to expectational errors, or as a selection mechanism in
models with multiple equilibria, and it has made it possible to explain economic
phenomena that could not be tackled using RE methodology. These advantages
have been stressed by numerous authors over the last …fteen years. Nevertheless,
several points of the learning approach have been criticised. Perhaps the most
important one, is the assumption of the representative agent.

In macroeconomic theory, the assumption of the representative agent has of-
ten been criticised1, not only because it is unrealistic, but also because it might
yield misleading conclusions regarding the dynamics and behaviour of an econ-
omy. Furthermore, in learning models, apart from the structural heterogeneity
that may arise within the economy, there is the additional issue of the degree of
expectational coordination among the agents. Although the importance of this
point has been stressed, it has been somewhat ignored, perhaps because of the
early indications in the literature that have been supportive of the representative
agent, and also due to the technical simplicity of analysing the stability under
this assumption. However, the small number of contributions concerning hetero-
geneous learning, especially the more recent ones, give no clear indications but,
on the contrary, a certain amount of ambiguity. Some authors have shown that
heterogeneity does not matter (Bray & Savin (1986), Sargent (1993), Evans &
Honkapohja (1996)) while others show that it does matter (Marcet & Sargent
(1989b), Barucci (1997), Franke & Nesemann (1999) and Evans, Honkapohja &
Marimon (2000)). The source of ambiguity regarding the plausibility of the repre-
sentative agent is the lack of a general systematic study of heterogeneous learning.
With the exception of Marcet & Sargent (1989b), the stability results obtained
in the above papers are very much dependent either on the structural speci…cs of
the models, or on the particular and not always well justi…ed learning algorithm
that is employed.

In this paper, I present an analysis of the local asymptotic properties of het-
erogeneous learning for the broad class of self-referential linear stochastic models.
The term heterogeneous learning is used to emphasise that it refers to di¤erences
in the ways agents learn, and not structural heterogeneities of the model. The

1For an enlightening critisism on the representative agent assumption see Hahn & Solow
(1997).
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purpose of this choice is to explore exactly what would happen when the single
asymmetry of the agents is how they learn, as structural heterogeneity would
involve unnecessary complications, that could remove the focus from the compar-
ison with the representative ‘learner’. I study three types of heterogeneity: agents
that (i) have di¤erent expectations (or perceptions) (ii) have di¤erent degrees of
inertia in updating and (iii) use di¤erent learning rules. The analysis consists of
deriving conditions for local asymptotic stability of rational expectations equilib-
ria (REEs) under the heterogeneous algorithm and comparison of these with the
stability conditions for the learning rule of the representative agent.

Interestingly, it turns out that for the case of heterogeneous expectations,
when the agents use the recursive least squares learning scheme, the conditions for
local convergence of heterogeneous and homogeneous learning are always identical.
However, the stability conditions for the remaining types of heterogeneity are not
necessarily the same as the ones under homogeneous learning, for the general
setup. For this reason, the results are applied to four sub-classes of the class of
self-referential linear stochastic models. These cover a wide range of standard
macroeconomic models. For these sub-classes it can be shown that the conditions
for all the types of heterogeneity are identical with the ones of the homogeneous
case.

The paper consists of the following sections. First I describe the general formu-
lation of the model and the main tools for analysing stability of learning models.
Second I brie‡y discuss the convergence and the stability properties under homo-
geneous learning, and in particular for the recursive least squares and stochastic
gradient schemes that have been the most popular learning rules used in the liter-
ature. Next I proceed with the stability analysis of heterogeneous learning for the
three types of heterogeneity, and last I apply the stability results to four reduced
form examples. Closing comments follow.

2. The general setup

For completeness, I …rst give the general description of the class of models to be
studied, i.e. self-referential linear stochastic models (SRLS models). Following
the notation of Marcet and Sargent (1989a), the model at time t is described by
an n¡dimensional vector of random variables zt 2 Rn: Suppose that z1t 2 Rn1

is the subvector of zt which contains the variables that the agents are interested
in predicting, and that z2t 2 Rn2 is the vector of variables that are relevant for
predicting z1t: The agents believe in the following perceived law of motion of the
variables

z1t = ©
0
tz2t¡1 + ´t
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where ´t is a vector of white noise errors, orthogonal to all past z2’s, and with
zero mean. ©t is an n2 £ n1 matrix of parameters. The actual law of motion for
zt is then

zt =

µ
z1t
zc1t

¶
=

µ
0 T (©t)
A(©t)

¶µ
zc2t
z2t

¶
+

µ
V (©t)
B(©t)

¶
¢ ut

where the superscript c denotes the complement of the relevant vector. The
rational expectations equilibria (REEs) of the SRLS model belong to the set of
the …xed points of the T¡ map, i.e. solutions of the equation T (©f ) = ©f :
Therefore, the study focuses on analysing the asymptotic local properties of such
solutions, ©f :

This setup covers a wide range of macroeconomic models. In particular, any
linear model that can be written in a reduced form that contains lags of the en-
dogenous variables, lags of exogenous variables, and lagged or future expectations
of future values of the endogenous variables, can be studied within this framework.
For example, consider the general reduced form

yt = ¹+
lX

i=1

®iyt¡i +
mX

j=1

nX

k=1

¯jkE
¤
t¡jyt¡j+k +

rX

s=1

°sws;t (2.1)

where yt is a vector of endogenous variables, E¤t¡jyt¡j+k is the expectation of
yt¡j+k formed by the agents at time t ¡ j, and ws;t = ½sws;t¡1 + "s;t are vectors
of exogenous variables. The exact speci…cation of the vectors zit depends on the
model at hand. Several examples can be found in Marcet & Sargent (1989a),
and Evans & Honkapohja (2001). Furthermore, four special cases of (2.1) will be
studied in section 5 to illustrate how the stability results obtained here can be
applied.

Suppose now that agents’ beliefs ©t are updated according to the following
adaptive learning algorithm:

µt = µt¡1 + ®tQ(µt¡1; z2t¡1)

where µt is a vector containing the (vectorised) beliefs of the agents ©t and pos-
sibly other auxiliary parameters that are used for updating, and ®t and Q(¢; ¢)
satisfy some technical assumptions2. If the necessary assumptions are satis…ed,
the learning algorithm can be associated with the ordinary di¤erential equation
(henceforth ode)

dµ

d¿
= h(µ)

2For completeness, these assumptions are stated in appendix A.
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where h(µ) = limt!1E [Q(µ; z2t(µ))] : The following results have been established
in stochastic approximation theory: (a) If this ode has an equilibrium point µ¤

which is locally asymptotically stable, then the algorithm converges to µ¤ with
some probability which is bounded from below by a sequence of numbers tending
to one (Evans & Honkapohja, 1998a), (b) If µ¤ is not an equilibrium point, or
if it is not a locally asymptotically stable equilibrium point of the ode, then the
algorithm converges to µ¤ with probability zero (Ljung, 1977).

If the ode method can be applied, then the convergence and the local asymp-
totic stability of an equilibrium µ¤ of the learning algorithm are determined by
the local asymptotic stability of the associated ode, which in turn is determined
by the stability of the matrix J(µ¤) = @ vech(µ)

@ vecµ

¯̄
¯
µ=µ¤

: Therefore the conditions re-

quired for convergence and stability of the learning algorithm (henceforth stability
conditions) are derived by imposing that J(µ¤) is a stable matrix3.

3. Homogeneous learning

The bulk of the adaptive learning literature deals with stability analysis and
provides results under the assumption that agents are homogeneous in the way the
learn the relevant parameters of the economy. Typically, the agents are assumed
to have some basic knowledge of econometrics, such that the parameters ©t can
be interpreted as ordinary least squares estimates based on data up to time t¡ 1:
Recursive least squares has been extensively used, mainly for two reasons. First,
because it is a reasonable and statistically e¢cient learning rule. Second, because,
as Marcet & Sargent (1989a) show, the technical di¢culty when studying the
convergence of the algorithm can be reduced considerably.

A popular alternative learning rule is the stochastic gradient algorithm4 (see
Sargent (1993), Kuan & White (1994), Barucci & Landi (1997), Evans & Honkapo-
hja (1998b) and Heinemann (2000)). The essential di¤erence between stochastic
gradient learning and recursive least squares learning is that the former is a gra-
dient type algorithm, while the latter is a Newton type algorithm (i.e. it uses
information on second moments). Naturally, stochastic gradient learning is com-
putationally less complex than recursive least squares learning, and could therefore
be considered a more plausible learning device for economic agents from a behav-
ioural point of view, as all the above authors point out. I now turn to a brief
description of the two algorithms of interest.

3A matrix is called stable if all its eigenvalues have negative real parts.
4Barucci and Landi (1997) refer to it as ’least mean squares learning’.

5



Recursive least squares learning. Using the notation of section 2, the re-
cursive least squares learning algorithm is given by

©t = ©t¡1 + ®tR
¡1
t¡1z2t¡1

£
z02t¡1

¡
T (©t¡1)

0 ¡ ©0t¡1
¢
+ u0t¡1V (©t¡1)

0¤

Rt = Rt¡1 + ®t
£
z2t¡1z

0
2t¡1 ¡Rt¡1=t®t

¤

Marcet and Sargent (1989a) show that the associated ode is the vectorised version
of the following ode5

d©

d¿
= R¡1M(©) [T (©)0 ¡©]

dR

d¿
= M(©)¡R

where M(©) = limt!1Ez2t(©)z2t(©)0. The local stability of an REE is entirely
determined by the local stability of the ode at the REE

dvec©
d¿

= vec (T (©)0 ¡©)

The Jacobian of the rhs of the ode is

JLS(©) =
d vec (T (©)0 ¡ ©)

d vec©
= L(©)¡ In1n2

where L(©) = d vec(T (©)0) =d vec©: The local asymptotic stability of an REE ©f
under least squares learning is determined by the stability of the matrix JLS(©f) :
the least squares algorithm converges to the locally asymptotically stable REE
if and only if the real parts of the eigenvalues of JLS(©f) are strictly negative
(Marcet & Sargent, 1989a).

Stochastic gradient learning. The stochastic gradient algorithm is given by

©t = ©t¡1 + ®tz2t¡1
£
z02t¡1 (T (©t¡1)

0 ¡ ©t¡1) + u0t¡1V (©t¡1)0
¤

Barucci & Landi (1997) show that the associated ode is

dvec©
d¿

= vec [M(©) (T (©)0 ¡ ©)]

5To convert this algorithm to the standard general form described in the previous section,
one has to perform the timing transform St = Rt+1: This change does not alter the asymptotic
behaviour of the algorithm, and therefore, although technically more precise, will be avoided
here for consistency with the existing literature.
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The Jacobian of rhs of the ode is6

JSG(©) =
d vec [M(©) ¢ (T (©)0 ¡ ©)]

d vec©

=
£
(T (©)0 ¡©)0 ­ I

¤
¢ dvecM(©)
d vec©

+ [I ­M(©)] ¢ JLS(©)

The local asymptotic stability of an REE ©f under stochastic gradient learning is
determined by the stability of the matrix JSG(©f) = [I ­M(©f )] ¢ JLS(©f) : the
stochastic gradient algorithm converges to the locally asymptotically stable REE
if and only if the real parts of the eigenvalues of JSG(©f ) are strictly negative
(Barucci & Landi, 1997).

4. Heterogeneous learning

Unfortunately, homogeneous learning, whether it is with least squares, stochastic
gradient or any other algorithm, su¤ers from at least the same problems as the
representative agent in macroeconomic theory in general. In particular for learn-
ing, behind the representative agent lies the assumption that either (a) everybody
coordinates with each other to act (learn) in precisely the same way or that (b)
although the agents might learn in di¤erent ways, it su¢ces to study the actions
of the agents on average. The …rst case is arguably unrealistic unless some coop-
erative element is introduced7, while the second should not be trusted unless it
can be shown rigorously that analysing the heterogeneous case is indeed equiva-
lent to studying the learning of the average agent. The present work deals with
examining the validity of assumption (b).

This section consists of a description and analysis of convergence of three types
of heterogeneity that may arise as a natural consequence of the agents’ limited
rationality in models of learning. In particular, the heterogeneity studied here
is related to the way agents learn, rather than to the structure of the model. It
is assumed that the economy consists of a continuum of agents of measure one,
and there are two types of agents, type A and type B, of measure Ã and 1 ¡ Ã
respectively. In contrast to the homogeneous case, here type A and B agents form
expectations according to

z1t = ©0Atz2t¡1 + ´t
z1t = ©0Btz2t¡1 + ´t

6For the derivation see appendix B.
7Evans & Guesnerie (1999) show that it is possible to trigger complete coordination of ex-

pectations on some perfect foresight path when there is common knowledge among the agents
that the solution is near the path.
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respectively, which implies that E¤At(z1t) = ©0Atz2t¡1 and E¤Bt(z1t) = ©0Btz2t¡1:
Then

E¤t (z1t) = [Ã©
0
At + (1¡ Ã)©0Bt] z2t¡1

Let ©t = (©At;©Bt) be an n2 £ 2n1 matrix containing the estimates of the para-
meters for both agents at time t and g (©t) = Ã©At + (1¡ Ã)©Bt be the function
representing the weighted average of the parameter estimates of the two agents.
Then the (average) perceived law of motion is

z1t = g (©t)
0 z2t¡1 + ´t

and the true law of motion is given by

zt =

µ
z1t
zc1t

¶
=

µ
0 T (g (©t))
A (g (©t))

¶µ
zc2t
z2t

¶
+

µ
V (g (©t))
B (g (©t))

¶
¢ ut

Note that the mapping T is actually not altered; what changes compared to the
homogeneous case is the argument at which it is evaluated. Clearly the REEs are
not altered either, since under RE Et(z1t) = EAt(z1t) = EBt(z1t) = ©fz2t¡1:

Before proceeding with the description of the types of heterogeneity to be
analysed, I will brie‡y discuss two types of heterogeneity which do not …t into
the above framework. First is the case of agents with asymmetric or private in-
formation, i.e. a case where the groups of agents have access only to subsets of
the relevant state variables. Second is the case where some part of the popula-
tion persistently misspeci…es the model, by always ignoring some variables that
actually in‡uence the endogenous state variables8. It is beyond the scope of the
current work to give a thorough discussion of the conceptual implications of these
two assumptions. However, it should be mentioned that there are models that
…t these descriptions, as discussed in Marcet & Sargent (1989b) for the case of
private information, an in Evans & Honkapohja (2001, chapter 13) for the case
of misspeci…cations. Formally, both these cases can be described and analysed
within the framework of Marcet & Sargent (1989b), where type K agent forms
expectations according to

E¤Kt (z1t) = ©
0
Ktz

K
it¡1 + ´t

where zKit is possibly a subset of z2t, i.e. the vector which contains exactly the
variables that are relevant for predicting z1t:With this setup, if convergence occurs
then it will not be to ‘standard’ REEs, but to other equilibria which have appeared
in the literature as limited information rational expectations equilibria, restricted

8A variant of this is the case where di¤erent groups of agents have di¤erent (mis)speci…cations
of the model.
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perceptions equilibria or self-con…rming equilibria. In contrast, for the cases of
heterogeneity analysed here, it is assumed that all groups of agents are aware
of the correct speci…cation of the model, but for various reasons their parameter
estimates di¤er, i.e. f©Atg1t=0 6= f©Btg1t=0 :

What follows is the description of the three types of heterogeneity and the
corresponding results on stability conditions for each case.

Agents with di¤erent expectations (or initial perceptions). The …rst
type of heterogeneity that is introduced in the model is a situation where the
agents have di¤erent expectations about the economic variables, that is ©At 6= ©Bt
for at least some number of periods. In a setting where the agents are not fully
rational, it is actually more reasonable to allow for this possibility than to assume
that all agents have identical expectations. Implicitly, the latter assumption re-
quires a great deal of expectational coordination in what the agents believe about
the economy, which in turn hints at an underlying exogenous mechanism that
dictates to the agents what precise expectation they should have. In contrast, al-
lowing the agents to have di¤erent expectation can incorporate a situation where,
due to psychological, cultural or other exogenous factors some agents are for ex-
ample optimistic about the economy while others are pessimistic. The issue I wish
to explore here is whether allowing the agents to have di¤erent expectations alters
the evolution of the economic system in the sense of convergence to and stability
of the REEs.

Formally, introducing heterogeneous expectations formation requires only that
the agents have di¤erent initial beliefs about the parameters, i.e. that ©A0 6= ©B0:
Assuming that the agents use recursive least squares to update their perceptions,
the parameter estimates are updated according to

©At = ©A;t¡1 + ®tR
¡1
A;t¡1z2t¡1

£
z02t¡1

¡
T (g (©t))

0 ¡ ©0A;t¡1
¢
+ u0t¡1V (g (©t))

0¤

RAt = RA;t¡1 + ®t
£
z2t¡1z

0
2t¡1 ¡RAt¡1=t®t

¤

©Bt = ©B;t¡1 + ®tR
¡1
B;t¡1z2t¡1

£
z02t¡1

¡
T (g (©t))

0 ¡ ©0B;t¡1
¢
+ u0t¡1V (g (©t))

0¤

RBt = RB;t¡1 + ®t
£
z2t¡1z

0
2t¡1 ¡RB;t¡1=t®t

¤

while if they use stochastic gradient learning, the estimates are updated according
to

©At = ©A;t¡1 + ®tz2t¡1
£
z02t¡1

¡
T (g (©t))

0 ¡ ©0A;t¡1
¢
+ u0t¡1V (g (©t))

0¤

©Bt = ©B;t¡1 + ®tz2t¡1
£
z02t¡1

¡
T (g (©t))

0 ¡ ©0B;t¡1
¢
+ u0t¡1V (g (©t))

0¤

The following proposition determines the stability conditions for the above algo-
rithms. Recall that L(x) = d vec(T (x)0) =dvecx and de…ne the following ‘weight’
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matrix

W =

µ
Ã 1¡ Ã
Ã 1¡ Ã

¶

Proposition 4.1. When agents have di¤erent expectations about the parameters
of the model and they update their perceptions using recursive least squares learn-
ing, the local asymptotic stability of an REE ©f is determined by the stability of
the matrix

JLS1 (©f) = W ­ L(©f)¡ I2n1n2
This matrix is stable whenever JLS(©f) is stable. Furthermore, when the agents
update their perceptions with stochastic gradient learning, the local asymptotic
stability of ©f is determined by the stability of the matrix

JSG1 (©f) = (I2n1 ­M(©f)) ¢ JLS1 (©f )

Proof. See appendix C.
This proposition suggests that di¤erences in expectations do not matter when

agents use least squares learning, or equivalently, that the stability conditions
under homogeneous least squares learning (also known as E-stability conditions)
are su¢cient to ensure stability for this type of heterogeneity. Furthermore, when
the agents use stochastic gradient learning and n1 = n2 = 1, it follows trivially
that the E-stability conditions are su¢cient for stability of JSG1 (©f): Although it
is not in general true that if JLS1 (©f) is stable so is JSG1 (©f), it can be shown, as
will be demonstrated in section 5, that for a number speci…c examples that cover
a wide variety of economic models, it is indeed true.

Agents with di¤erent degrees of inertia. The second type of heterogeneity
is a case where the agents have di¤erent degrees of inertia in their updating, in
the sense of how much weight they put on the new incoming information in each
period. The way an adaptive algorithm is interpreted is that in each period an
agent updates the parameters of interest (here ©) by adding to or substracting
from his previous estimate a quantity which depends on the newly/currently ob-
served information. Typically, this quantity re‡ects the forecasting error of the
previous estimate. Furthermore, how important this quantity is for the agent is
captured by the gain sequence f®tg1t=0 in the general algorithm. In essence, the
absolute value of the gain sequence captures the degree of inertia of the agent in
updating. There are several ways to introduce di¤erent degrees of inertia, which
basically comes down to a variety of di¤erent gain sequences. Here, I analyse a
simple case where the gain sequence of agent B is a multiple or fraction of the
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gain sequence of agent A: Formally, for some ± > 0; the two agents update the
parameters according to the least squares learning algorithm

©At = ©A;t¡1 + ®tR
¡1
A;t¡1z2t¡1

£
z02t¡1

¡
T (g (©t))

0 ¡ ©0A;t¡1
¢
+ u0t¡1V (g (©t))

0¤

RAt = RA;t¡1 + ®t
£
z2t¡1z

0
2t¡1 ¡RAt¡1=t®t

¤

©Bt = ©B;t¡1 + ±®tR
¡1
B;t¡1z2t¡1

£
z02t¡1

¡
T (g (©t))

0 ¡©0B;t¡1
¢
+ u0t¡1V (g (©t))

0¤

RBt = RB;t¡1 + ±®t
£
z2t¡1z

0
2t¡1 ¡RB;t¡1=t®t

¤

The following proposition provides stability conditions for convergence to and
stability of an REE for the above algorithm. De…ne the matrix ¢ = diagf1; ±g:

Proposition 4.2. When agents have di¤erent degrees of inertia in updating the
parameters of the model and they update their perceptions using recursive least
squares learning, the local asymptotic stability of an REE ©f is determined by
the stability of the matrix

J2(©f ) = (¢­ In1n2) JLS1 (©f)

Proof. See appendix D.
Unfortunately, it is not possible to show a general result by which J2(©f)

is stable whenever the E-stability conditions are satis…ed. However, here too, a
great number of examples that have been examined indicate that this typically
holds (at least for standard models). Some of these examples will be discussed in
section 5. Besides, simple intuition suggests that, if some agents have more (or
less) inertia than the rest of the population, this would at most lead to slower
or faster adaptation, and hence a change in the rate of convergence, rather than
preventing the algorithm from converging altogether.

Agents that use di¤erent learning algorithms. In the …nal case of hetero-
geneous learning, we let the agents use di¤erent learning algorithms. In particular,
it is assumed that type A agents update their perceptions using the recursive least
squares algorithm, while type B agents update their perceptions using the sto-
chastic gradient algorithm, i.e. learning is occurring through the following mixed
algorithm

©At = ©A;t¡1 + ®tR
¡1
A;t¡1z2t¡1

£
z02t¡1

¡
T (g (©t))

0 ¡©0A;t¡1
¢
+ u0t¡1V (g (©t))

0¤

RAt = RA;t¡1 + ®t
£
z2t¡1z

0
2t¡1 ¡RAt¡1=t®t

¤

©Bt = ©B;t¡1 + ®tz2t¡1
£
z02t¡1

¡
T (g (©t))

0 ¡©0B;t¡1
¢
+ u0t¡1V (g (©t))

0¤

It is a well established fact that, although the two algorithms are quite similar,
least squares is more e¢cient from an econometric view point, while stochastic
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gradient is less complex from a computational view point (as it does not involve
the inversion of the second moment estimate R). Loosely speaking, this setup
can be used to pin down the heterogeneity which is due to di¤erences in the
computational ‘abilities’ and ‘capabilities’ of the agents. For example, we could
imagine that the least squares algorithm is used by agents that have access to
powerful computational tools, such as computers, while on the other hand, the
stochastic gradient algorithm is used by agents for whom it is very costly to
perform complex calculations, and prefer to do less calculations than have high
econometric e¢ciency. Stability conditions for an REE under the mixed algorithm
are given in the following proposition:

Proposition 4.3. When agents use di¤erent learning rules for updating the pa-
rameters of the model, namely recursive least squares and stochastic gradient
learning, the local asymptotic stability of an REE ©f is determined by the stabil-
ity of the matrix

J3(©f ) =

µ
In1n2 0
0 In1 ­M(©f)

¶
JLS1 (©f )

Proof. See appendix E
Once again, the proposition suggests that the E-stability conditions are not

in general su¢cient to ensure stability of the mixed algorithm of the general
formulation of the model. However, for all the examples that I have examined,
the E-stability conditions imply stability of J3(©f ).

5. Examples

In this section I discuss some examples from the class self-referential linear sto-
chastic models, and I apply the stability results derived in the previous section
in order to examine the e¤ects of allowing for heterogeneous learning on the sta-
bility of REEs. The examples analysed here have reduced forms with (i) date t
expectations of future variables (ii) date t ¡ 1 expectations of current variables,
(iii) date t¡ 1 expectations of current and future variables and …nally (iv) lagged
endogenous variables. For all the examples I concentrate only on the Minimal
State Variable (henceforth MSV) solutions, which typically (but not always) cor-
respond to the unique stationary solutions of the models. For all the examples, it
is shown that the local stability of the REEs for the three cases of heterogeneity is
determined by the E-stability conditions. The …rst three examples have a unique
MSV rational expectations solution, while the last one can have multiple MSV
REEs.
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The choice of the models presented here is based on various factors. First,
these models represent a good range of standard stochastic linear macroeconomic
models; examples which can be expressed in these reduced forms are among others,
the Cagan (1956) model of in‡ation, the Muth (1961) cobweb model, the Lucas
(1973) island model, the Sargent & Wallace (1975) model, the Taylor (1977) real
balance model, the Taylor (1980) model of overlapping wage contracts, as well
as several multivariate linear models, including log-linearisations of real business
cycles models. For discussions of these examples and how they …t in the corre-
sponding reduced forms, see Evans & Honkapohja (2001). Second, each model has
a particular structural characteristic that makes the technical analysis interesting.
Last, for the illustrational purposes of this section, the simplicity of the models
allows for a straightforward analysis and conveys some clear messages, without
having to engage in long algebraic calculations.

Models with date t expectations of future variables. Consider a model
that can be written in the reduced form

yt = ¸E¤t yt+1 + ·wt

wt = ½wt¡1 + ut

where fwtg is an AR(1) exogenous variable with ut » (0; ¾2u). Assuming that the
representative agent forms expectations according to E¤t¡1yt = Át¡1wt¡1, it follows
that T (Á) = (¸Á + 1)½; hence L(Á) = ¸½: The unique …xed point of the T¡ map
is Áf = ½=(1¡¸½): The E-stability condition which is su¢cient for stability of the
REE under homogeneous least squares learning is that ¸½ < 1: Furthermore, the
second moment of z2t = wt isM = ¾2 = ¾2u=(1¡½2): The matrices that determine
the stability of the REE under the three types of heterogeneity are9

JLS1 (Áf) =

µ
Ã¸½¡ 1 (1¡ Ã)¸½
Ã¸½ (1¡ Ã)¸½¡ 1

¶

JSG1 (Áf) =

µ
¾2 0
0 ¾2

¶
¢ JLS1 (Áf) = ¾

2JLS1 (Áf)

J2(Áf) =

µ
Ã¸½¡ 1 (1¡ Ã)¸½
±Ã¸½ ± [(1¡ Ã)¸½¡ 1]

¶

J3(Áf) =

µ
Ã¸½¡ 1 (1¡ Ã)¸½
¾2Ã¸½ ¾2 [(1¡ Ã)¸½¡ 1]

¶

9For this …rst example the relevant matrices are stated explicitly for illustrational purposes,
but will be omitted for the rest of the examples, as their derivation is a straightforward algebraic
exercise.
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Proposition 4.1 ensures that JLS1 (Áf) is stable as long as ¸½ < 1. The same is
trivially true for JSG1 (Áf ); since ¾2 > 0: Furthermore, the eigenvalues of J2(Áf)
are
1

2

·
Ã¸½¡ 1 + ± ((1¡ Ã)¸½¡ 1)§

q
4± (¸½¡ 1) + (Ã¸½¡ 1 + ± ((1¡ Ã)¸½¡ 1))2

¸

which can easily be shown to be negative if ¸½ < 1: With the same argument it
follows that J3(Áf ) is stable if the E-stability condition holds.

Examples of models that can be written in the above reduced form are the
Cagan (1956) model of in‡ation, and an asset pricing model with risk neutrality,
where the price of an asset at time t is given by the rule

pt = (1 + r)
¡1 (E¤t pt+1 + dt)

where r is the interest rate, and dt is the dividend the asset pays at the end of
period t:

Models with date t ¡ 1 expectations of current variables. Suppose now
that the model can be written in the following reduced form

pt = ¹+ ®E¤t¡1pt + °wt

wt = ·+ ½wt¡1 + ut

where fwtg is an AR(1) exogenous variable with ut » (0; ¾2u). If the representative
agent form expectations according to E¤t¡1yt = at¡1+ bt¡1wt¡1 ´ ©0t¡1z2t¡1, where
z2t¡1 = (1; wt¡1); it follows that

T (©) = T ((a; b)0) =
¡
¹+ °·+ ®a °½+ ®b

¢

and therefore L(©) = diagf®; ®g = ®I2: The unique …xed point of the T¡map is
©f =

¡
(1¡ ®)¡1 (¹+ °·) ; (1¡ ®)¡1 °½

¢0
: The E-stability condition is now ® < 1.

Let m = ·=(1 ¡ ¯) and ¾2 = ¾2u=(1 ¡ ½2): The second moment matrix of z2t is
then

M =

µ
1 m
m m2 + ¾2

¶

The matrix JLS1 (©f ) which determines the local asymptotic stability of the
REE for the heterogeneous expectations least squares algorithm, is stable when
® < 1: Furthermore, JSG1 (©f ) is also stable when ® < 1. This is because10

10Derivation:

JLS
1 (©f ) = (I2 ­ M) (®W ­ I2 ¡ I4) = (I2 ­ M) (®W ­ I2) ¡ (I2 ­ M)

= (®W ­ M) ¡ (I2 ­ M) = (®W ¡ I2) ­ M
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JLS1 (©f) = (®W ¡ I2)­M and its eigenvalues are the products of the eigenvalues
of M , which are always positive, and the eigenvalues of ®W ¡ I2 which are ¡1
and ®¡ 1, which are both negative as long as ® < 1:

Furthermore, for the case of di¤erent degrees of inertia, the eigenvalues of
J2(©f ) are

1

2

·
Ã®¡ 1 + ± ((1¡ Ã)®¡ 1)§

q
4± (®¡ 1) + (Ã®¡ 1 + ± ((1¡ Ã)®¡ 1))2

¸

which are negative as long as ® < 1:
Last, for the mixed algorithm, although the eigenvalues of J3(©f) are too

lengthy to appear here, it can be veri…ed that they are real and negative.
Examples of models that can be written in this reduced form include the Muth

(1961) cobweb model, and the Lucas (1973) island model.

Models with date t ¡ 1 expectations of current and future variables.
Consider now a model that can be written in the reduced form

yt = ¹+ ®E¤t¡1yt + ¯E
¤
t¡1yt+1 + °wt

wt = ½wt¡1 + ut

where fwtg is an AR(1) exogenous variable with ut » (0; ¾2u). Models of this form
exhibit MSV solutions, as well as a continuum of, possibly stationary, sunspot/bubble
RE solutions. Here I concentrate on the MSV solutions, as it is not possible to
study analytically the stability of real time learning for multiple REEs that are
not discrete. For this class of solutions, the representative agent’s perceptions are
formed according to E¤t¡1yt = at¡1+bt¡1wt¡1 ´ ©0t¡1z2t¡1; where z2t¡1 = (1; wt¡1):
It follows that

T (©) = T ((a; b)0) =
¡
¹+ (®+ ¯)a; (®+ ¯½)b+ °½

¢

hence L(©) = diagf® + ¯; ® + ¯½g. The …xed point of the T¡map is ©f =
(¹(1¡ ®¡ ¯)¡1; °½(1¡ ®¡ ¯)¡1)0 : The second moment matrix of z2t¡1 is M =
diagf1; ¾2g, where ¾2 = ¾2u=(1¡ ½2):

The matrix JLS1 (©f ) which determines the local asymptotic stability of the
REE for the heterogeneous expectations least squares algorithm is stable when
the E-stability conditions hold, i.e. ®+¯ < 1 and ®+¯½ < 1: The matrix JSG1 (©f)
has eigenvalues ¡1;¡¾2; ®+ ¯ ¡ 1; and ®+ ¯½¡ 1 which are negative under the
same conditions.

Furthermore, for the case of di¤erent degrees of inertia, the eigenvalues of
J2(©f ) are 1

2

h
C §

p
4± (®+ ¯ ¡ 1) + C2

i
and 1

2

h
G§

p
4± (®+ ¯½¡ 1) +G2

i
where

C = Ã (®+ ¯)¡ 1 + ± [(1¡ Ã) (®+ ¯)¡ 1]
G = Ã (®+ ¯½)¡ 1 + ± [(1¡ Ã) (®+ ¯½)¡ 1]
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These are negative provided that the same conditions hold.
Finally, for the mixed algorithm, the eigenvalues of J3(©f) are ¡1; ®+ ¯ ¡ 1;

and
h
F §

p
4± (®+ ¯½¡ 1) + F 2

i
=2 where

F = Ã (®+ ¯½)¡ 1 + ¾2 ((1¡ Ã) (®+ ¯½)¡ 1)

These eigenvalues are also negative under the same conditions.
Examples of models that can be written in this reduced form include the

Sargent & Wallace (1975) model, and the Taylor (1977) real balance model.

Models with lagged endogenous variables. Finally consider a model that
can be written in a reduced form that contains lags of the endogenous variables.
Suppose that we can write the model as

yt = ¸yt¡1 + ®E
¤
t¡1yt + ¯E

¤
t¡1yt+1 + ut

where ut is a (0; ¾2) error term. The perceptions of the representative agent evolve
according to E¤t¡1yt = Át¡1yt¡1. Substituting this back to the reduced form of the
model we …nd that T (Á) = ¸+®Á+ ¯Á2: This mapping has two real …xed points
(REEs) provided that D = (®¡ 1)2 ¡ 4¯¸ > 0; which are stationary if they are
smaller than one in absolute value. If these conditions are satis…ed then the REEs
are

¹Á1;2 =
1

2¯

³
1¡ ®§

p
D

´

The second moment matrix of z2t = yt¡1 isM(Á) = ¾2= (1¡ T (Á)2) : Furthermore,
L(Á) = ® + 2¯Á: Under homogeneous learning (both using least squares and
stochastic gradient algorithms) the …rst REE is never stable. This is because
L(¹Á1)¡ 1 =

p
D > 0: On the other hand, the second REE is always stable since

L(¹Á2)¡ 1 = ¡
p
D < 0:

The stability properties of the two REEs are preserved locally for the case of
heterogeneous expectations, both for least squares and stochastic gradient learn-
ing. For stochastic gradient learning with heterogeneous expectations, JSG1 (Áf ) =
M(Áf ) ¢ JLS1 (Áf ), where M(Áf) is a positive scalar. Therefore the signs of the
eigenvalues of JSG1 (Áf) are the same as the signs of the eigenvalues of JLS1 (Áf):

For the case of agents with di¤erent degrees of inertia, the eigenvalues of J2(¹Á1)

are 1
2

h
K §

p
4±

p
D +K2

i
where

K = ±
³p
D(1¡ Ã)¡ Ã

´
+ Ã

p
D ¡ (1¡ Ã)

The large eigenvalue is always positive, and therefore ¹Á1 is unstable.
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Furthermore the eigenvalues of J2(¹Á2) are ¡1
2

h
L§

p
¡4±

p
D + L2

i
where

L = ±
³p
D(1¡ Ã) + Ã

´
+ Ã

p
D + (1¡ Ã)

Both the eigenvalues are always negative, hence ¹Á2 is stable.
For the case of the mixed algorithm, the stability properties are again pre-

served, since the eigenvalues of J3(¹Ái) are the same as the eigenvalues of J2(¹Ái)
after substituting M(¹Ái) for ±:

Examples of models that can be written in this reduced form include the
special case of a two period Taylor (1980) overlapping wage contract model, and
the Taylor (1977) model augmented with a policy feedback rule.

6. Closing comments

Although the analysis presented here does not claim to be exhaustive, it provides
a step towards a better understanding of how heterogeneity might a¤ect learning.
The general formulation analysed here covers a very wide range of macroeconomic
models, which, apart from standard univariate cases, includes linearisations of
multivariate models, such as real business cycle models. The fact that for this
class of models it cannot be shown that the stability conditions for heterogeneous
learning are the same as the ones for the homogeneous case could be alarming
news for proponents of the representative agent. But as demonstrated by the
examples, it appears that it is often the case that aggregating is safe. The point
I wish to stress, based on the present results, is that the representative agent is
(perhaps surprisingly) often a good approximation of the agents in an economy,
but any rigorous analysis should include a test of the assumption, for example a
test along the lines suggested here.

Initiating from the present analysis, there are several further issues worthy
of further exploration. For example, the results presented here leave out any
inference on the global dynamics of the system under heterogeneous expecta-
tions. Preliminary numerical investigation of the global behaviour of examples
that exhibit multiple REEs indicates that the representative agent is indeed a
very good approximation, yet a rigorous argument still remains unavailable. Fur-
thermore, another important aspect besides the stability of an REE is the rate
with which the learning algorithm converges to it. Numerical estimation of the
rates of convergence for the stochastic cobweb model (second example in section
5) with heterogeneity (see Giannitsarou (2001)) gives strong evidence that the
rates can be very di¤erent from and often much higher than the corresponding
homogeneous case. Both the issues of global stability and the rates of convergence
are important in models where we are interested in the o¤-equilibrium dynamics,
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such as models that study the e¤ects of monetary or …scal reforms, …nancial asset
pricing models, or exchange rate models.

Finally, it would be interesting to …nd a model for which the representative
agent is not a good approximation, in the sense that further conditions are re-
quired to ensure stability of the REEs under heterogeneous learning. Exploring
what the driving force for the di¤erentiation between the representative and the
heterogeneous agents is, could provide very useful insights about how heterogene-
ity matters, if it does matter at all.
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Appendices
The results on matrix di¤erential calculus that have been used in the following
appendices are taken from Magnus & Neudecker (1988).

A. Technical assumptions for the ode method

² A1. ®t > 0 for all t, is a deterministic, non-increasing sequence such thatP1
t=1 ®t = 1 and

P1
t=1 ®

2
t <1:

² A2. For any compact set H ½ D there exist C and q such that jQ (µ; z)j ·
C (1 + jzjq) for all µ 2 H and for all t:

² A3. For any compact set H ½ D and for all µ; µ0 2 H and z1; z2 2 Rk, the
function Q (µ; z) satis…es:

1. j@Q (µ; z1) =@z ¡ @Q (µ; z2) =@zj · L1 jz1 ¡ z2j
2. jQ(µ; 0)¡Q(µ0; 0)j · L2 jµ ¡ µ0j
3. j@Q (µ; z) =@z ¡ @Q (µ0; z) =@zj · L2 jµ ¡ µ0j

² B1. ut is iid with …nite absolute moments.

² B2. For any compact set H ½ D, supµ2H jC(µ)j · M and supµ2H jG(µ)j <
1 where C(:) and G(:) are de…ned by the expression

zt = G(µt¡1)zt¡1 + C(µt¡1)ut

B. Derivation of JSG(©)

The Jacobian for homogeneous stochastic gradient learning is

JSG(©) =
d vec [M(©) ¢ (T (©)0 ¡ ©)]

d vec©

First note that

d vec [M(©) ¢ (T (©)0 ¡ ©)] =
vec d [M(©) ¢ (T (©)0 ¡ ©)] =

vec [(dM(©)) ¢ (T (©)0 ¡ ©) +M(©) ¢ d (T (©)0 ¡ ©)] =
vec [(dM(©)) ¢ (T (©)0 ¡©)] + vec [M(©) ¢ d (T (©)0 ¡ ©) ¢ I] =

[(T (©)0 ¡ ©)­ I] ¢ vecdM(©) + (I ­M(©)) ¢ vec d (T (©)0 ¡ ©) =

[(T (©)0 ¡©)­ I] ¢ dvecM(©) + (I ­M(©)) ¢ dvec (T (©)0 ¡ ©) =
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and therefore

JSG(©) =
d vec [M(©) (T (©)0 ¡ ©)]

d vec©

= [(T (©)0 ¡ ©)­ I] ¢ dvecM(©)
d vec©

+ (I ­M(©)) ¢ dvec (T (©)
0 ¡©)

d vec©

= [(T (©)0 ¡ ©)­ I] ¢ dvecM(©)
d vec©

+ (I ­M(©)) ¢ JLS(©)

Furthermore, the Jacobian evaluated at©f is (I ­M(©f ))¢JLS(©f ), since T (©f)0 =
©f

C. Proof of proposition 4.1

The least squares algorithm for heterogeneous expectations can be associated to
the big ode

d©A
d¿

= R¡1A M (g (©))
£
T (g (©))0 ¡ ©A

¤

dRA
d¿

= M (g (©))¡RA
d©B
d¿

= R¡1B M (g (©))
£
T (g (©))0 ¡ ©B

¤

dRB
d¿

= M (g (©))¡RB

The local stability of an REE ©f is therefore determined by the vectorised version
of the small ode

d©

d¿
=

¡
d©A
d¿
; d©B

d¿

¢

=
¡
T (g (©))0 ¡ ©A; T (g (©))0 ¡©B

¢

Therefore the relevant Jacobian is

JLS1 (©f ) =
d

d vec©

µ
vec

£
T (g (©))0 ¡©A

¤

vec
£
T (g (©))0 ¡©B

¤
¶¯̄

¯̄
©=(©f ;©f)

=

0
@

d vec[T (g(©))0¡©A]
d vec©A

d vec[T (g(©))0¡©A]
d vec©B

d vec[T (g(©))0¡©B]
d vec©A

d vec[T (g(©))0¡©B]
d vec©B

1
A

¯̄
¯̄
¯̄
©=(©f ;©f)

=

Ã
d vecT (g(©))0

d vec©A
¡ In1n2 d vecT (g(©))0

d vec©B
d vecT (g(©))0

d vec©A
d vecT (g(©))0

d vec©B
¡ In1n2

!¯̄
¯̄
¯
©=(©f ;©f)
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Applying the chain rule for di¤erentiating vectors we obtain that

d vecT (g (©))0

d vec©A

¯̄
¯̄
©=(©f ;©f)

=
d vecT (©)0

d vec©

¯̄
¯̄
©=©f

¢ d vecg (©)
d vec©A

¯̄
¯̄
©=(©f ;©f)

= ÃL(©f)

Similarly
d vecT (g (©))0

d vec©B
= (1¡ Ã)L(©f)

Hence

JLS1 (©f ) =

µ
ÃL(©f)¡ In1n2 (1¡ Ã)L(©f )

ÃL(©f) (1¡ Ã)L(©f )¡ In1n2

¶

=

µ
ÃL(©f) (1¡ Ã)L(©f)
ÃL(©f) (1¡ Ã)L(©f)

¶
¡ I2n1n2

= W ­ L(©f)¡ I2n1n2

where

W =

µ
Ã 1¡ Ã
Ã 1¡ Ã

¶

Let ¸i be the eigenvalues of L(©f): To see why this matrix is stable whenever
JLS(©f) is stable, note that if ©f is locally stable under the homogeneous least
squares algorithm, all the eigenvalues of the matrix J(©f) = L(©f) ¡ In1n2 have
negative real parts, i.e. that Re(¸i) < 1; for all i = 1; :::; n1n2: Furthermore, the
eigenvalues of W are 0 and 1, therefore the eigenvalues of W ­L(©f ) are 0 (with
multiplicity n1n2) and ¸i and it follows that the eigenvalues of J1(©f) have real
parts ¡1 < 0 or Re(¸i)¡ 1 < 0: Hence J1(©f ) is stable.

For the second part of the proposition, the stochastic gradient algorithm for
heterogeneous expectations can be associated to the ode

d©A
d¿

= M (g (©))
£
T (g (©))0 ¡ ©A

¤

d©B
d¿

= M (g (©))
£
T (g (©))0 ¡ ©B

¤

The local stability of an REE ©f is therefore determined by the vectorised version
of the small ode

d©

d¿
=

¡
d©A
d¿
; d©B

d¿

¢

=
¡
M (g (©))

£
T (g (©))0 ¡ ©A

¤
; M (g (©))

£
T (g (©))0 ¡ ©B

¤ ¢
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and the corresponding Jacobian of the vectorised ode

JSG1 (©f) =
d

d vec©

µ
vec

©
M (g (©))

£
T (g (©))0 ¡©A

¤ª

vec
©
M (g (©))

£
T (g (©))0 ¡ ©B

¤ª
¶¯̄

¯̄
©=(©f ;©f)

=

0
@

d vecfM(g(©))[T (g(©))0¡©A]g
d vec©A

d vecfM(g(©))[T (g(©))0¡©A]g
d vec©B

d vecfM(g(©))[T (g(©))0¡©B]g
d vec©A

d vecfM(g(©))[T (g(©))0¡©B]g
d vec©B

1
A

¯̄
¯̄
¯̄
©=(©f ;©f)

Using similar arguments as in appendix A, it follows that

JSG1 (©f) =

µ
[In1 ­M(©f)] [ÃL(©f)¡ In1n2 ] [In1 ­M(©f )] (1¡ Ã)L(©f)

[In1 ­M(©f)]ÃL(©f ) [In1 ­M(©f )] [(1¡ Ã)L(©f)¡ In1n2 ]

¶

=

µ
In1 ­M(©f) 0

0 In1 ­M(©f )

¶µ
ÃL(©f)¡ In1n2 (1¡ Ã)L(©f)

ÃL(©f) (1¡ Ã)L(©f)¡ In1n2

¶

= (I2n1 ­M(©f)) JLS1 (©f )

D. Proof of proposition 4.2

The algorithm for di¤erent degrees of inertia can be associated to the big ode

d©A
d¿

= R¡1A M (g (©))
£
T (g (©))0 ¡©A

¤

dRA
d¿

= M (g (©))¡RA
d©B
d¿

= ±R¡1B M (g (©))
£
T (g (©))0 ¡©B

¤

dRB
d¿

= ± [M (g (©))¡RB]

The local stability of an REE ©f is therefore determined by the vectorised version
of the small ode

d©

d¿
=

¡
d©A
d¿
; d©B

d¿

¢
=

¡
T (g (©))0 ¡ ©A; ±

£
T (g (©))0 ¡©B

¤ ¢

Therefore the relevant Jacobian is

J2 (©f) =
d

d vec©

µ
vec

£
T (g (©))0 ¡ ©A

¤

vec ±
£
T (g (©))0 ¡©B

¤
¶¯̄

¯̄
©=(©f ;©f)
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=

0
@

d vec[T (g(©))0¡©A]
d vec©A

d vec[T (g(©))0¡©A]
d vec©B

±
d vec[T (g(©))0¡©B]

d vec©A
±
d vec[T (g(©))0¡©B]

d vec©B

1
A

¯̄
¯̄
¯̄
©=(©f ;©f)

=

Ã
d vecT (g(©))0

d vec©A
¡ In1n2 d vecT (g(©))0

d vec©B

± d vecT (g(©))0

d vec©A
± d vecT (g(©))0

d vec©B
¡ ±In1n2

!¯̄
¯̄
¯
©=(©f ;©f)

=

µ
In1n2 0
0 ±In1n2

¶ Ã
d vecT (g(©))0

d vec©A
¡ In1n2 d vecT (g(©))0

d vec©B
d vecT (g(©))0

d vec©A
d vecT (g(©))0

d vec©B
¡ In1n2

!¯̄
¯̄
¯
©=(©f ;©f)

= (¢­ In1n2) JLS1 (©f )

where

¢ =

µ
1 0
0 ±

¶

E. Proof of proposition 4.3

The mixed algorithm of least squares and stochastic gradient learning can be
associated to the big ode

d©A
d¿

= R¡1A M (g (©))
£
T (g (©))0 ¡ ©A

¤

dRA
d¿

= M (g (©))¡RA
d©B
d¿

= M (g (©))
£
T (g (©))0 ¡©B

¤

The local stability of an REE ©f is therefore determined by the vectorised version
of the small ode

d©

d¿
=

¡
d©A
d¿
; d©B

d¿

¢
=

¡
T (g (©))0 ¡ ©A; M (g (©))

£
T (g (©))0 ¡©B

¤ ¢

Therefore the relevant Jacobian is

J3 (©f ) =
d

d vec©

µ
vec

£
T (g (©))0 ¡©A

¤

vec
©
M (g (©))

£
T (g (©))0 ¡©B

¤ª
¶¯̄

¯̄
©=(©f ;©f)

=

0
@

d vec[T (g(©))0¡©A]
d vec©A

d vec[T (g(©))0¡©A]
d vec©B

d vecfM(g(©))[T (g(©))0¡©B]g
d vec©A

d vecfM(g(©))[T (g(©))0¡©B]g
d vec©B

1
A

¯̄
¯̄
¯̄
©=(©f ;©f)

=

Ã
d vecT (g(©))0

d vec©A
¡ In1n2 d vecT (g(©))0

d vec©B
d vecfM(g(©))[T (g(©))0¡©B]g

d vec©A

d vecfM(g(©))[T (g(©))0¡©B]g
d vec©B

!¯̄
¯̄
¯
©=(©f ;©f)
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Using similar arguments as in appendix A, it follows that

J4(©f ) =

µ
ÃL(©f )¡ In1n2 (1¡ Ã)L(©f )

[In1 ­M(©f )]ÃL(©f) [In1 ­M(©f)] [(1¡ Ã)L(©f )¡ In1n2 ]

¶

=

µ
In1n2 0
0 In1 ­M(©f)

¶µ
ÃL(©f )¡ In1n2 (1¡ Ã)L(©f)

ÃL(©f ) (1¡ Ã)L(©f)¡ In1n2

¶

=

µ
In1n2 0
0 In1 ­M(©f)

¶
JLS1 (©f)
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