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Abstract

We construct and run an experiment to test the most basic choice effect pre-

dicted by Salience Theory. Subjects allocate wealth between a risky and a safe

investment. While we vary an apparent payoff ratio to influence salience, treat-

ments have economically equivalent consequences. Most other theories of behavior

then predict zero effect. Our experimental findings are strongly consistent with

the behavioral implication of a continuous version of Salience Theory. We provide

a novel structural estimate on the strength of salience. In our setting, increasing

the relative payoff contrast by one percent is equivalent to an increased odds ratio

by about 0.4 percent.
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1 Introduction

Classical economic theory builds on a simple but powerful model of rational behavior:

People are assumed to have unlimited cognition and make choices so as to maximize their

wellbeing, attending to all available information. However, our cognitive resources are

actually bounded, so we must often limit our attention when evaluating the many pieces

of information we are confronted with. Once attention is limited, it can be drawn to

salient features of our environment.1 Starting from basic insights on human perception,

Bordalo, Gennaioli, and Shleifer have recently developed Salience Theory to explore

economic consequences of the way salience captures attention (Bordalo et al., 2012a,b,

2013a,b, 2015, 2016).

We design and run an experiment to test the essential choice effect predicted by

Salience Theory. Salience Theory rests on two psychophysical concepts of perception,

which in combination have become known as the Weber-Fechner law (Dzhafarov, 2001;

Dzhafarov and Colonius, 2011). The first part of the Weber-Fechner law is Weber’s

principle. It states that dissimilarity between two stimuli magnitudes is determined by

the ratio of the large magnitude to the low. For example, the difference between 11

and 10 is perceived as similar to a difference between 22 and 20. The second part is

Fechnerian sensitivity. This postulates that there is diminishing sensitivity to a given

difference in stimuli magnitude. Human perception is more sensitive to a difference

between 11 and 10 than to a difference between 16 and 15.

In our experiment, individuals are asked to make some simple choices of allocat-

ing wealth to a risky investment. We design the experiment such that choices have

economically equivalent consequences across treatments — the majority of theories of

choice under risk thus predict zero treatment effect. Yet, we vary an apparent payoff

ratio across treatments in order to potentially influence the salience of the risky choice.

Salience Theory predicts a choice effect, which is thus isolated from most other theo-

ries for choices under risk. The experiment allows for the detection of this diminishing

sensitivity effect, the core prediction of Salience Theory.

Let us illustrate the main idea of our experiment by explaining two of our treatments,

A and B.2 In treatments A and B subjects are respectively endowed with DKK 160

1See e.g. Kőszegi and Szeidl (2013), Bordalo et al. (2012b), Woodford (2012), Schwartzstein (2014),
Dertwinkel-Kalt et al. (2017), Dertwinkel-Kalt and Köster (2017), Bordalo et al. (2017).

2Denoted A and B here in the introduction, these treatments are respectively denoted 0 and 3 in
our later analysis.
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Table 1: Treatment Example (all values in DKK)

A B

Endowment: 160 110
Money to bet: 100 100

Risky lottery:
Probability: 0.6 1.1 1.6
Probability: 0.4 0.1 0.6

Risk-free lottery: 0.4 0.9

and DKK 110.3 In both treatments, subjects can bet between DKK 0 and 100 of the

endowment on a risky lottery. The residual part of the endowment that cannot be bet

keeps its value (e.g., DKK 60 in treatment A).

[Table 1 here.]

Table 1 details the payoff numbers in the two treatments. In treatment A, the risky

lottery gives a 60% chance to receive DKK 1.1 per DKK bet, and complementary chance

40% to receive DKK 0.1 per DKK bet. The remainder of the DKK 100, not bet on the

risky lottery, is allocated to another, risk-free lottery that pays DKK 0.4 per DKK. The

second column provides the corresponding information for treatment B.

This set-up is deliberately created such that the two treatments provide identical

state-dependent wealth consequences to any amount bet on the risky lottery. If subjects

bet DKK y on the risky lottery, then in both treatments the final payoff is DKK 100+0.7y

with probability 60% and DKK 100 − 0.3y with probability 40%.4 In other words, the

prospects are exactly the same given any bet, and the choice set of bets from 0 to 100

DKK is identical in both treatments.

Salience Theory predicts the effect that subjects will bet more on the risky lottery

in treatment B.5 In application to risky decision making (Bordalo et al., 2012b, 2013a),

consequences are described by payoff numbers. The relative payoffs to the risky bet

differ in our treatments. By the Weber-Fechner law, the bad consequence is most salient

in treatment A since 1.1
0.4 < 0.4

0.1 , while the good consequence is most salient in treatment B

3Danish Kroner (DKK) 160 was around USD 24 when the experiment was run.
4In Treatment A, the attained wealth will be DKK 60+ 1.1y + 0.4(100− y) in the good consequence

and DKK 60 + 0.1y + 0.4(100 − y) if the bad consequence obtains. In Treatment B, it will be DKK
10 + 1.6y + 0.9(100 − y) and DKK 10 + 0.6y + 0.9(100 − y), respectively.

5Section 2.4 discusses this effect in greater detail.
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since 1.6
0.9 > 0.9

0.6 . More salient consequences get assigned larger decision weights in Salience

Theory. In treatment B, the good consequence is more salient and weighted, causing

risky betting to seem more attractive.

Clearly, in order to design the experiment in such a way that the two treatments

provide identical state-dependent wealth consequences, we not only change relative pay-

offs across treatments in our set-up, but also the initial endowment. As explained in

detail below, providing identical state-dependent wealth consequences across treatments

allows us to control for many alternative theories, but changing the initial endowment

might also invoke the house money effect Thaler and Johnson (1990). The house money

effect says that people are more willing to take risks after a recent gain. That is, if

participants in our experiment perceive the original endowment as ‘house money’, they

should invest less into the risky lottery going from treatment level A to B. The opposite

of our salience hypothesis. Hence, the salience hypothesis that we develop on the basis

of (Bordalo et al., 2012b, 2013a) stands in sharp contrast to the house money effect in

the context of our experimental set-up. As a consequence, if the house money effect is

present in our data, then our estimates of the real underlying salience effect represent a

lower bound.

To run this experiment, we invited subjects to a sequence of four treatments struc-

turally similar to the illustration above. The four treatments varied the payoff ratios

and hence the extent of salience, from treatment level 0 when the bad consequence of

the risky lottery was most salient to treatment level 3 when the good consequence of

the risky lottery was most salient. At some point between treatment levels 1 and 2, the

two consequences were equally salient, in theory. Participants were serially assigned to

one of the possible 24 orders in which the four treatments can be presented.

If our design is successful in manipulating the Weber-Fechner law, Salience Theory

predicts that subjects will bet more on the risky lottery at increasing treatment levels.

Our experimental results show that the observed behavior strongly supports this predic-

tion. On average, participants in our experiment bet already 77% of their DKK 100 on

the risky lottery at baseline level 0.6 Confirming the main prediction of Salience Theory,

the average bet further increases by 18% towards treatment level 3.

We also use a structural model to estimate a ‘deep’ salience parameter. Estimating

such a parameter can aid in quantifying the impact of salience on outcomes beyond those

6The numbers from Table 1 imply that the risky lottery offers an expected risk premium of 30%.
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implied by our experimental design. We find that increasing the payoff contrast7 by one

percent, subjects respond as if the ratio of lottery probabilities (i.e., 0.6
0.4) were increased

by 0.39%.

To interpret these findings, let us turn to discuss the broader literature on risky

choice behavior. As already mentioned, maintaining identical economic consequences

across treatments, our experimental set-up controls for many existing theories of choice

under risk. This includes, for example, Expected Utility Theory (Von Neumann and

Morgenstern, 1944; Savage, 1954), Regret Theory (Bell, 1982; Loomes and Sugden,

1982), Disappointment Theory (Bell, 1985; Loomes and Sugden, 1986; Gul, 1991), and

Similarity-Based Theories (Rubinstein, 1988; Leland, 1994). The Focusing Theory of

Kőszegi and Szeidl (2013) likewise distinguishes itself from Salience Theory when it

requires that decision weights depend on the economic consequences (consumption or

income) in each state, and is hence also mute here.8

It is also impossible for common consequence and common ratio effects (Allais, 1953)

to explain outcome differences across our treatments. The common consequence effect

would need at least a third consequence, which we do not have. The common ratio

effect would need to change probabilities by proportion, but we kept probabilities fixed.

The two-consequence feature of our experimental design also controls for more general

theories that relax (Hong, 1983; Fishburn, 1983), or even discard (Machina, 1982), the

‘independence axiom’ of Expected Utility Theory.

Another obvious candidate theory is Prospect Theory (Kahneman and Tversky, 1979;

Tversky and Kahneman, 1992). Salience Theory shares with Prospect Theory a form

of ‘narrow framing,’ which occurs when people evaluate a risk separably from other

concurrent risks. Separating the two theories, Salience Theory predicts that probabilities

are biased by payoffs (via the Weber-Fechner law), whereas in Prospect Theory value

is derived from ‘gains’ and ‘losses’ measured relative to some reference wealth level. To

apply Prospect Theory, an assessment must be made of the relevant reference point.

The theory provides no unique guidance on how to find this reference point in general,

but our experimental design controls for two significant suggestions.

7The payoff contrast in favor of the good consequence is the ratio 1.1
0.4

/
0.4
0.1

in treatment A, for
instance.

8Kőszegi and Szeidl comment that Focusing and Salience theories lead to similar intuitions, and that
Focusing shares with Regret theory the property that “states in which the difference between lotteries
is greater carry a greater weight.” Again, Salience theory is distinct because the “difference between
lotteries” is not defined by the ultimate payoff, but by some numbers that attract attention.
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First, Barberis and Huang (2008) propose that investors perceive gains and losses

relative to the wealth level they obtain from a risk-free investment.9 In our setting this

definition corresponds to the wealth obtained by subjects who bet nothing on the risky

lottery. If subjects in our example bet nothing in treatments A and B, then in addition

to the part of the endowment that could not be bet, i.e., DKK 60 in A and 10 in B, they

receive the risk-free earnings DKK 40 and 90 respectively. The reference wealth level is

thus DKK 100 in both treatments, and therefore cannot explain a treatment effect on

betting behavior.10

Second, Kőszegi and Rabin (2006, 2007) propose that people rationally forecast po-

tential wealth consequences, and derive utilities from the difference between actual con-

sequences and these stochastic reference outcomes. Rationality implies that subjects’

expectations will match the distribution of consequences they face prior to deciding on

the amount to bet. In our example, a rational decision maker will perceive all treat-

ments as identical, and hence hold identical reference beliefs. Since also consequences

are identical across treatments, their theory is again unable to explain any change in

behavior.

Nevertheless, there remains a third adaptation of prospect theory which could predict

an effect in our design. In their effort to explain the equity premium puzzle, Benartzi and

Thaler (1995) propose that investors in asset markets judge their portfolios by the value

of their holdings and not their overall wealth levels. In analogy to Salience Theory, this

adaptation of prospect theory implies that subjects allocate more to the risky lottery in

treatment B compared to A. In order to assess how well this alternative theory accounts

for our experimental data, we estimate a structural model that embeds their idea. It

turns out that the obtained estimates are far from earlier studies on this version of

prospect theory, making it an unlikely explanation for the observed treatment effect.

It is important for us to point out that in designing our experiment and developing

our hypotheses we exclusively focused on existing economic theories for choices under

risk. This allowed us to clearly carve out the behavioral effects postulated by Salience

Theory. Our experimental design cannot possibly rule out that new variants of these

existing theories could also explain the behavioral effects we observe. Future theoretical

9Barberis and Huang (2008, p.2071): “This specification is more tractable and potentially more
plausible: the investor thinks of the change in his wealth as a gain only if it exceeds the change he
would have experienced by investing at the risk-free rate.”

10Note that we take rationality to imply that subjects integrate their non-bettable wealth into the
prospect.
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and experimental analyses may further explore this possibility.

Experimental studies directly investigating Salience Theory and risk taking are few

and en masse focus on settings where the predictions of Salience Theory contrast with

those of Prospect Theory.11 Bordalo et al. (2012b) provide suggestive evidence in favor

of Salience Theory controlling for Prospect Theory. In their theory decision weights

are determined by the salience of payoffs in a state, not the actual probabilities of the

states, while decision weights in Prospect Theory are influenced by the probabilities.

In unincentivized survey experiments conducted using Amazon Mechanical Turk, they

find that Salience Theory successfully can explain survey data on the Allais common

consequence and common ratio effect problems, as well as on prospects that differ by a

mean-preserving spread.

Three other related papers that provide further experimental evidence for salience

effects in choices under risk are Booth and Nolen (2012), Frydman and Mormann (2017)

and Dertwinkel-Kalt and Köster (2019).12 Also in these experimental analyses, the ma-

jor focus of the employed designs lies in the differentiation of Salience Theory-based and

Prospect Theory-based explanations for behavior. Booth and Nolen (2012) experimen-

tally analyze gender differences in risk taking behavior in a simple hypothetical choice

experiment originally presented by Bordalo et al. (2012b). Controlling for Prospect

Theory they find that salience affects young men and women differently. Frydman and

Mormann (2017) use a lottery choice problem commonly used in experiments on the

Allais paradox and in this way successfully replicate the unincentivized Allais common

consequence and common ratio effect problem implemented by Bordalo et al. (2012b).

Controlling for Prospect Theory-based explanations, Dertwinkel-Kalt and Köster (2019)

experimentally show that Salience Theory can explain skewness preferences.

11Two studies that analyse salience theory in situations not involving any risk are Dertwinkel-Kalt
et al. (2017) and Dertwinkel-Kalt and Köster (2017). These analyses provide laboratory evidence
consistent with Salience Theory.

12Königsheim et al. (2019) use a multiple price list approach to parameterize and estimate salience
effects. Instead of controlling for other theories by design, they use a finite mixture approach to
estimate the share of people that behave consistently with a rank-dependent version of Salience Theory
and estimate a salience parameter which is broadly in line with the estimate of Bordalo et al. (2012b).
As noted by the authors ((Königsheim et al., 2019, p. 488)), alternative decision theories like expected
utility theory or rank-dependent utility theory ‘also do a good job in explaining subjects’ behavior’
in their experiment. Furthermore, Lian et al. (2019) also experiment with subjects allocating wealth
between a risky and a risk-free asset in a realistic setting. Their treatment reduces all return realizations
by a fixed difference rate. Consistent with Salience Theory, subjects allocate more to the risky asset
when rates are thus reduced. They note that expected-utility maximizers with decreasing absolute
risk aversion should exhibit the opposite reaction to their treatment, but they do not control for other
context-dependent choice models.
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Although already discussed in the original analysis by Bordalo et al. (2012b, pp.

1258–1259), alternative explanations for behavior have not received much attention in

the hitherto existing experimental analyses of salience affects. Bordalo et al. (2012b), for

example, note that similarity-based preferences (e.g. (Rubinstein, 1988; Leland, 1994))

and regret theory (e.g. (Bell, 1982; Loomes and Sugden, 1982)) might also be able to

explain several patterns of choices under risk consistent with the predictions of Salience

Theory.13

In contrast to the existing experimental designs, the focus of our analysis is on cre-

ating a simple experimental design which not only allows to control for Prospect Theory

but also for an encompassing range of alternative choice theories (see the aforementioned

discussion on how our design controls for Expected Utility Theory, different forms of

Prospect Theory, Regret Theory, Disappointment Theory, and Similarity-Based Theo-

ries). In addition, our analysis aims at creating an experimental choice paradigm which

allows to develop unique theoretical predictions for Salience Theory without making re-

strictive assumption regarding e.g. the salience function or people’s risk preferences.14

Given this, our experimental findings contribute the first evidence consistent with pre-

dictions of Salience Theory while ruling out that other context-dependent choice models

can explain the behavioral findings.

Our experiment isolates the core mechanism in Salience Theory using a very simple

experimental setting, better controlling for alternative explanations. This not only allows

us to derive unique theoretical predictions for salience with only minimal restrictions

on the salience function, but also allows us to better quantify the impact of the payoff

contrast on the perceived odds. The simplicity of our setting speaks more to the internal

validity of Salience Theory than its external validity. When economic agents make

actual choices under risk, exogenous variation would rarely manipulate salience without

affecting other things. We take advantage of the laboratory setting where this variation

is under our control.

Our analysis is organized as follows. The next section explains and motivates the

design of our test. Section 3 presents the experiment and the results, Section 4 discusses

the alternative theory due to Benartzi and Thaler (1995), and Section 5 concludes.

13To rule out such effects, Frydman and Mormann (2017) report evidence on the binary choice
between a lottery or a safe outcome. They argue that their observed within-subject behavior makes it
less likely that regret theory explains their findings, although it remains logically possible. A similar
conclusion is reached by Dertwinkel-Kalt and Köster (2019).

14Frydman and Mormann (2017) and Dertwinkel-Kalt and Köster (2019) develop their theoretical
predictions under the assumption that subjects are risk-neutral.
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2 Experimental Design

In this section we formally present the experimental task, characterize salience effects

à la Bordalo et al. (2012b, 2013a), and present our identification strategy as well as

behavioral hypothesis. We derive salience effects under both the rank-dependent and

continuous versions of Salience Theory.

2.1 Task

In each of four decision situations in our experiment, subjects are given an endowment

e and a budget m ≤ e. They are asked which amount y ≤m they want to bet on a risky

lottery LA. If y is chosen, subjects face chance p of realizing a ‘good’ outcome with

lottery earnings xgy and chance 1 − p of realizing a ‘bad’ outcome with lottery earnings

xby. The amount not bet on LA is automatically allocated to a risk-free lottery LB that

pays xf(m − y) no matter the outcome. In all four situations, payoffs have the natural

ranking xg > xf > xb, and the flat fee e −m keeps its value.

The state-dependent wealth consequence of choosing y is

cs = e −m + xsy + xf(m − y) > 0, (1)

with s ∈ {g, b}. Subjects that do not bet anything (setting y = m), are certain to earn

the amount xfm from their choice. By betting more, subjects gain more if they are

lucky (i.e., the good outcome is realized), but also lose more if they are unlucky (bad

outcome).

In our experiment, we vary the relative salience of the different outcomes while

keeping prospects fixed. Precisely, we set payoffs (xg, xb, xf) = (x̄g +∆, x̄b +∆, x̄f +∆),
with x̄ > 0 being a baseline, and ∆ ≥ 0 a treatment variable.15 We also adjust the

endowment as e = ē − ∆m. We keep budget m and probability p constant. In order

to maintain e ≥ m, we restrict the treatment variable to ∆ ≤ ∆U , where, by definition,

∆U = ē−m
m . It is easy to verify from (1) that, for any ∆ ∈ [0,∆U], choice y provides

identical prospect (cg, p; cb,1 − p).16

15Actual numbers are in Table 2 below.
16Namely, cs = e−m+xsy+xf(m−y) = ē−∆m−m+x̄sy+∆y+x̄f(m−y)+∆(m−y) = ē−m+x̄sy+x̄f(m−y).
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2.2 Salience Theory

First, Salience Theory for risky decision making as characterized by Bordalo et al. (2012b,

2013a) defines the salience of a state as a function of the possible payoffs that can be

obtained in that state. The two articles propose slightly different implementations of

the idea. The first article considers discrete choice in a finite set of lotteries. The second

considers the continuous choice of allocating wealth to a finite set of assets. The choice

problem in our experiment is a mixture of the two: subjects have to decide on the

allocation of money between two simple lotteries. We adapt from Bordalo et al. (2013a)

that salience is a function of the list of payoffs from the finite set of assets — here, our

two lotteries. We will not literally follow Bordalo et al. (2012b) when they also assume

that salience can be attached to a specific asset in any state. Here, instead, we stay

closer to Bordalo et al. (2013a).17

Salience is then a function of the return pair x, z > 0 given in any particular state

via the two available lotteries.18 The salience function satisfies two main properties:

ordering and diminishing sensitivity. Ordering says that, if an interval [x, z] is contained

in a larger interval [x′, z′], then the pair (x, z) is less salient than the pair (x′, z′).
Diminishing sensitivity says that (x + ε, z + ε) is less salient than (x, z) for all x, z, ε > 0.

We follow Bordalo et al. (2013a) by also assuming that the salience function is sym-

metric and homogeneous of degree zero: (tx, tz) and (x, z) and (z, x) are equally salient

for all x, z, t > 0.19 Salience is thus defined as a function of the positive ratio r = z/x for

any pair x, z > 0. We let σ denote this salience as a function of ratio r > 0. The salience of

(x, z) is then σ(z/x). By symmetry, σ(r) = σ(1/r). Ordering means that σ(r) increases

as r is further from 1. Diminishing sensitivity follows from these assumptions.20

Salience can now, in principle, be described by any increasing function σ(r) defined

for r ≥ 1. Then, for r < 1, let σ(r) = σ(1/r). The salience function reflects Weber-

Fechner’s stylized facts of human perception. Our perceptive apparatus is attuned to

17Bordalo et al. (2013a) suggest that salience is a function of the contrast between one asset’s payoff
xs and the assets’ average payoff (xs + xf)/2 in state s. With only two lotteries, salience is then a
function of the pair (xs, xf), as we will assume.

18Negative payoffs can also be accommodated, but this is irrelevant for our experimental design.
19In recent work, Lanzani (2020) axiomatizes Salience Theory for binary choice settings. This leads to

the conclusion that ordering is the defining property that distinguishes Salience Theory from expected
utility or Prospect Theory, while diminishing sensitivity combines with a property of reflexivity to
provide risk aversion in gains and risk love in losses.

20To see this, take any x, z, ε > 0. By symmetry, it is without loss of generality to assume z > x.
Then z

x
>
z+ε
x+ε

> 1, so the salience of (x, z) exceeds the salience of (x + ε, z + ε).
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increases in contrast, here measured by increases in the distance of the payoff ratio r

from one. As a famous example, Fechner (1860) proposes σ(r) = K ∣ ln(r)∣ where K > 0

is a constant. For another prominent example, Bordalo et al. (2013a) suggest salience

function ∣x−z∣
x+z , which here becomes σ(r) = ∣r−1∣

1+r . Below, we will also consider salience

functional forms (r − 1)γ and rγ for r ≥ 1, where γ > 0 is a parameter.

Second, salience σ does not directly affect decision weights, but works through at-

tentional weights ws which are functions of states’ salience. When deciding, the salient

thinker is presumed to weight the good state by:

π = pwg
pwg + (1 − p)wb (2)

and the bad state by 1 − π.

In the rank-dependent version of Salience Theory, the attentional weight put on any

state s is ws = δks . Here, ks ∈ {1,2} is the salience ranking of the two states, with

ks = 1 indicating the more salient state s — this is the state where contrast xs/xf is

furthest from 1. If the two states are equally salient, they obtain the same ranking.

The parameter δ ∈ (0,1] measures the extent to which salience distorts valuations. The

salient thinker thus distorts the more and less salient state by δ and δ2, respectively.21

When δ = 1, there is no salience distortion, but as δ is closer to zero, the salient thinker

focuses ever more attention on the more salient state.

Though convenient for theorizing, Bordalo et al. (2012b, 2013a) acknowledge that

the assumption of rank-dependent attentional weights is likely too simple. Primarily, it

seems implausible that a slightest deviation from equal salience will change attention by

a factor, but stay constant everywhere else. Also, technical issues may make it difficult

to link rank-dependent salience theory to experimental data (Kontek, 2016).

Below, we focus mainly on the continuous version of Salience Theory. Here, the

attentional weight on state s is an increasing function of its salience σs. Since salience is

itself an increasing function of ratio r > 1, it is without loss of generality to let wg = σ(xgxf )
and wb = σ(xfxb ) in the analysis of our experiment. The resulting decision weight attached

to the good state is given by equation (2).

Third and finally, the salient thinker uses increasing value function v to evaluate

21What matters is the relative weight δ2/δ = δ < 1 attached to the less salient state.
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realized payoffs, and chooses amount y to bet on the risky lottery in order to maximize

V (y) = πv(cg) + (1 − π)v(cb). (3)

The attitude towards risk as measured by the optimal amount y∗ to bet is thus affected

by two sources. One is the standard source directly related to the curvature of the value

function v, the other works indirectly through attentional modulations of the decision

weight π. We will refer to the latter as the ‘salience effect’. This salience effect is a

form of narrow framing where payoffs, rather than consequences shape the perception of

outcome states. This is consistent with, but different from, framing in Prospect Theory.

In Prospect Theory, narrow framing implies that consequences are perceived as payoff

gains and losses relative to a reference point.

2.3 Comparative Statics in Decision Weights

Given the treatment, a salient thinker maximizes V (y) over y ∈ [0,m]. This maximiza-

tion problem is straightforward, after inserting equation (1) into (3). If the solution

is interior to the constraint set [0,m], the optimal amount y∗ must satisfy the usual

first-order condition,

xf − xb
xg − xf = π

1 − π
v′(cg)
v′(cb) = p

1 − p
wg
wb

v′(cg)
v′(cb) . (4)

The left-hand side is the rate at which attainable wealth can be exchanged between the

two outcome states (slope of the budget line). The right-hand side defines the rate at

which a salient thinker is willing to take on risk (slope of the indifference curve). It may

occur that the optimum is at an end of the constraint set [0,m], corresponding to an

end point of the budget line. In that case, (4) holds as an inequality.

By our construction, xf − xb and xg − xf are not affected by treatment variable ∆.

Thus, the left-hand side of (4) is unaffected by treatment — this is also obvious from the

fact that this is the slope of the budget line, and the budget set was deliberately held

constant. On the right-hand side, the only exogenous variable to change with treatment

is the ratio
wg

wb
. Observed changes in endogenous variable y must stem from this change.

In line with intuition, the greater is the relative salience of the good state, the greater

is predicted choice y.

[Figure 1 here.]
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cb

cg
m

m

m + (x̄g − x̄f)m

m + (x̄b − x̄f)m
IC

X

IC’

Y

Figure 1: The bold black line segment is the set of attainable wealth combinations. IC and
IC’ represents the indifference curves of a salient thinker. Point X is an optimum, so the IC
is tangent to the line. A relative increase in the salience of the good state increases the slope
of all indifference curves. IC’ indicates the new indifference curve for which tangency can be
restored, taking more risk at point Y.

As illustrated in Figure 1, when
wg

wb
rises, the indifference curve through any point

(cg, cb) grows steeper. The optimal choice then must move towards a higher value of

cg on the budget line, weakly so at the boundaries. Since any particular cg is obtained

for the same y in any treatment, and since cg is increasing in y, this implies that y∗ is

increasing in treatments. As we increase the relative decision weight on the good state,

the salient thinker will bet more on the risky lottery. The following lemma expresses

this as a more formal comparative statics result.

Lemma 1. Suppose
w′g
w′

b
> wg

wb
and y′ > y. If y′ gives weakly higher utility than y for a

decision maker with weights (wg,wb), then y′ gives strictly higher utility than y for a

decision maker with weights (w′
g,w

′
b).

Lemma 1 rules out that a decision maker optimally chooses a lower y when the

relative weight on the good state rises. Even if v permits non-convex indifference curves,

and thus there could be multiple optimal choices for some weights, Lemma 1 implies that

all optimal choices will be at least as high when the relative weight on the good state

rises. Nevertheless, a few features remain worth remarking. Optimal choices sitting at

one end of the bounded budget line remain there when the relative weights change would

push the choice out of the line. Once choice y = m is optimal, it thus remains optimal
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when the relative weight on the good state is higher. Symmetrically for y = 0. Similarly,

if v has an indifference curve with a kink at an interior optimum, the optimal y may

remain constant as the ratio of decision weights changes.

2.4 Comparative Statics in Salience

Lemma 1 expresses that the endogenous y is weakly increasing in the relative decision

weight on the good state,
wg

wb
. In order to predict a treatment effect, we are led to the

next question. Is this ratio rising or falling with treatment level ∆?

It would be particularly easy to answer this question, if a change in ∆ would move

salience levels wg = σ( x̄gx̄f ) and wb = σ( x̄fx̄b ) in opposite directions. Unfortunately, this is

impossible. An implication of a constant budget line is that its slope is held constant as

treatment varies. This constant slope is the ratio of xf −xb to xg −xf . Normalizing both

terms by xf , the slope is also the ratio of (1− x̄b
x̄f

) to ( x̄gx̄f − 1). Increasing the salience of

the bad (good) state is equivalent to raising the first (second) term. Maintaining their

constant ratio, salience of the two states cannot move in opposite directions.

The direction of change comes to depend on the functional form of salience function

σ(r) where r > 1. For this lemma, recall the definition of the upper bound on the

treatment variable, ∆U = ē−m
m . We can conveniently define xUs = x̄s +∆U for s = b, f, g.

Lemma 2. (a) With Fechner’s function σ(r) =K ∣ ln(r)∣, ratio
wg

wb
is increasing in treat-

ment variable ∆.

(b) With Bordalo et al.’s function σ(r) = r−1
1+r ,

wg

wb
is increasing in ∆.

(c) With salience function σ(r) = (r − 1)γ for r ≥ 1 and γ > 0,
wg

wb
is increasing in ∆.

(d) If xUf exceeds the harmonic mean of xUb and xUg , then with salience function σ(r) = rγ
for r ≥ 1 and γ > 0,

wg

wb
is increasing in ∆.

(e) If xUf is less than the harmonic mean of xUb and xUg , then with salience function

σ(r) = rγ for r ≥ 1 and γ > 0,
wg

wb
is locally decreasing in ∆ near ∆U .

The last case (e) of Lemma 2 serves to illustrate the general theoretical observation

that monotonicity really depends on the functional form of σ which maps payoff ratios

r into decision weights w. When we specify the parameters of our actual experiment

below, we are going to satisfy the sufficient condition of (d). While relatively little is

known about the true shape of function σ, guided by the leading suggestions of the

literature in parts (a) and (b), we will hypothesize that the effect of the treatment in
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our experiment will be to increase the relative weight on the good state. Combined with

Lemma 1, higher treatment variable ∆ then raises the choice variable y.

In the experiment, we will fix parameters such that also rank-dependent Salience

Theory predicts an effect. We assume
x̄f
x̄b

> x̄g
x̄f

so the bad state is most salient when

∆ = 0. We also assume x̄g − x̄f > x̄f − x̄b.22 Then the payoff ratio in the bad state crosses

that of the good state at

∆0 = x̄2
f − x̄gx̄b

x̄g + x̄b − 2x̄f
> 0.

We will ensure below that ∆0 < ∆U . Then the bad state is most salient when ∆ < ∆0,

changing to the good state being most salient as ∆ passes beyond ∆0. Rank-dependent

Salience Theory predicts that y is greater once ∆ > ∆0.

In sum, we have derived the following theoretical proposition.

Proposition 1. (i) The set of available prospects is constant to treatment.

(ii) The salient thinker’s optimal choice responds to treatment.

(iii) In the prominent specifications of continuous Salience Theory, bet amount y rises

with treatment variable ∆.

(iv) In rank-dependent Salience Theory, bet amount y is piecewise constant in treatment

level ∆, jumping up when ∆ passes above ∆0.

3 The Experiment

In this section, we start by describing the implementation of the experiment and show

some descriptive statistics. Following this, we present the formal results relating to our

hypothesis. We do so in two ways. First, we present the results of a non-parametric

Wilcoxon signed-rank test and a saturated Tobit regression analysis. Second, we quantify

the effect that salience has on decision weights using a structural model.

3.1 Data

The experiment was conducted on-line in November 2016, using the Internet Panel of

the Center of Experimental Economics, University of Copenhagen. 1,300 panel mem-

22This assumption states that xf is below the arithmetic mean of xb and xg, for any treatment level.
As noted before, we will also assume the sufficient condition of (d) in Lemma 2, that xUf exceeds the

harmonic mean of xUb and xUg . In general, the harmonic mean of two positive numbers is less than their

arithmetic mean, so there is room for xUf to satisfy both assumptions.
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bers were invited by email to participate in the experiment. In total, 473 participants

finished the complete experiment and generated 1,892 observations. Invited subjects

were provided a link, a login and a password that could be used to participate. Upon

logging on, they were given instructions as well as control questions. After having an-

swered all the control questions correctly, subjects were randomly allocated to one of

the 24 possible sequences of the four different treatments (i.e. decision situations) to

balance our experimental design. We ended up with between 18 and 21 participants in

each of the 24 different treatments. We counterbalanced the different sequences in which

the four different treatments could be presented in order to eliminate the confounding

of treatment and order.

Baseline payoffs were x̄g = 1.1, x̄b = 0.1, and x̄f = 0.4. They satisfy our assumptions

that
x̄f
x̄b

> x̄g
x̄f

and x̄g − x̄f > x̄f − x̄b. The treatment level for equal salience is then

∆0 = 0.125. We let ē = 160 and m = 100. The probability of the good state obtaining

was p = 0.6.

Subjects faced 4 treatment levels, labeled T = 0,1,2,3, summarized in Table 2. The

treatment values were ∆ = 0.0,0.1,0.4,0.5. Note that the lowest two treatments are

below ∆0, while the highest two treatments are above.23 Also, the treatments satisfy

the constraint ∆ < ē−m
m = 0.6. Lastly, as already pointed out in the introduction, in order

to design the experiment in such a way that the two treatments provide identical state-

dependent wealth consequences, we also had to adjust the initial endowment. Changing

the initial endowment across treatments might invoke the housemoney effect Thaler

and Johnson (1990). The housemoney effect says that people are more willing to take

risks after a recent gain. That is, if participants in our experiment perceive the original

endowment as ’housemoney’, they should invest less into the risky lottery going from

treatment level T = 0 to treatment level T = 3. This is the opposite of our salience

hypothesis presented in Proposition 1. Hence, our salience hypothesis stands in sharp

contrast to the housemoney effect in the context of our experimental set-up. As a

consequence, if the housemoney effect is present in our data, then our estimates of the

real underlying salience effect represent a lower bound.

[Table 2 here.]

In the instructions, subjects were informed that payoffs would be expressed in actual

Danish Kroner (DKK), and that only one of the four treatments would randomly be

23Had salience been defined relative to average state s payoff, then the point of equal salience would
have been located at ∆0

= 0.3875. Thus not changing the salience of states.
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Table 2: Experimental Parameters

Treatment levels
T = 0 T = 1 T = 2 T = 3

(in DKK)

Endowment e 160 150 120 110
Money to bet m 100 100 100 100

Lottery LA:
Payoff xg 1.1 1.2 1.5 1.6
Payoff xb 0.1 0.2 0.5 0.6

Lottery LB:
Payoff xf 0.4 0.5 0.8 0.9

Probability p 0.6 0.6 0.6 0.6

chosen at the end of the experiment to be paid out. Subjects did not get any feedback

regarding the outcomes during the experiment. They only got to know the outcome of

one treatment that was randomly picked at the very end of the experiment. Payments

were transferred to subjects’ bank accounts within four weeks after the end of the ex-

periment. Subjects earned on average DKK 118 (approx. USD 18). Screen-shots of the

instructions and tasks are included in Appendix B.

[Table 3 here.]

Across treatments, the vast majority of subjects chose to bet some amount. Only 5 of

the 473 subjects did not bet anything in the experiment. Table 3 presents a descriptive

summary of the experimental data. The mean amount bet by subjects increases from

treatment level 0 to treatment level 2, and slightly decreases from treatment level 2 to

treatment level 3 (row 1). Judging by the quartiles, it appears that the distribution shifts

towards betting more when possible (rows 2–4). This is supported by the observation

that, when going from treatment level 0 to treatment level 2, fewer subjects are censored

by the minimum 0 and more by the maximum 100 (rows 5–6).

3.2 Treatment Effects

To test whether we in our experiment identify the salience effect, we take two steps. First,

we report results using a non-parametric Wilcoxon signed-rank test to investigate any
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Table 3: Summary of Experimental Data

Treatment levels
T = 0 T = 1 T = 2 T = 3

Amount bet:
Mean 67.5 71.7 77.3 76.5
1st quartile 50 50 60 60
Median 70 80 80 85
3rd quartile 100 100 100 100

No. censored obs. at:
Min (0) 38 33 13 17
Max (100) 172 187 202 215

treatment differences in people’s investment behavior. Second, we estimate a saturated

Tobit regression model.

Our hypotheses based on Proposition 1 are as follows: (i) rank-dependent Salience

Theory predicts that there is at most one significantly positive jump across treatments.

More specifically, parameters are chosen such that the rank-dependent version of Salience

Theory predicts b1 = 0 and b2 = b3 > 0. Furthermore, (ii) the appearance of more than one

significant upwards jump between b0, b1, b2 and b3 is still consistent with the continuous

version of Salience Theory. Remember, almost all alternative theories mentioned in the

introduction prescribe b1 = b2 = b3 = 0. 24

[Table 4 here.]

Table 4 reports the average changes in the amount invested into the risky lottery

from Treatment 0 to Treatment 1, from 1 to 2, and from 2 to 3, as well as the results

from a Wilcoxon signed-rank test which non-parametrically analyzes pairwise treatment

differences.

As can be seen, amounts invested significantly change from treatment level 0 to 1 as

well as from treatment level 1 to 2. In contrast, the difference between treatment levels

2 and 3 is insignificant.

In addition to these non-parametric estimates, we estimate a saturated Tobit regres-

sion model (censored at 0 and 100), specification 1 of Table 5 below. It is based on the

24We have constrained the choice set y ∈ [0,1], and some observations are at the boundaries. This
feature in the data may render it more likely that we fail to detect a Salience effect which is actually
there. The potential bias against our hypothesis is no concern when we do detect an effect.
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Table 4: Treatment Effects: Wilcoxon signed-rank test (WSR)

Avg. change in DKK p-value WSR

Treatment 0 to 1 4.2 0.001***

Treatment 1 to 2 5.6 0.0005***

Treatment 2 to 3 -0.8 0.90

Notes: ∗, ∗∗, ∗ ∗ ∗ denote the conventional levels of significance 10%, 5% and 1% respectively

observed amount bet by subject i at treatment level j:

yi,j = a + b1Di,1 + b2Di,2 + b3Di,3 + ui,j (5)

with Di,j = 1[Ti = j] being a dummy indicating treatment level j, and ui,j ∼ N(0, σ).
The zero-mean normal distributed error term ui,j represents unobserved factors other

than the treatments that affect yi,j.

In the observed data, there is extraneous variation at the level of each choice. In

the saturated Tobit regression model this variation is ‘averaged out’ by the estimation

procedure. The jth-level average treatment effect (ATE-j) is embodied in the jth slope:

bj = E[yi,j − yi,0],

with constant a = E[yi,0] being the ‘control level.’

One general concern with within-subject designs is that treatment effects might be

confounded by the order of presentation. As mentioned before, to eliminate the fact

that carry-over effects contaminate the estimated treatment effects, we counterbalanced

our experimental design such that these carry-over effects cancel out on average. We

additionally report results in which we control for sequence fixed effects (specification

2) by including dummy variables for each sequence (minus 1) to the Tobit regression.

The omitted reference sequence 1 presented the treatment levels in the same order as

Table 2, i.e. 0, 1, 2, 3.

A further concern may be that unobserved errors are correlated across treatments

at the subject level. In other words, the unobserved variance in a subject’s choice may

not be independent, but rather correlated due to some personal trait. If this concern is
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Table 5: Average Treatment Effects: Tobit Regression Estimates

(1) (2) (3)

Treatment level 1 6.18 6.20 6.18
(2.50) (2.49) (3.46)

Treatment level 2 14.96 15.061 14.96
(2.61) (2.60) (3.48)

Treatment level 3 15.08 15.062 15.08
(2.82) (2.81) (3.49)

Constant 77.68 62.78 77.68
(2.63) (7.24) (2.45)

Robust clustered errors Yes Yes No
Sequence fixed effects No Yes No

Sample size 1892 1892 1892
Number of clusters 473 473 -
Log likelihood -6157.1 -6114.03 -6157.1

Notes: All columns report estimates of a two-sided Tobit regression model censored at 0 and 100. Of
the 1,892 observations, 101 were left-censored and 766 right-censored. The coefficient estimates are
all in terms of the underlying latent dependent variable. Specification 1 reports our main estimation
model as specified in equation (5) with clustered standard errors. Specification 2 reports the estimation
model adding dummies for the different sequences (minus 1). The reference sequence which is left out
is sequence 1 which presented the treatment levels in the following order: 0, 1, 2, 3. Specification 3
reports plain Tobit regression estimates of the main estimation model. Standard errors are reported in
parentheses beneath coefficient estimates.

valid, then there exists a clustered error problem that must be handled. We also address

this concern in the following estimation of the treatment effects (specification 3).

[Table 5 here.]

Specification 1 of Table 5 estimates equation (5), controlling for within-subject cor-

relation in the error terms, using robust clustered errors. The estimated ATE-1, ATE-2,

and ATE-3, are DKK 6.18, DKK 14.96, and DKK 15.08, respectively. All estimates

are significantly different from zero. Specification 2 shows that adding dummies for the

different sequences to control for sequence fixed effects (over and above the carry-over

effects that are controlled for by our counterbalanced experimental design) has virtually

no effect on estimated ATEs, nor their significance. In specification 3 we estimate a

model analogous to specification 1, but without the robust clustered errors. The esti-
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mates from this specification are the same as in our main specification 1, but ATE-1 is

now insignificant. This is likely due to the clustered standard error problem.

Furthermore, in line with our non-parametric analysis, a t-test on specification 1 indi-

cates that ATE-1 exceeds zero (p = 0.014). F-statistics indicate that ATE-2 (p = 0.0003)

and ATE-3 (p = 0.0016) are both significantly different from ATE-1. This implies our

data is consistent with the continuous version of Salience Theory. There is a significant

effect of treatment, and it goes in the intuitive direction recorded in Proposition 1 (iii).25

Table 5 also suggests that rank-dependent salience cannot be supported by the data.

Remember, if salience distortions were rank-dependent, then ATE-1 should be zero and

ATE-2 should be equal to ATE-3. The first hypothesis is falsified by the t-test above,

while the latter cannot be rejected (p = 0.9603). However, as indicated in our hypothesis,

rank-dependent salience distortions imply that the both effects need to be jointly true.26

3.3 A Structural Model

To go beyond the conclusion of the closed-form identification presented in the previ-

ous section, we estimate the effect that salience has on decision weights. We apply a

structural model that defines how the observed bet amount relates to a salience parame-

ter. Estimating such a parameter could aid in quantifying impacts on specific outcomes

beyond that implied by our experimental design.

To this end, we represent the attentional weight by the function σ(r) = rγ for r ≥ 1.

The salience parameter γ measures the curvature of the attentional weight function.

Thus, the attentional weight parameter is increasingly concave for smaller values of

γ < 1. This representation directly imposes the following linear relationship in the log

odds metric:

ln( π

1 − π) = ln( p

1 − p) + γ ln(xg/xf
xf/xb ) . (6)

The salience parameter γ thus characterizes the elasticity of the perceived odds with

respect to the relative ratio of payoffs. The decision weight π is unfortunately not

observable in the data.

25Recall that any significant effect, regardless of sign, is inconsistent with expected utility theory,
regret theory, disappointment theory, and similarity-based theories.

26We are taking literally that the jump in behavior should occur at treatment level ∆0
= 0.125, and

thus there should be no difference between treatment levels 0 and 0.1. The observed effect from 0 to
0.1 could be partly attributed to the prediction that the jump should occur rather close to level 0.1.
This speaks to the difficulty of testing the rank-dependence model against the continuous alternative.
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We need to make some assumption about the stochastic structure underlying the

observations. The subject reveals a risk attitude with some error. We make the natural

assumption that when searching for the optimal amount to bet, subjects adjust their

marginal rate of substitution with some randomness, to arrive at ln(v′(cg)v′(cb)) + ui,j, with

ui,j being a zero-mean normally distributed error term.

The structural estimation will be based on the optimality condition stated in equa-

tion (4). Taking into account the randomness of the marginal rate of substitution, we

get:

ln(v
′(cb,i,j)
v′(cg,i,j)) = ln(xg − xf

xf − xb ) + ln( π

1 − π) + ui,j. (7)

This equation jointly depends on the decision weight π and the curvature of the value

function v. It cannot be estimated without assuming some functional form for v.27

We consider both the constant absolute risk aversion (CARA) function, v(c) = 1−e−ρc,
and the constant relative risk aversion (CRRA) function, v(c) = c1−ρ/(1 − ρ). The

variation of risk aversion with respect to wealth level is not an important issue in our

experiment where consequences are constant across treatments. However, by considering

both functions, we can evaluate the robustness of our salience parameter estimate. We

arrive at the following CARA-Tobit regression model (censored at 0 and 100):

yi,j = a + b ln(xg,j/xf,j
xf,j/xb,j ) + ui,j (8)

with a = ln(3.5)/ρ, b = γ/ρ, and ui,j ∼ N(0, σ/ρ).28 We can change regression equation (8)

into a CRRA-Tobit regression model (censored at 0 and 100) by replacing y with outcome

ln [ cg,i,jcb,i,j
] on the left-hand side of (8).

[Table 6 here.]

Based on our regression equation (8) and its two representations, Table 6 reports

Tobit regression estimates with clustered standard errors. Specification 1 of Table 6

estimates the CARA specification. The estimated coefficient b̂ is 28.11 (p=0.000), and

the estimated constant â is 87.35 (p=0.000), both significantly different from zero. We

can then compute the estimates ρ̂ = 0.014 and γ̂ = 0.39, using the relations reported

immediately after (8). Increasing the relative payoff contrast by one percent will increase

27By design, the term involving (xg − xf)/(xf − xb) = 7/3 is constant across treatments.
28Recognize that the CARA value function has the representation ln(v′) = −ρc + d for some d. It is

then straightforward to solve for the optimal y in equation (4). Details in our Appendix.
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Table 6: Structural Equations: Tobit Regression Estimates

(1) (2)
Amount bet Log relative wealth

Log ratio of relative payoffs 28.11 0.13
(4.6) (0.21)

Constant 87.35 0.41
(2.17) (0.01)

Robust cluster errors Yes Yes

Sample size 1892 1892
Number of clusters 473 473
Log likelihood -6157.71 -1341.17

ρ̂ 0.014 3.06
γ̂ 0.39 0.4

Notes: Both columns report estimates of a two-sided Tobit regression model. The CARA specification is
censored at 0 and 100, and the CRRA specification is censored at 0 and 0.46. Of the 1,892 observations,
101 were left-censored and 766 right-censored. The coefficient estimates are all in terms of the underlying
latent dependent variable. Specification 1 reports our main CARA estimation model as specified in
equation (8) with clustered errors. Specification 2 reports the CRRA estimation model with clustered
standard errors. Standard errors are reported in parentheses beneath coefficient estimates. The last
two estimates are calculated by ρ̂ = ln(3.5)/â and γ̂ = ρ̂b̂.

odds by 0.39 percent. Specification 2 of Table 6 estimates the CRRA specification. For

this specification the estimated coefficient b̂ is 0.13 (p=0.000) and the estimated constant

â is 0.41 (p=0.000), both significantly different from zero. Here, the implied parameter

estimates are ρ̂ = 3.06 and γ̂ = 0.4. This suggests that the estimation of the salience

parameter γ is robust across specifications.29

How do our estimates compare to estimates mentioned in the online appendix to

(Bordalo et al., 2012b, p.27)? Bordalo et al. (2012b) use survey data obtained from a

hypothetical study conducted on MTurk to estimate the salience parameter δ of their

rank-dependent version of Salience Theory using the salience function σ(r) = ∣r−1∣
1+r+θ and

setting θ = 0.1. Given this, the best fit for their data is obtained at δ = 0.7. It is

important to recall that our data is inconsistent with the rank-dependent version of

29Parameter ρ captures two different characteristics, absolute risk aversion in CARA, but relative
risk aversion in CRRA.
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Salience Theory. Also, our structural estimation of the parameter faces the same problem

as they did, that the risk preference abruptly changes between situations with salient

downside risk and situations in which the upside is salient.30. We can nevertheless relate

their estimates to our setting and in this way better highlight the underlying relation

between the estimates.

The comparison concerns the ratio of the attentional weighting functions
wg

wb
in equa-

tion 4. In our structural estimation the ratio of the attentional weights is given by

wg
wb

= (xg/xf)γ
(xf/xb)γ = (xgxb

x2
f

)
γ

.

In Bordalo et al. (2012b)’s estimation, this ratio is instead given by

wg
wb

=
⎧⎪⎪⎨⎪⎪⎩
δ if σ(xf/xb) > σ(xg/xf)
1
δ otherwise

with σ(r) = ∣r−1∣
1+r+θ . Using our treatment parameters, our specification of continuous

Salience Theory, and the estimate γ = 0.4, this implies:

T=0 T=1 T=2 T=3

wg

wb
(1.1×0.1

0.42
)0.4 (1.2×0.2

0.52
)0.4 (1.5×0.5

0.82
)0.4 (1.6×0.6

0.92
)0.4

= 0.86 = 0.98 = 1.07 = 1.07

Bad state salient Good state salient

In contrast to this, using the estimates that Bordalo et al. (2012b) obtained (δ = 0.7 and

θ = 0.1), we get the following:

T=0 T=1 T=2 T=3

σb 0.5 0.375 0.214 0.1875

σg 0.4375 0.389 0.333 0.269

wg

wb
0.7 1.429 1.429 1.429

Bad state salient Good state salient

30They solve this issue by introducing a smoothing of the local thinker’s evaluation of lotteries in
the form of risk aversion in the value function
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Hence, using the estimates from Bordalo et al. (2012b) implies that at treatment level

T=0 the bad state is salient whereas at treatment levels T=1 to T=3 the good state

is salient. With our setting this shift only occurs between T=1 and T=2 the main

reason being that we assume θ = 0. Relating this back to the analysis of our treatment

effects, this means that there should be a significant difference between b0 and b1, but

no difference between b1, b2 and b3. Again, we observe the former but not the latter,

implying that our data is more consistent with the continuous representation of Salience

Theory.31

4 Benartzi and Thaler’s Model

As already hinted at in the introduction, in principle Benartzi and Thaler’s (1995)

adaptation of Prospect Theory to portfolio choice can also explain that subjects allocate

more to risky assets across our treatments. We now investigate this possibility in greater

detail, finding that implausible parameter values would be necessary to explain our data.

Addressing the equity premium puzzle, Benartzi and Thaler propose that investors

in asset markets judge their portfolios by the value of their holdings and not their overall

wealth levels. In our experimental setting, subjects choose how to allocate m, and the

ex post value of the resulting prospect is xsy + xf(m − y). A central tenet of Prospect

Theory is that people derive value from gains and losses, measured relative to some

reference point. Here, by (1), the net gain is xsy + xf(m − y) = cs − c0, with c0 = e −m
denoting the reference point.32 Plugging in the baseline payoffs, gives xsy + xf(m − y) =
(x̄f +∆)m+(x̄s − x̄f)y, so the value of the holding would be increasing in the treatment

variable ∆ and always positive.

Given this, a subject motivated by Prospect Theory à la Benartzi and Thaler (1995)

in our experiment would evaluate consequences, and choose y, the amount bet on the

risky lottery LA, to maximize

V (y) = π(p)v(cg − c0) + (1 − π(p))v(cb − c0), (9)

with π now being Prospect Theory’s decision weights.

31An appendix to Frydman and Mormann (2017) directly assumes θ = .1 and would hence make the
same prediction here as Bordalo et al. (2012b). Their estimate for δ is 0.89 on average.

32As remarked in Section 2.2, Prospect Theory differs from Salience Theory in this focus on gains
and losses.
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According to Prospect Theory, the valuation function v is concave on the positive do-

main. The subject will bet an amount up to the point where V ′(y) = 0. By equation (9),

we therefore have that
xf − xb
xg − xf = π(p)

1 − π(p)
v′(cg − c0)
v′(cb − c0) . (10)

As the treatment variable ∆ increases, the value of the holding will also increase.

By the concavity of the value function,
v′(cg−c0)
v′(cb−c0) < 1 and converging towards 1 as the

treatment variable ∆ is increased. Increasing ∆ will thus increase the slope of the

strictly convex indifference curve. Equality in equation (10) is then restored by betting

more, just as illustrated in the earlier Figure 1.

To assess the extent to which Benartzi and Thaler’s model actually explains our

observations, we modify our structural model (7):

ln(v
′(cb,i,j − c0,j)
v′(cg,i,j − c0,j)) = ln(xg − xf

xf − xb
π(p)

1 − π(p)) + ui,j. (11)

In our estimation we will consider the power functional v(cs − c0) = (cs − c0)α with

0 < α < 1, which is customarily used in applications of Prospect Theory when cs − c0 is

positive. For observable outcome zi,j = ln [ cg,i,j−c0,jcb,i,j−c0,j ], we thus apply the following Tobit

model with variable censoring across treatments:

zi,j = a + ui,j with a = 1

1 − α ln(3.5
π(0.6)

1 − π(0.6)) . (12)

The estimated constant is â = 1.399 (p=0.000), which implies that:

π̂(0.6) = e1.399(1−α) 0.3
0.7

1 + e1.399(1−α) 0.3
0.7

. (13)

There are two ways to demonstrate that the estimated parameters are implausible.

First, by applying a feasible estimated range for the α-parameter in the value function v,

α̂ ∈ [0.7,0.9] (Tversky and Kahneman, 1992; Abdellaoui, 2000; Harrison and Rutström,

2009), we find from (13) that π̂(0.6) ∈ [0.3,0.4]. But these studies all jointly estimate

the α-parameter and the weighting function

π(p) = pβ

(pβ + (1 − p)β)1/β , (14)
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and actually find that β̂ ∈ [0.6,0.9]. Now, (14) would imply that π̂(0.6) should really lie

in the range [0.5,0.6]. The degree of underweighting we find necessary to account for

our experimental data is therefore difficult to reconcile with the findings of these studies.

Alternatively, assuming a more realistic underweighting π̂(0.6) = 0.5 would by equa-

tion (13) imply that α̂ = 0.3. That is, a representative subject would be indifferent

between receiving approximately DKK 0.01 with certainty and a fifty-fifty win DKK 1

/ lose DKK 0 lottery.

It is unlikely that most subjects underweight a probability of 0.6 by nearly two-

thirds, or that most subjects are risk-averse to the degree that they would price such an

Arrow-Debreu security at 0.01. Salience Theory offers the more likely explanation.

5 Conclusion

This paper presents a direct experimental test of the prediction of Salience Theory, that

the salience of the good consequence will make the risky lottery look more attractive.

Our results strongly support this prediction. We manipulated the Weber-Fechner law

by which subjects are thought to evaluate prospects. This manipulation was intended

to change the salience of the consequences in our experimental design. By implication,

salient thinkers will put disproportional weight on salient consequences when considering

the value of prospects. In particular, we observe that subjects bet more when good

consequences are salient. The results provide support for the behavioral hypothesis of

Salience Theory.

The results may also have relevance for asset pricing. After all, risky assets are

lotteries evaluated in a context described by the alternative investments available in

the market. A direct implication of our results is that the Weber-Fechner law causes

investors to focus on downside risks more than on equal-sized upside risks, leading to

an undervaluation of risky assets. This undervaluation will lead to lower prices, causing

expected returns on the risky assets to increase. Our results thus also support a Salience

Theory based explanation of the equity premium puzzle. Bordalo et al. (2013a) show

that Salience Theory also can explain other puzzles in finance.33

Of course, our experiment is highly stylized. For example, the subjects in the ex-

periment only face known probabilities, whereas in real life investors mainly deal with

33It is beyond the scope of our experimental study, but it would be interesting to characterize the
set of salience functions σ that are consistent with all available evidence.
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unknown probabilities. Another issue is that the financial stakes for the experimental

subjects are low compared with those of most investors. Furthermore, it might be that

trading washes out some of the salience effect, if not all. These concerns are a cause for

caution in extrapolating the results. However, the first two are not of major concern

in so far as our structural estimation of the salience parameter measures a ‘deep psy-

chological constant.’ The latter concern suggests a line along which to pursue further

experimental work.

Lastly, we deliberately designed the experiment in a way to test for salience effects

and control for a very large set of alternative theories which would otherwise naturally

be used to predict behavior in our experimental setting. In our test of the salience effect,

we took these alternative theories at face value without making any attempt to reconcile

them with the data. Clearly, if we had built in, for example, a notion of ‘narrow framing’

similar to the one used in Benartzi and Thaler’s (1995) version of Prospect Theory in

one of the alternative theories mentioned in the introduction, we might have been able to

obtain a hypothesis in line with our salience hypothesis. Whether such ad hoc changes to

the existing theories would lead to better and descriptively more accurate representations

of behavior in our setting is very interesting, but goes beyond the scope of our focus and

is hence left for future research.
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Appendix A: Proofs

Proof of Lemma 1

Let (cg, cb) and (c′g, c′b) denote the wealth consequence pairs corresponding to choices y

and y′, respectively. When y′ > y, we have cg < c′g and cb > c′b. At weight pair (wg,wb),
choice y′ is weakly better than y if and only if

pwgv (c′g) + (1 − p)wbv (c′b) ≥ pwgv (cg) + (1 − p)wbv (cb)

i.e.,

pwg [v (c′g) − v (cg)] ≥ (1 − p)wb [v (cb) − v (c′b)] .
Since v is increasing, factors are positive on both sides of this inequality. When

w′g
w′

b
> wg

wb
,

we get by implication that

pw′
g [v (c′g) − v (cg)] > (1 − p)w′

b [v (cb) − v (c′b)] .

Hence, with decision weights (w′
g,w

′
b), y′ is strictly preferred to y.

Proof of Lemma 2

(a). In this case,
wg
wb

= ln (xg +∆) − ln (xf +∆)
ln (xf +∆) − ln (xb +∆) .

Its derivative with respect to ∆ is seen to be positive if and only if

ln (xg +∆) − ln (xf +∆)
ln (xf +∆) − ln (xb +∆) >

1
xf+∆ − 1

xg+∆

1
xb+∆ − 1

xf+∆

=
1 − xf+∆

xg+∆

xf+∆

xb+∆ − 1
.

This inequality is true since ln(r) ≤ r − 1 with strict inequality for all positive r ≠ 1.

(b). Note that the salience of the good consequence is

wg = (x̄g +∆) − (x̄f +∆)
(x̄g +∆) − (x̄f +∆) = x̄g − x̄f

x̄g + x̄f + 2∆
.
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Using a similar expression for wb, we find that

wg
wb

= (x̄g − x̄f) (x̄f + x̄b + 2∆)
(x̄f − x̄b) (x̄g + x̄f + 2∆) .

Since x̄b < x̄f < x̄g, this is an increasing function of ∆.

(c). Observe that
x̄g +∆

x̄f +∆
− 1 = x̄g − x̄f

x̄f +∆
.

Using a similar expression for
x̄f+∆

x̄b+∆ − 1, we find

wg
wb

= [(x̄g − x̄f) (x̄b +∆)
(x̄f − x̄b) (x̄f +∆)]

γ

.

Since x̄b < x̄f < x̄g, this is an increasing function of ∆.

(d) and (e). Since γ > 0, and since the logarithm is strictly increasing,
wg

wb
rises if and

only if

ln (x̄g +∆) − ln (x̄f +∆) − ln (x̄f +∆) + ln (x̄b +∆)
rises. Its derivative with respect to ∆ is

1

xg
− 2

xf
+ 1

xb
.

This derivative is positive if and only if xf exceeds the harmonic mean of xb and xg, i.e.,

xf > 2
1
xg
+ 1
xb

. (15)

The remaining issue is when this property holds for all permissible values of ∆ ∈ [0,∆U].
The left-hand side of (15), xf = x̄f +∆ is increasing one for one with ∆. The right-hand

side of (15) always rises faster than that, for its slope is

2 ( 1
x2g
+ 1
x2
b
)

( 1
xg
+ 1
xb
)2 = 1 +

1
x2g
+ 1
x2
b
− 2 1

xg
1
xb

( 1
xg
+ 1
xb
)2 > 1.

The desired inequality (15) therefore holds for all ∆ if and only if it holds at the upper

end, ∆U .
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Derivation of Equation (8)

The CARA function has v′(c) = ρe−ρc, so ln(v′(c)) = ln(ρ)−ρc. The left-hand side of (7)

is then ρ(cg − cb). Substituting the definition for cs from (1), this left-hand side reduces

to ρ(xg − xb)y = ρy, as all four treatment levels have xg − xb = 1 (Table 2). We will then

arrive at (8) after dividing both sides of (7) by ρ.

On the right-hand side of (7), Table 2 shows that (xg −xf)/(xf −xb)=7/3 in all four

treatment levels. According to (6), the second term on the right-hand side of (7) in part

provides the constant level ln(p/(1 − p)). Here, p/(1 − p) = 3/2 since p = 3/5 (Table 2).

Since ln(7/3) + ln(3/2) = ln(7/2), we have explained constant a in (8).

By (6), the remaining part of the second term on the right-hand side of (7) is

γ ln((xg/xf)/(xf/xb)). This provides the term b ln((xg/xf)/(xf/xb)) in (8). Finally,

ui,j directly carries over from (7) to (8).
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Appendix B: Screenshot

 

Round 1 
 
You start this round with 160 DKK. 100 DKK of these 160 DKK can be bet on Lottery A 
and B. Below you are shown the table with the information regarding 'Lottery A' and 
'Lottery B' in this round:  
       
 

 Lottery A Lottery B 

60% 1.1 0.4 

40% 0.1 0.4 

      
       
In this round you have a 60% chance to earn 1.1 times the amount you bet on Lottery 
A and a 40% chance to earn 0.1 times the amount you bet on Lottery A. The amount 
not bet on Lottery A will automatically be bet on Lottery B. You earn 0.4 times the 
amount bet on Lottery B in this round.  
       You will also receive the difference between the starting amount and the amount 
that you can bet, i.e 60 DKK, in this round. 
  
Please decide how much of the 100 DKK you want to bet on Lottery A in this round.  
 
Your decision 
 
The amount (in DKK) that I would like to bet on Lottery A in this round is: … 
 
 
Press “Next” to continue. 
         

 

… 

Next 

Figure 2: This is a screenshot of the decision situation at treatment level T = 0. The other
decision situations were identical, besides the starting endowment and lottery payoffs. The
endowment and payoffs in the other treatments can be found in Table 2.
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