Problem Set 10

Solve before the classes May 6–8.

Exercise 1

Consider an exchange economy with two goods and two consumers, whose utility functions are

$$u_1(x_{11}, x_{21}) = x_{11} - 100e^{-x_{21}/10}$$
 and $u_2(x_{12}, x_{22}) = x_{22} - 100e^{-x_{12}/10}$.
Initial endowments are $\omega_1 = (40, 0)$ and $\omega_2 = (0, 50)$.

- a) Allow, with quasi-linear preferences, that consumer 1 has consumption set $\mathbb{R} \times \mathbb{R}_+$, and calculate consumer 1's demand at given prices $(p_1, p_2) \gg 0$ and wealth $w_1 > 0$.
- b) When $w_1 = p \cdot \omega_1 = 40p_1$, it can be proved that $w_1 > 10p_2 \log(10p_1/p_2)$ for any prices $(p_1, p_2) \gg 0$. This precludes negative demand for good 1, so verify that consumer 1's demand function is

$$x_1(p) = \begin{cases} (40,0) & \text{if } p_2 > 10p_1\\ (40 - 10\frac{p_2}{p_1}\log(\frac{10p_1}{p_2}), 10\log(\frac{10p_1}{p_2})) & \text{if } p_2 \le 10p_1. \end{cases}$$

- c) Likewise write down consumer 2's demand function $x_2(p)$. Simply use that the utility function is like consumer 1's, only with goods one and two interchanged. Again, it can be proved that negative demand is precluded when $w_2 = p\omega_2 = 50p_2$.
- d) Aiming to find equilibria, let $p_2 = 1$ and allow $p_1 > 0$ to vary freely. Find $z_1(p_1, 1)$, the aggregate excess demand for good 1 as a function of p_1 .
 - e) Show that

$$\frac{\partial z_1(p_1,1)}{\partial p_1} = -\frac{10}{p_1} - \frac{10}{p_1^2} + \frac{10}{p_1^2} \log(10p_1).$$

- f) Show that $p_1 = 1$ gives an equilibrium. Show $\partial z_1(1,1)/\partial p_1 > 0$ (using $\log(10) > 2$).
- g) Argue from a figure like 17.C.1, that there exists at least two further equilibria.

Exercise 2 (similar to an exam question January 2001)

Consider a two-goods exchange economy with two consumers. Both have consumption set \mathbb{R}^2_+ . Consumer 1's preferences are represented by the utility function $u_1(x_{11}, x_{21}) = \min\{x_{11}^2/16, x_{21}\}$. Consumer 2 has Leontief preferences represented by the utility function $u_2(x_{12}, x_{22}) = \min\{x_{12}, x_{22}\}$. Initial endowments are $\omega_1 = (3, 11)$ and $\omega_2 = (16, 5)$.

- a) Draw consumer 2's offer curve for all non-negative prices in an (x_{11}, x_{21}) -diagram. Be careful in considering the demand where $p_1/p_2 = 0$ and where $p_2/p_1 = 0$.
 - b) Like a), now for consumer 1. Remember that the preferences are different from 2's.
 - c) Draw an Edgeworth box for this economy.
- d) Place the offer curves in the Edgeworth box. Show that they intersect where consumer 1 obtains (4,1), or (12,9), or a bundle on the line from $(4\sqrt{11},11)$ to (14,11).
 - e) Find price vectors corresponding to the equilibrium allocations found in d).